Ultrashort radiation pulses from storage rings

Size: px
Start display at page:

Download "Ultrashort radiation pulses from storage rings"

Transcription

1 Ultrashort radiation pulses from storage rings Lawrence Berkeley National Laboratory page 1

2 Overview Introduction to synchrotron radiation Coherence of Synchrotron Radiation? Challenges for generating CSR Tailored terahertz pulses via laser-beam modulation X-ray pulse compression via transverse beam chirping Summary page 2

3 Science Opportunities: Michael C. Martin, Wayne R. McKinney, Dimitri Basov, Daniel Chemla, Ben Feinberg, Robert Kaindl, Jim Krupnick, Laszlo Mihaly, Joe Orenstein, Al Sievers, Jason Singley, Neville Smith Accelerator Physics:, Fernando Sannibale, David Robin, Hiroshi Nishimura, Weishi Wan, Christoph Steier, Warren Byrne, Tom Scarvie, Agusta Loftsdottir Laser Slicing: Robert Schoenlein, Sacha Zholents, Max Zolotorev, Zhao Hao Engineering: Ross Schlueter, Jin-Young Jung, Dawn Munson, Ken Baptiste, Walter Barry, R.J Benjegerdes, Alan Biocca, Daniela Cambie, Mike Chin, John Corlett, Stefano De Santis, Rick Donahue, Mike Fahmie, Slawomir Kwiatkowski, Derun Li, Steve Marks, David Plate, J.A. Paterson, Greg Stover, Will Thur, J.P. Zbasnik Collaborations: Marco Venturini - LBNL, Etienne Forest - KEK, Gennady Stupakov - SLAC, Jim Murphy - NSLS-BNL - Larry Carr, NSLS-BNL, Wim Leemans - LBNL, Bout Marcelis - LBNL/Eindhoven, Bob Warnock - SLAC, Rui Li - JLab, Gode Wustefeld - BESSY, Peter Kuske - BESSY,... page 3 Acknowledgements Work supported by LBNL LDRD funding since FY01.

4 page 4 Synchrotron radiation: White noise Radiated electric field of an electron = = N k t k t e t E 1 ) ( ) ( = = N k t e i k e E 1 ) ˆ( ) ( ˆ ω ω ω Total power is a sum over the relative phases of individual electrons = = = = = N m k t t i N m t i N k t i m k m k e e e e e e P 1, ) ( * ) ˆ( ) ( ) ˆ ˆ( ) ( ω ω ω ω ω ω ω Average power is + = ) ˆ( ) ˆ( ) ( ω ω ω f N N e P coherent radiation incoherent radiation frequency spectrum of longitudinal bunch distribution

5 Coherence of Synchrotron Radiation long bunch (λ>σ z ) E( t) = N k= 1 e( t t k ) Total electric summed over N electrons distributed at time t k. Bunch spectral distribution short bunch (λ<σ z ) 2 2 P( ω) = eˆ( ω) N + N fˆ( ω) Incoherent 2 Coherent Log Flux coherent incoherent page 5 Log Frequency

6 Vacuum Chamber acts as a High Pass Filter effective source size beam size Challenges for generating CSR long bunch spectrum shielded impedance h short bunch spectrum vacuum chamber When the effective size of the SR source is equal to the height of the vacuum chamber, SR is suppressed. Most rings can not make short enough bunches to generate stable CSR! free space impedance Frequency Nodvick, Saxon, Phys. Rev. 96, 1, p. 180 (1954) Shielding by the vacuum chamber limits the SR emission to wavelengths above the waveguide cutoff condition πσ < λ <2h h ρ 1/2 page 6

7 Dreams Come True... Recently, two different facilities experimentally demonstrated the feasibility of such sources: The Jefferson Lab Energy Recovery Linac The BESSY-II Storage Ring Intensity (Arb. Units) Integrated THz Intensity (Arb. Units) Measured Intensity N 2 Fit Beam Current (µa) 50 µa 80 µa 105 µa 110 µa 170 µa 230 µa 0 page Wavenumbers (cm -1 ) L. Carr et al., Nature 420, 153 (2002) M. Abo-Bakr et al., Phys. Rev. Lett. 88, (2002) M. Abo-Bakr et al., Phys. Rev. Lett. 90, (2003)

8 Our Dream An Optimized Ring Based CSR Source Up to 9 orders of magnitude higher power than in existing sources! Revolutionary impact on the THz based science page 8

9 Radiation Force e - opening angle~ψ r ~ λ 2πρ 1/3 ρ In free space E φ = Z 0c 2e 1 4π 3 4 ρ 2 1/3 s 4/3 for s>0 Total voltage on a bunch V(s) =2πρ s ds'e φ (s s')i(s') E φ Front wake accelerates bunch front nominal bunch distribution Back (de)focussing gradient page 9

10 Bunch distortion from radiation Radiation force additionally focusses the front of the bunch. Limit reached when back of bunch is defocussed. 10Q 0 Q 0 Steep leading bunch edge extends coherent emission spectrum to shorter wavelengths. Coherence occurs at sharp front edge of the bunch-shorter bunches. Log Amplitude front back Bane, Krinsky, & Murphy, Microbunches Workshop, AIP Conf. Proc. 367, 191 (1996). Murphy, Krinsky, & Gluckstern, Part. Accel. 57, 9 (1997). page 10 Log Frequency

11 Simulation of the BESSY Results The CSR Gain CSR Gain = P TOT TOT /P INC INC = 1 + N g(ω) g The measured quantity: f S The input quantities: α C, σ 0 Other effects: Uneven filling of the buckets Indeterminacy on h Systematic experimental errors page 11

12 Simulation of the BESSY Results Distribution Asymmetry Tail Head Leading edges much sharper than trailing ones, in agreement with BESSY II observations page 12

13 CSR Instabilities CSR can drive a microbunching instability in the electron bunch, resulting in a periodic bursts of terahertz synchrotron radiation, resulting in a noisy source. Bolometer signal (V) 10 ma 10.5mA 28.8mA mA ms Time (msec) Time (msec) page 13 Simulated instability showing bunch shape Bursts of far-ir CSR observed on a bolometer. Threshold depends on beam energy, bunch length, energy spread, and wavelength.

14 Microbunching Model Small perturbations to the bunch density can be amplified by the interaction with the radiation. Instability occurs if growth rate is faster than decoherence from bunch energy spread. δ/σ δ Nonlinear effects cause the instability to saturate. Radiation damping damps the increased energy spread and bunch length, resulting in a sawtooth instability. page 14 z/σ S. Heifets and G. Stupakov, PRST-AB 5, (2002). M. Venturini and R. Warnock, PRL 89, (2002).

15 ALS microbunching results Bursting (ma) Burst threshold (ma) ALS studies show first confirmation of CSR driven sub-microwave instability mm threshold 3.2 mm threshold Model predictions Energy (GeV) Instability thresholds understood: -agreement w/observations at other sources -coherent power enhanced w/lower S/N -possibility of raising threshold using nonlinear momentum compaction Standard FTIR techniques require clean sources. A CSR source must be below the instability threshold. J. Byrd, et. al. PRL 89, , (2002). page 15

16 Bessy-II Microbunching Bursting threshold Agrees well with predicted microbunching thresholds page 16 G. Wuestefeld, Napa CSR Workshop, Oct. 2002

17 Filling the Terahertz (THz) Gap The most scientifically rich, yet underutilized region of the EM spectrum Tom Crowe Hz 1 THz = 4.1 mev = 33 cm -1 = 300 µm page 17 THz Science: collective excitations, protein motions & dynamics, superconductor gaps, magnetic resonances, terabit wireless, medical imaging, security screening, detecting explosives & bio agents Much brighter terahertz beams are required for scientific and technological applications... Large average and peak powers could be used to manipulate and alter materials, chemical reactions and biological processes. -Mark Sherwin, Nature News & Views 520, 131 (2002).

18 T-rays are hot! led to unprecedented creativity in source development. "The size of the community is increasing with a clear growth potential to support a large THz user s network including user facilities." The opportunities are limitless page 18

19 CIRCE: Coherent InfraRed CEnter ALS LINAC ALS Booster CIRCE ALS page 19

20 CIRCE Main Characteristics CIRCE Parameters (NC RF): E = 600 MeV f RF = 1.5 GHz V RF = 0.6 MV U 0 = 8.62 kv I total = 8-90 ma I bunch = µa L = 66 m # buckets = 330 σ τ0 = 1-3 ps σ δ = α= ρ = m 2h = 4 cm Σ = Periodicity = 6 DBA lattice 50 nm emittance (diffraction limited in far-infrared) Variable momentum compaction with 3rd order correction Magnets pre-aligned on girders Shielding fits directly over magnets (i.e. no tunnel access) CIRCE Parameters (SC RF): Same as the normal conductive case but: V RF = 1.5 MV I total = ma I bunch = µa α = page 20

21 E=600 MeV f rf =1.5 GHz V rf =0.6 MV L=66 m h=330 ρ = m rms pulse length [ps] CIRCE Performance Table Total power [w] Pulse peak power [kw] Energy per pulse [nj] Horizontal Acceptance = 300 mrad Power integrated between 1 and 100 cm -1 Total current [ma] Current per bunch [µa] Particles per bunch Momentum Compaction Mode Mode Mode With Superconductive RF: Vrf ~ 1.5 MV - Power & Energy increase a factor Currents increase a factor Momentum compaction increases a factor 2.5 page 21

22 MIT/Bates as a T-ray source Longitudinal equilibrium distributions (Haissinski equation solutions) and relative spectra for three different modes. Stable solutions, no IR bursts present (SR driven instability). The different modes trade between bandwidth and power. The hump-like shape on the 2.4 ps distribution indicates significant shielding from the vacuum chamber. F. Sannibale - September 2004 page 22

23 Novel techniques for using CSR Self-synchronized Electro-optic sampling provides functionality of benchtop setup w/1.5 GHz rep-rate use inherent synchronization of optical and THz beams optical source can be dipole (very weak) or undulator self-mixing techniques also possible. optical beam l W IR beam electron bunch wiggler or bend page 23

24 Pulse stacking Because input pulses are coherent, it is possible to resonate the signals to gain high pulse power levels. Input CSR pulses Peak power limited by cavity Q and phase stability of pulses page 24 T. Smith, et al., NIMA 393 (1997)

25 Development of CIRCE 1994, First idea of a storage ring based CSR source (1994) Murphy & Krinsky, NIM A 346, 571 (1994). Spring 2000, CIRCE Idea Conceived Presented at the FIR Workshop at the ALS Users Meeting, October 2001, CIRCE LBL Internal Review (March 14, 2001) Positive report. High priority to the CSR Mode of operation 2002, First demonstration of stable CSR at BESSY Abo-Bakr et al., PRL 88, (2002) 2002, Microbunching instability predicted, simulated and experimentally verified. Heifets & Stupakov, PRSTAB 5, (2002). Venturini & Warnock, PRL 89, , (2002). J. Byrd, et. al. PRL 89, , (2002). 2003, BESAC 20 year BES Facilities Roadmap (February 22, 2003) Importance of the THz science. Need of organizing a nationwide workshop 2003, First science with CSR successful Singley, et al., PR B 69 (9), (2004). 2003, Model for CSR production in storage rings Sannibale, et al., PAC 2003, to appear in PRL in , DOE-NSF-NIH THz Science Workshop (February 2004, report issued Sept 04) page 25

26 Laser Tailoring of Beams Laser slicing is a new technique for generating ~ fsec xray pulses in a storage ring. In operation at ALS since 2002, and being constructed on Bessy-II and SLS. page 26 R.W. Schoenlein, et al., Science, Mar 24, (2000) A. Zholents, M. Zolotorev, Phys. Rev. Lett. 76, 912, (1996).

27 Holy Bunches 1/24 ring after slicing 3/4 ring after slicing Holes spread due to time of flight disperson (i.e. momentum compaction) page 27 Calculated distributions for ALS with nominal and twice nominal momentum compaction.

28 Slicing CSR signals 1 msec laser rep rate Raw bolometer signal shows a signal synchronous with the laser repetition rate. The signal spectra extend up to 2 THz and depend on the initial laser pulse and proximity to the slice. Fine structure in spectra is due to measurement details. long slice short slice page 28

29 Micromodulation at CIRCE: Predicted Performance Longitudinal Distribution Modulation at Radiator Laser Modulation: 6 energy spread sigmas Laser pulse length: 50 fs FWHM Distance modulator-radiator: radiator: 2.5 m [ps] M. Zolotorev Current per bunch: 10 ma Horizontal Acceptance 100 mrad (single mode) Energy per pulse: 8.5 µj Max reprate: : khz page 29

30 X-ray pulse compression via vertical beam chirp δy ( z = σ ) z eu E beam β β rf undul 2πσ z λ rf SCRF deflecting cavity (TM110 mode) Electron trajectory Collimating slits SCRF deflecting cavity X-ray compression in asymmetric-cut crystals Undulator Radiation from tail electrons >> σ + σ 2 y' Radiation from head electrons Collimating mirror 2 x ray l Input x-ray pulse >> diffraction limited size and natural beamsize page 30

31 Examples for ALS and APS Avoids natural limits on short electron bunches high rep rate beam dynamics under study at APS and ALS page 31 Trajectory for an electron with z=σ z and 200 µrad kick high frequency SC cavity needed for sufficient deflection of high energy beams two cavities needed to allow local effect brightness reduced by compression factor

32 Summary Opportunities still abound for ultrafast pulses from storage rings CSR emission in storage is a powerful source of T-rays observed in several rings; new proposals for T-ray operation mode. possibilities of new range of techniques with high power: pulse stacking, two-color pump/probe laser tailoring allows coherent control of ultrafast T-ray pulses Vertical chirp pulse compression a viable technique for high rep rate sub-picosecond x-ray pulses page 32

Terahertz Coherent Synchrotron Radiation at DAΦNE

Terahertz Coherent Synchrotron Radiation at DAΦNE K K DAΦNE TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, July 28, 2004 Note: G-61 Terahertz Coherent Synchrotron Radiation at DAΦNE C. Biscari 1, J. M. Byrd 2, M. Castellano 1, M. Cestelli Guidi

More information

Gennady Stupakov. Stanford Linear Accelerator Center

Gennady Stupakov. Stanford Linear Accelerator Center 1 CSR Effects in e+e- Storage Rings Gennady Stupakov Stanford Linear Accelerator Center timer 30th Advanced ICFA Beam Dynamics Workshop on High Luminosity e+e- Collisions October 13-16, 2003 Outline of

More information

Studies on Coherent Synchrotron Radiation at SOLEIL

Studies on Coherent Synchrotron Radiation at SOLEIL Studies on Coherent Synchrotron Radiation at SOLEIL C. Evain, M.-E. Couprie, M.-A. Tordeux, A. Loulergue, A. Nadji, M. Labat, L. Cassinari, J.-C. Denard, R. Nagaoka, J.-M. Filhol 1 J. Barros, P. Roy, G.

More information

Coherent Synchrotron Radiation and Short Bunches in Electron Storage Rings. G. Wüstefeld, BESSY, Berlin (Germany)

Coherent Synchrotron Radiation and Short Bunches in Electron Storage Rings. G. Wüstefeld, BESSY, Berlin (Germany) Coherent Synchrotron Radiation and Short Bunches in Electron Storage Rings G. Wüstefeld, BESSY, Berlin (Germany) Content content 1. Introduction 2. Low alpha optics for short bunches 3. Coherent radiation

More information

Investigation of Coherent Emission from the NSLS VUV Ring

Investigation of Coherent Emission from the NSLS VUV Ring SPIE Accelerator Based Infrared Sources and Spectroscopic Applications Proc. 3775, 88 94 (1999) Investigation of Coherent Emission from the NSLS VUV Ring G.L. Carr, R.P.S.M. Lobo, J.D. LaVeigne, D.H. Reitze,

More information

Future Light Sources March 5-9, 2012 Low- alpha mode at SOLEIL 1

Future Light Sources March 5-9, 2012 Low- alpha mode at SOLEIL 1 Introduction: bunch length measurements Reminder of optics Non- linear dynamics Low- alpha operation On the user side: THz and X- ray short bunch science CSR measurement and modeling Future Light Sources

More information

Experimental Path to Echo-75 at NLCTA

Experimental Path to Echo-75 at NLCTA Experimental Path to Echo-75 at NLCTA Erik Hemsing on behalf of the ECHO group at SLAC NLCTA ICFA Workshop on Future Light Sources March 5-9, 2012 Thomas Jefferson National Accelerator Facility Motivation

More information

WG2 on ERL light sources CHESS & LEPP

WG2 on ERL light sources CHESS & LEPP Charge: WG2 on ERL light sources Address and try to answer a list of critical questions for ERL light sources. Session leaders can approach each question by means of (a) (Very) short presentations (b)

More information

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center Linac Based Photon Sources: XFELS Coherence Properties J. B. Hastings Stanford Linear Accelerator Center Coherent Synchrotron Radiation Coherent Synchrotron Radiation coherent power N 6 10 9 incoherent

More information

Beam Echo Effect for Generation of Short Wavelength Radiation

Beam Echo Effect for Generation of Short Wavelength Radiation Beam Echo Effect for Generation of Short Wavelength Radiation G. Stupakov SLAC NAL, Stanford, CA 94309 31st International FEL Conference 2009 Liverpool, UK, August 23-28, 2009 1/31 Outline of the talk

More information

X-ray Free-electron Lasers

X-ray Free-electron Lasers X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/ 2009 Claudio Pellegrini UCLA Department of Physics and Astronomy Outline 1. Present status of X-ray free-electron

More information

Research Topics in Beam Physics Department

Research Topics in Beam Physics Department Introduction Research Topics in Beam Physics Department The physics of particle beams has been a broad and vibrant research field encompassing the study of charged particle beams and their interactions.

More information

Echo-Enabled Harmonic Generation

Echo-Enabled Harmonic Generation Echo-Enabled Harmonic Generation G. Stupakov SLAC NAL, Stanford, CA 94309 IPAC 10, Kyoto, Japan, May 23-28, 2010 1/29 Outline of the talk Generation of microbunching in the beam using the echo effect mechanism

More information

Coherent THz Pulses: Source and Science at the NSLS

Coherent THz Pulses: Source and Science at the NSLS Coherent THz Pulses: Source and Science at the NSLS H. Loos, B. Sheehy, D. Arena, J.B. Murphy, X.-J. Wang and G. L. Carr Brookhaven National Laboratory carr@bnl.gov http://www.nsls.bnl.gov http://infrared.nsls.bnl.gov

More information

SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS

SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS LCLS Technical Advisory Committee December 10-11, 2001. SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS Patrick Krejcik LCLS Technical Advisory Committee Report 1: July 14-15, 1999 The

More information

3. Synchrotrons. Synchrotron Basics

3. Synchrotrons. Synchrotron Basics 1 3. Synchrotrons Synchrotron Basics What you will learn about 2 Overview of a Synchrotron Source Losing & Replenishing Electrons Storage Ring and Magnetic Lattice Synchrotron Radiation Flux, Brilliance

More information

Generation and characterization of ultra-short electron and x-ray x pulses

Generation and characterization of ultra-short electron and x-ray x pulses Generation and characterization of ultra-short electron and x-ray x pulses Zhirong Huang (SLAC) Compact XFEL workshop July 19-20, 2010, Shanghai, China Ultra-bright Promise of XFELs Ultra-fast LCLS Methods

More information

Low alpha mode for SPEAR3 and a potential THz beamline

Low alpha mode for SPEAR3 and a potential THz beamline Low alpha mode for SPEAR3 and a potential THz beamline X. Huang For the SSRL Accelerator Team 3/4/00 Future Light Source Workshop 00 --- X. Huang Outline The low-alpha mode for SPEAR3 Potential for a THz

More information

CSR Effects in Beam Dynamics

CSR Effects in Beam Dynamics CSR Effects in Beam Dynamics G. Stupakov SLAC National Accelerator Laboratory Menlo Park, CA 94025 A Special Beam Physics Symposium in Honor of Yaroslav Derbenev s 70th Birthday Thomas Jefferson National

More information

PAL LINAC UPGRADE FOR A 1-3 Å XFEL

PAL LINAC UPGRADE FOR A 1-3 Å XFEL PAL LINAC UPGRADE FOR A 1-3 Å XFEL J. S. Oh, W. Namkung, Pohang Accelerator Laboratory, POSTECH, Pohang 790-784, Korea Y. Kim, Deutsches Elektronen-Synchrotron DESY, D-603 Hamburg, Germany Abstract With

More information

4 FEL Physics. Technical Synopsis

4 FEL Physics. Technical Synopsis 4 FEL Physics Technical Synopsis This chapter presents an introduction to the Free Electron Laser (FEL) physics and the general requirements on the electron beam parameters in order to support FEL lasing

More information

4GLS Status. Susan L Smith ASTeC Daresbury Laboratory

4GLS Status. Susan L Smith ASTeC Daresbury Laboratory 4GLS Status Susan L Smith ASTeC Daresbury Laboratory Contents ERLP Introduction Status (Kit on site ) Plan 4GLS (Conceptual Design) Concept Beam transport Injectors SC RF FELs Combining Sources May 2006

More information

R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme

R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme Li Hua Yu for DUV-FEL Team National Synchrotron Light Source Brookhaven National Laboratory FEL2004 Outline The DUVFEL

More information

Brief summary on the CSR workshop at the Canadian light source P. Kuske, HZB

Brief summary on the CSR workshop at the Canadian light source P. Kuske, HZB Brief summary on the CSR workshop at the Canadian light source P. Kuske, HZB Topics in Coherent Synchrotron Radiation (CSR) Workshop: Experimental Consequences of Radiation Impedance Brant Billinghurst

More information

Linac Driven Free Electron Lasers (III)

Linac Driven Free Electron Lasers (III) Linac Driven Free Electron Lasers (III) Massimo.Ferrario@lnf.infn.it SASE FEL Electron Beam Requirements: High Brightness B n ( ) 1+ K 2 2 " MIN r #$ % &B! B n 2 n K 2 minimum radiation wavelength energy

More information

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013 Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers Zhirong Huang SLAC, Stanford University May 13, 2013 Introduction GE synchrotron (1946) opened a new era of accelerator-based

More information

CSR calculation by paraxial approximation

CSR calculation by paraxial approximation CSR calculation by paraxial approximation Tomonori Agoh (KEK) Seminar at Stanford Linear Accelerator Center, March 3, 2006 Short Bunch Introduction Colliders for high luminosity ERL for short duration

More information

Steady State Analysis of Short-wavelength, High-gain FELs in a Large Storage Ring. Abstract

Steady State Analysis of Short-wavelength, High-gain FELs in a Large Storage Ring. Abstract SLAC PUB 12858 October 2007 Steady State Analysis of Short-wavelength, High-gain FELs in a Large Storage Ring Z. Huang, K. Bane, Y. Cai, A. Chao, R. Hettel Stanford Linear Accelerator Center, Menlo Park,

More information

A Bunch Compressor for the CLIC Main Beam

A Bunch Compressor for the CLIC Main Beam A Bunch Compressor for the CLIC Main Beam F.Stulle, A. Adelmann, M. Pedrozzi March 14, 2007 Abstract The last bunch compressor chicane in front of the main linac of the multi TeV linear collider CLIC is

More information

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1 Beam Physics at SLAC Yunhai Cai Beam Physics Department Head July 8, 2008 SLAC Annual Program Review Page 1 Members in the ABP Department * Head: Yunhai Cai * Staff: Gennady Stupakov Karl Bane Zhirong

More information

BERLinPro. An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN

BERLinPro. An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN BERLinPro An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN BERLinPro: ERL demonstration facility to prepare the ground for a few GeV ERL @ Berlin-Adlershof Goal: 100MeV, 100mA beam Small emittance,

More information

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun Jochen Teichert for the BESSY-DESY-FZD-MBI collaboration and the ELBE crew High-Power Workshop, UCLA, Los Angeles 14

More information

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE*

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* Proceedings of FEL014, Basel, Switzerland FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* F. Zhou, K. Bane, Y. Ding, Z. Huang, and H. Loos, SLAC, Menlo Park, CA 9405, USA Abstract Coherent optical transition

More information

Impedance and Collective Effects in Future Light Sources. Karl Bane FLS2010 Workshop 1 March 2010

Impedance and Collective Effects in Future Light Sources. Karl Bane FLS2010 Workshop 1 March 2010 Impedance and Collective Effects in Future Light Sources Karl Bane FLS2010 Workshop 1 March 2010 In future ring-based light sources, the combination of low emittance and high current will mean that collective

More information

The Broadband High Power THz User Facility at the Jefferson Lab - FEL

The Broadband High Power THz User Facility at the Jefferson Lab - FEL The Broadband High Power THz User Facility at the Jefferson Lab - FEL J. Michael Klopf Jefferson Lab Core Managers Meeting June 8, 2006 Jefferson Lab Site Free Electron Laser Facility / THz Lab What is

More information

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Free-electron laser SACLA and its basic Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Light and Its Wavelength, Sizes of Material Virus Mosquito Protein Bacteria Atom

More information

OBSERVATION OF TRANSVERSE- LONGITUDINAL COUPLING EFFECT AT UVSOR-II

OBSERVATION OF TRANSVERSE- LONGITUDINAL COUPLING EFFECT AT UVSOR-II OBSERVATION OF TRANSVERSE- LONGITUDINAL COUPLING EFFECT AT UVSOR-II The 1st International Particle Accelerator Conference, IPAC 10 Kyoto International Conference Center, May 23-28, 2010 M. Shimada (KEK),

More information

Optics considerations for

Optics considerations for Optics considerations for ERL x-ray x sources Georg H. Hoffstaetter* Physics Department Cornell University Ithaca / NY Georg.Hoffstaetter@cornell.edu 1. Overview of Parameters 2. Critical Topics 3. Phase

More information

An Adventure in Marrying Laser Arts and Accelerator Technologies

An Adventure in Marrying Laser Arts and Accelerator Technologies An Adventure in Marrying Laser Arts and Accelerator Technologies Dao Xiang Beam Physics Dept, SLAC, Stanford University Feb-28-2012 An example sample Probe (electron) Pump (laser) Typical pump-probe experiment

More information

Overview of Energy Recovery Linacs

Overview of Energy Recovery Linacs Overview of Energy Recovery Linacs Ivan Bazarov Cornell High Energy Synchrotron Source Talk Outline: Historical Perspective Parameter Space Operational ERLs & Funded Projects Challenges ERL Concept: conventional

More information

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory J. Duris 1, L. Ho 1, R. Li 1, P. Musumeci 1, Y. Sakai 1, E. Threlkeld 1, O. Williams 1, M. Babzien 2,

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam On behalf of SPARCLAB collaboration EMITTANCE X X X X X X X X 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current

More information

Characterization of an 800 nm SASE FEL at Saturation

Characterization of an 800 nm SASE FEL at Saturation Characterization of an 800 nm SASE FEL at Saturation A.Tremaine*, P. Frigola, A. Murokh, C. Pellegrini, S. Reiche, J. Rosenzweig UCLA, Los Angeles, CA 90095 M. Babzien, I. Ben-Zvi, E. Johnson, R. Malone,

More information

Tailored Bunch Operation

Tailored Bunch Operation Tailored Bunch Operation David Robin based on work and input from G. Portmann, B. Kinkaid, J. Kirz, S. Kwiatkowski, C. Steier, J. Julian, M. Hertlein, D. Plate, R. Low, K. Baptiste, W. Barry, C. Sun, C.

More information

Exploration of a Tevatron-Sized Ultimate Light Source

Exploration of a Tevatron-Sized Ultimate Light Source Exploration of a Tevatron-Sized Ultimate Light Source Michael Borland Argonne National Laboratory March 2012 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National

More information

Summary Report: Working Group 2 Storage Ring Sources Future Light Source Workshop SLAC, March 1-5, S. Krinsky and R. Hettel

Summary Report: Working Group 2 Storage Ring Sources Future Light Source Workshop SLAC, March 1-5, S. Krinsky and R. Hettel Summary Report: Working Group 2 Storage Ring Sources Future Light Source Workshop SLAC, March 1-5, 2010 S. Krinsky and R. Hettel Sessions 1. Low Emittance Ring Design --Y. Cai 2. Novel Concepts --D. Robin

More information

Generating ultrashort coherent soft x-ray radiation in storage rings using angular-modulated electron beams. Abstract

Generating ultrashort coherent soft x-ray radiation in storage rings using angular-modulated electron beams. Abstract Generating ultrashort coherent soft x-ray radiation in storage rings using angular-modulated electron beams D. Xiang SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA SLAC-PUB-13974 W. Wan

More information

An Overview of the Activities of ICS Sources in China

An Overview of the Activities of ICS Sources in China An Overview of the Activities of ICS Sources in China Chuanxiang Tang *, Yingchao Du, Wenhui Huang * tang.xuh@tsinghua.edu.cn Department of Engineering physics, Tsinghua University, Beijing 100084, China

More information

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract SLAC National Accelerator Lab LCLS-II TN-17-4 February 217 LCLS-II SCRF start-to-end simulations and global optimization as of September 216 G. Marcus SLAC, Menlo Park, CA 9425 J. Qiang LBNL, Berkeley,

More information

LCLS Accelerator Parameters and Tolerances for Low Charge Operations

LCLS Accelerator Parameters and Tolerances for Low Charge Operations LCLS-TN-99-3 May 3, 1999 LCLS Accelerator Parameters and Tolerances for Low Charge Operations P. Emma SLAC 1 Introduction An option to control the X-ray FEL output power of the LCLS [1] by reducing the

More information

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site 1 Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site Sakhorn Rimjaem (on behalf of the PITZ team) Motivation Photo Injector Test Facility at

More information

Experimental Observation of Energy Modulation in Electron Beams Passing. Through Terahertz Dielectric Wakefield Structures

Experimental Observation of Energy Modulation in Electron Beams Passing. Through Terahertz Dielectric Wakefield Structures Experimental Observation of Energy Modulation in Electron Beams Passing Through Terahertz Dielectric Wakefield Structures S. Antipov 1,3, C. Jing 1,3, M. Fedurin 2, W. Gai 3, A. Kanareykin 1, K. Kusche

More information

Demonstration of Energy-Chirp Control in Relativistic Electron Bunches at LCLS Using a Corrugated Structure. Karl Bane, 7 April 2017,, KEK

Demonstration of Energy-Chirp Control in Relativistic Electron Bunches at LCLS Using a Corrugated Structure. Karl Bane, 7 April 2017,, KEK Demonstration of Energy-Chirp Control in Relativistic Electron Bunches at LCLS Using a Corrugated Structure Karl Bane, 7 April 2017,, KEK Introduction At the end of acceleration in an X-ray FEL, the beam

More information

Microbunching Workshop 2010 March 24, 2010, Frascati, Italy. Zhirong Huang

Microbunching Workshop 2010 March 24, 2010, Frascati, Italy. Zhirong Huang Measurements of the LCLS Laser Heater and its impact on the LCLS FEL Performance Z. Huang for the LCLS commissioning team LCLS 1 1 Outline Introduction LCLS setup and measurements Effects on FEL performance

More information

Femto second X ray Pulse Generation by Electron Beam Slicing. F. Willeke, L.H. Yu, NSLSII, BNL, Upton, NY 11973, USA

Femto second X ray Pulse Generation by Electron Beam Slicing. F. Willeke, L.H. Yu, NSLSII, BNL, Upton, NY 11973, USA Femto second X ray Pulse Generation by Electron Beam Slicing F. Willeke, L.H. Yu, NSLSII, BNL, Upton, NY 11973, USA r 2 r 1 y d x z v Basic Idea: When short electron bunch from linac (5MeV, 50pC,100fs)

More information

Bunch Separation with Reconance Island Buckets

Bunch Separation with Reconance Island Buckets Bunch Separation with Reconance Island Buckets P.Goslawski, J.Feikes, T.Goetsch, J.Li, M.Ries, M.Ruprecht, A.Schälicke, G.Wüstefeld and the BESSY VSR design team Helmholtz-Zentrum Berlin November 26th,

More information

LOLA: Past, present and future operation

LOLA: Past, present and future operation LOLA: Past, present and future operation FLASH Seminar 1/2/29 Christopher Gerth, DESY 8/5/29 FLASH Seminar Christopher Gerth 1 Outline Past Present Future 8/5/29 FLASH Seminar Christopher Gerth 2 Past

More information

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 X-band RF driven hard X-ray FELs Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 Motivations & Contents Motivations Develop more compact (hopefully cheaper) FEL drivers, L S C X-band (successful

More information

Opportunities and Challenges for X

Opportunities and Challenges for X Opportunities and Challenges for X -ray Free Electron Lasers for X-ray Ultrafast Science J. Hastings Stanford Linear Accelerator Center June 22, 2004 European XFEL Laboratory How Short is short? defined

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

Pushing the limits of laser synchrotron light sources

Pushing the limits of laser synchrotron light sources Pushing the limits of laser synchrotron light sources Igor Pogorelsky National Synchrotron Light Source 2 Synchrotron light source With λ w ~ several centimeters, attaining XUV region requires electron

More information

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division First propositions of a lattice for the future upgrade of SOLEIL A. Nadji On behalf of the Accelerators and Engineering Division 1 SOLEIL : A 3 rd generation synchrotron light source 29 beamlines operational

More information

New Electron Source for Energy Recovery Linacs

New Electron Source for Energy Recovery Linacs New Electron Source for Energy Recovery Linacs Ivan Bazarov 20m Cornell s photoinjector: world s brightest electron source 1 Outline Uses of high brightness electron beams Physics of brightness High brightness

More information

Use of Crab Cavities for Short X-ray Pulse Production in Rings

Use of Crab Cavities for Short X-ray Pulse Production in Rings Use of Crab Cavities for Short X-ray Pulse Production in Rings Michael Borland Argonne National Laboratory March 2010 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne

More information

Beam Dynamics. Gennady Stupakov. DOE High Energy Physics Review June 2-4, 2004

Beam Dynamics. Gennady Stupakov. DOE High Energy Physics Review June 2-4, 2004 Beam Dynamics Gennady Stupakov DOE High Energy Physics Review June 2-4, 2004 Beam Dynamics Research in ARDA Broad expertise in many areas: lattice design, collective effects, electron cloud, beam-beam

More information

Linear Collider Collaboration Tech Notes

Linear Collider Collaboration Tech Notes LCC 0035 07/01/00 Linear Collider Collaboration Tech Notes More Options for the NLC Bunch Compressors January 7, 2000 Paul Emma Stanford Linear Accelerator Center Stanford, CA Abstract: The present bunch

More information

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s SLAC Summer School on Electron and Photon Beams Tor Raubenheimer Lecture #: Inverse Compton and FEL s Outline Synchrotron radiation Bending magnets Wigglers and undulators Inverse Compton scattering Free

More information

Introduction to electron and photon beam physics. Zhirong Huang SLAC and Stanford University

Introduction to electron and photon beam physics. Zhirong Huang SLAC and Stanford University Introduction to electron and photon beam physics Zhirong Huang SLAC and Stanford University August 03, 2015 Lecture Plan Electron beams (1.5 hrs) Photon or radiation beams (1 hr) References: 1. J. D. Jackson,

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

Low slice emittance preservation during bunch compression

Low slice emittance preservation during bunch compression Low slice emittance preservation during bunch compression S. Bettoni M. Aiba, B. Beutner, M. Pedrozzi, E. Prat, S. Reiche, T. Schietinger Outline. Introduction. Experimental studies a. Measurement procedure

More information

CSR Benchmark Test-Case Results

CSR Benchmark Test-Case Results CSR Benchmark Test-Case Results Paul Emma SLAC January 4, 2 BERLIN CSR Workshop Chicane CSR Test-Case Chicane parameters symbol value unit Bend magnet length (not curved length) L B.5 m Drift length (projected;

More information

Laser-driven undulator source

Laser-driven undulator source Laser-driven undulator source Matthias Fuchs, R. Weingartner, A.Maier, B. Zeitler, S. Becker, D. Habs and F. Grüner Ludwig-Maximilians-Universität München A.Popp, Zs. Major, J. Osterhoff, R. Hörlein, G.

More information

Overview of high power THz sources from laser-plasma interaction

Overview of high power THz sources from laser-plasma interaction Lecture at the 5th ASS&S SIOM-CAS, Shanghai August 16-20, 2010 Overview of high power THz sources from laser-plasma interaction Z.M. Sheng Department of Physics, Shanghai Jiao Tong University / Institute

More information

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 T. Plath, L. L. Lazzarino, Universität Hamburg, Hamburg, Germany K. E. Hacker, T.U. Dortmund, Dortmund, Germany Abstract We present a conceptual study

More information

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ Orlova Ksenia Lomonosov Moscow State University GSP-, Leninskie Gory, Moscow, 11999, Russian Federation Email: ks13orl@list.ru

More information

Simulations of the Microbunching Instability in FEL Beam Delivery Systems

Simulations of the Microbunching Instability in FEL Beam Delivery Systems Simulations of the Microbunching Instability in FEL Beam Delivery Systems Ilya Pogorelov Tech-X Corporation Workshop on High Average Power & High Brightness Beams UCLA, January 2009 Outline The setting:

More information

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE LCLS-TN-10-1, January, 2010 VARIABLE GAP UNDULATOR FOR 1.5-48 KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE C. Pellegrini, UCLA, Los Angeles, CA, USA J. Wu, SLAC, Menlo Park, CA, USA We study

More information

Femto-second FEL Generation with Very Low Charge at LCLS

Femto-second FEL Generation with Very Low Charge at LCLS Femto-second FEL Generation with Very Low Charge at LCLS Yuantao Ding, For the LCLS commissioning team X-ray Science at the Femtosecond to Attosecond Frontier workshop May 18-20, 2009, UCLA SLAC-PUB-13525;

More information

Analysis of FEL Performance Using Brightness Scaled Variables

Analysis of FEL Performance Using Brightness Scaled Variables Analysis of FEL Performance Using Brightness Scaled Variables Michael Gullans with G. Penn, J. Wurtele, and M. Zolotorev Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Outline Introduce brightness

More information

Characteristics and Applications of High Intensity Coherent THz Pulses from Linear Accelerators

Characteristics and Applications of High Intensity Coherent THz Pulses from Linear Accelerators Characteristics and Applications of High Intensity Coherent THz Pulses from Linear Accelerators G. Lawrence Carr National Synchrotron Light Source Brookhaven National Laboratory In collaboration with Henrik

More information

Accelerator Physics Issues of ERL Prototype

Accelerator Physics Issues of ERL Prototype Accelerator Physics Issues of ERL Prototype Ivan Bazarov, Geoffrey Krafft Cornell University TJNAF ERL site visit (Mar 7-8, ) Part I (Bazarov). Optics. Space Charge Emittance Compensation in the Injector

More information

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems Martin Dohlus DESY, Hamburg SC and CSR effects are crucial for design & simulation of BC systems CSR and

More information

Recent beam measurements and new instrumentation at the Advanced Light Source

Recent beam measurements and new instrumentation at the Advanced Light Source 008 Beam Instrumentation Workshop, Tahoe City, CA USA, May 8, 008 Recent beam measurements and new instrumentation at the Advanced Light Source Fernando Sannibale Lawrence Berkeley National Laboratory

More information

Diagnostics Needs for Energy Recovery Linacs

Diagnostics Needs for Energy Recovery Linacs Diagnostics Needs for Energy Recovery Linacs Georg H. Hoffstaetter Cornell Laboratory for Accelerator-based Sciences and Education & Physics Department Cornell University, Ithaca New York 14853-2501 gh77@cornell.edu

More information

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Introduction Outline Optimization of Electron Beams Calculations of CTR/CDR Pulse Energy Summary & Outlook Prach Boonpornprasert

More information

Longitudinal Top-up Injection for Small Aperture Storage Rings

Longitudinal Top-up Injection for Small Aperture Storage Rings Longitudinal Top-up Injection for Small Aperture Storage Rings M. Aiba, M. Böge, Á. Saá Hernández, F. Marcellini and A. Streun Paul Scherrer Institut Introduction Lower and lower horizontal emittances

More information

Estimates of Power Radiated by the Beam in Bends of LCLS-II

Estimates of Power Radiated by the Beam in Bends of LCLS-II Estimates of Power Radiated by the Beam in Bends of LCLS-II LCLS-II TN-13-03 12/17/2013 K. Bane and P. Emma December 16, 2013 LCLSII-TN-13-01 SLAC-PUB-15864 LCLS-II-TN-13-03 December 2013 Estimates of

More information

Accelerator Physics. Accelerator Development

Accelerator Physics. Accelerator Development Accelerator Physics The Taiwan Light Source (TLS) is the first large accelerator project in Taiwan. The goal was to build a high performance accelerator which provides a powerful and versatile light source

More information

INVESTIGATIONS OF THE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES LONGITUDINAL CHARGE

INVESTIGATIONS OF THE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES LONGITUDINAL CHARGE INVESTIGATIONS OF THE LONGITUDINAL CHARGE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES Markus Hüning III. Physikalisches Institut RWTH Aachen IIIa and DESY Invited talk at the DIPAC 2001 Methods to obtain

More information

Generation of Femtosecond Electron Pulses

Generation of Femtosecond Electron Pulses Generation of Femtosecond Electron Pulses W. D. Kimura STI Optronics, Inc., 755 Northup Way, Bellevue, WA 984-1495, USA Two techniques for generation of femtosecond electron pulses will be presented. The

More information

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS L. Giannessi, S. Spampinati, ENEA C.R., Frascati, Italy P. Musumeci, INFN & Dipartimento di Fisica, Università di Roma La Sapienza, Roma, Italy Abstract

More information

ANALYSIS OF HIGH ORDER MODES IN 1.3 GHZ CW SRF ELECTRON LINAC FOR A LIGHT SOURCE

ANALYSIS OF HIGH ORDER MODES IN 1.3 GHZ CW SRF ELECTRON LINAC FOR A LIGHT SOURCE ANALYSIS OF HIGH ORDER MODES IN 1.3 GHZ CW SRF ELECTRON LINAC FOR A LIGHT SOURCE A. Sukhanov, A. Vostrikov, V. Yakovlev, Fermilab, Batavia, IL 60510, USA Abstract Design of a Light Source (LS) based on

More information

Update on and the Issue of Circularly-Polarized On-Axis Harmonics

Update on and the Issue of Circularly-Polarized On-Axis Harmonics Update on FERMI@Elettra and the Issue of Circularly-Polarized On-Axis Harmonics W. Fawley for the FERMI Team Slides courtesy of S. Milton & Collaborators The FERMI@Elettra Project FERMI@Elettra is a single-pass

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title: Femto-Second Pulses of Synchrotron Radiation Author: Zholents, A.A. Publication Date: 01-13-2011 Publication Info: Lawrence

More information

Steady state analysis of short- wavelength, high-gain gain FELs in a large storage ring

Steady state analysis of short- wavelength, high-gain gain FELs in a large storage ring Steady state analysis of short- wavelength, high-gain gain FELs in a large storage ring Z. Huang,, K. Bane, Y. Cai, A. Chao, R. Hettel (SLAC) C. Pellegrini (UCLA) September 13, 2007 (Elba, Italy) Talk

More information

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem D.T Palmer and R. Akre Laser Issues for Electron RF Photoinjectors October 23-25, 2002 Stanford Linear Accelerator

More information

Terahertz imaging using the Jefferson Lab - FEL high power broadband terahertz source

Terahertz imaging using the Jefferson Lab - FEL high power broadband terahertz source Terahertz imaging using the Jefferson Lab - FEL high power broadband terahertz source J. Michael Klopf a), Matthew Coppinger b), Nathan Sustersic b), James Kolodzey b), and Gwyn P. Williams a) a) Jefferson

More information

LCLS Injector Prototyping at the GTF

LCLS Injector Prototyping at the GTF LCLS Injector Prototyping at at the GTF John John Schmerge, SLAC SLAC November 3, 3, 23 23 GTF GTF Description Summary of of Previous Measurements Longitudinal Emittance Transverse Emittance Active LCLS

More information

ATTOSECOND X-RAY PULSES IN THE LCLS USING THE SLOTTED FOIL METHOD

ATTOSECOND X-RAY PULSES IN THE LCLS USING THE SLOTTED FOIL METHOD P. Emma et al. / Proceedings of the 24 FEL Conference, 333-338 333 ATTOSECOND X-RAY PULSES IN THE LCLS USING THE SLOTTED FOIL METHOD Abstract P. Emma, Z. Huang, SLAC, Stanford, CA 9439, USA M. Borland,

More information

Energy Recovery Linac (ERL) Properties. Physics Dept. & Cornell High Energy Synchrotron Source (CHESS) Ithaca, NY Cornell University

Energy Recovery Linac (ERL) Properties. Physics Dept. & Cornell High Energy Synchrotron Source (CHESS) Ithaca, NY Cornell University Energy Recovery Linac (ERL) Properties Sol M. Gruner Physics Dept. & Cornell High Energy Synchrotron Source (CHESS) Cornell University Ithaca, NY 14853-2501 Acknowledgements T. Allen (Special thanks to

More information