The Conversion a Bessel s Equation to a Self-Adjoint Equation and Applications

Size: px
Start display at page:

Download "The Conversion a Bessel s Equation to a Self-Adjoint Equation and Applications"

Transcription

1 Worl pplie Science Journal 5 (): , 0 ISSN IDOSI Publication, 0 The Converion a Beel Equation to a Self-joint Equation an pplication Delkhoh Mehi Department of Computer, Ilamic za Univerit, Barakan Branch, Barakan, Iran btract: In man application of variou Self-ajoint ifferential equation, whoe olution are complex, are prouce [, 5]. In thi paper, a metho for the converion Beel equation to Self-ajoint equation to provie a metho an then, a the invere of the tranformation Self-ajoint equation of the Beel equation. B which one can obtain analtical olution to Self-ajoint equation. Becaue thi olution, an exact analtical olution can provie to u, we benefite from the olution of numerical Self-ajoint equation [7, 9,,, 4, 6]. Ke wor: Beel equation Beel function Self-ajoint equation Self-ajointization factor INTRODUCTION ( ) + 0 a < x < b () In man application of cience to olve man ifferential equation, we fin that thee equation are Where h(x)>0 on (a, b) an, h are continuou Self-ajoint equation an olve relativel complex function on [a,b]. becaue the're force to ue numerical metho, which are containe everal error [7, 9,,, 4, 6]. Self-jointization Factor: B multiplin both ie a There are everal metho for olvin equation, econ orer linear homoeneou equation in a function there one of which can be een in the literature [4, 5, 6,, µ(x), it can be chane into a elf-ajoint equation. 5], where the chane of variable i ver complicate to Namel, we conier the followin linear homoeneou ue. equation: In thi paper, for olvin analtical Self-ajoint P + Q + R 0 () equation, we et a metho which the firt, Self-ajoint equation into a Beel equation an then uin the Where P(x) i a non-zero function on [a,b]. olution of Beel equation, for an exact an analtical B multiplin both ie in µ(x), we have olution a Self-ajoint equation. Before oin to the main point, we tart to introuce three followin equation: ( xpx ) + ( xqx ) + ( xrx ) 0 If we check the elf-ajoint conition, we have: Beel Equation: The Beel equation i a follow [,,, 8 an 0]: x + x + ( x p ) 0 Where P i a non-neative real number. To implif, we preent the eneral olution of Beel Equation a follow: x B Self-joint Equation: econ orer linear homoeneou ifferential equation i calle elf-ajoint if n onl if it ha the followin form [, an 5]: p Thu ( ( xpx ) ) ( xqx ) Q P P + P Q P Q Exp Px P Where i a real number that will be pecifie exactl urin the proce. If we multipl both ie of () an () equation in each other, then we have the followin form of elf-ajoint equation: () Correoponin uthor: Delkhoh Mehi, Department of Computer, Ilamic za Univerit, Barakan Branch, Barakan, Iran. Tel:

2 Worl ppl. Sci. J., 5 (): , 0 ( xpx) + ( xrx ) 0 From now on we will focu on the elf-ajoint equation hown in (). f f f f f f f f ( ) + ( f p ) 0 f f (8) Reuce a Beel' Equation to a Self-ajoint Equation: Now, we how that a Beel equation i chaneable to a elf-ajoint equation []. Let, the Beel equation i a follow: Y Y X X ( X p ) Y 0 X + X + We know that, thi equation ha the eneral olution a follow: B replacin of variable X f(x) an Y, x where f(x) an (x) are continuou an ifferentiable function an alo the followin relation: (4) Now, correponin to equation () we have Px f f f f Qx + f f f f Rx + f f f p Y B P(X) (5) B virtue of equation (), we have the elfajointization factor a follow: x Then, multiplin both ie of equation (8) b µ(x) an we have X f Y X f Y X f f Into the equation (4), we have f f + + f p 0 f f Thu, we have f f. + f p 0 f f B virtue of equation (4) an (5), we have a olution for the equation (6) a follow: (6) (x) (x) B (f(x)) (7) P Calculatin the erivative in (6) an implifin it to a econ orer linear homoeneou ifferential equation take the followin form: f f f + ( ) + ( f p ) 0 f f f Where i a elf-ajoint equation, i.e. correponin to the equation (), we have f hx f f f ( ) + ( f p ) f f x x B( f) p (9) (0) () With conier the equation (6) an (7), the equation (9) ha the eneral olution a follow: () Solvin Self-joint Equat-ion b Uin of Beel' Equa-Tion: Let, we have an equation a (). If we compare both ie of thi equation an equation (9), we can fin f(x) an (x) an then we have the eneral olution a the eneral olution of the equation (). From now, our main purpoe i to calculate f(x) an (x) mentione a in equation (9). 688

3 Worl ppl. Sci. J., 5 (): , 0 We conier the followin pecial cae which i ver important. Let f(x) an (x) be a follow: f r r h r hx hx r r ( ) + ( r p ) r r ( + r p ) ( x ) ( + r p ) () Where r an S are contant which will pecifie exactl in the proce. Thu, b virtue of the equation (0), we have (4) n we are able to calculate f(x) from relation (). B replacin of f(x) an (x) in equation (), we calculate the contant,p,r an, i.e. From equation (5) an (6) an hpothei that the coefficient of (x) i equal to one (B virtue of the eneral olution form of equation ()). we are able to calculate the contant, p, r an. Now, ince the function f(x) an (x) are pecifie we can a that we have the eneral olution, a the eneral olution of equation (), for the main equation () (a mentione at the beinnin of ection ). pplication EX : Solve the equation, x ( + x) ( ) ( ) ( + x) + a( + x) c 0 where,, c an a are contant. (Problem: Shear beam with variable cro-ection an itribute mae) [4-6]. Solution: B virtue of equation () we have h(x) ( + x), From equation (4) we have (7) Without lo of eneralit, we can aume that the coefficient of (x) i equal to : Thu, from equation () we have (8) + r ( p ) f r( + x) r p p r p (5) From equation () we have ( ) r + x ( f p ) () x + ( + x ) r ( + x) ( + x) + ( + x) ( f p ) ( + x) c a + r (6) a + ( f p ) ( + x) c + 689

4 Worl ppl. Sci. J., 5 (): , 0 a c + f p ( + x) ( ) ( ) a c + r ( + x) p ( + x) ( ) ( ) c + a r ( ) p c + (9) ( ) Where. p c + Equation (4) can be reuce to Euler equation when c +. EX.) Solve the equation ( e ) + ae 0 x cx Where,, c an a are contant [9-]. Solution: From equation () we have: x cx h(x) e, (x) e (5) p (0) From (4) we have r a ( ) () x exp( x) (6) From equation (8) an () we have a ( ) r ( ) a r c + c + () () B implifin an uin equation () an (6), a previou example, we have Thu, we have c, p c a r, c c Therefore, from equation (), (7), (8), (9), (0), () an () we have x ( + x) a f ( + x) c + c + Thu, b virtue of equation (9) an () the olution of equation I a follow: ( + x) + a( + x) 0 (x) (x)b (f(x)) p c (4) Thu a c x exp( x), f exp c Where. p c (x) (x) B (f(x)) p Equation (5) can be reuce to a ifferential equation with contant coefficient when c. EX.: Solve the equation n m + 0 x kx Where m, n an k are contant [9-]. (7) 690

5 Worl ppl. Sci. J., 5 (): , 0 Solution: B virtue of equation () we have: 4. llame.m, za.n, Solution of Thir Orer Nonlinear Equation b Talor Serie Expanion, Worl pplie n h(x) x, m (x) kx Science J., 4(): 59-6, 0, ISSN Borhanifar,., M.M. Kabir an. Hoein Pour, the previou example we can obtain: 0. Numerical Metho for Solution of the Heat Equation with Nonlocal Nonlinear Conition, Worl n pplie Science J., (): , 0, k x x, f x ISSN m n 6. Sweilam, N.H. an.m. Na, 0. Numerical where + Solution of Fractional Wave Equation uin Crank- Nicholon Metho, Worl pplie Science J., Thu (Special Iue of pplie Math): 7-75, 0, n ISSN k x x Bp 7. Gülu, M.,.Y. Öztürk an M. Sezer, 0. Numerical Solution of Sinular Intera-ifferential Equation Where n n p. with Cauch Kernel, Worl pplie Science J., m n+ (): 40-47, 0, ISSN Mohu-Din, T.,. Yilirim, M. Berberler an Equation (7) can be reuce to a ifferential M. Hoeini, 00. Numerical Solution of Moifie equation with contant coefficient when n m +. Equal With Wave Equation, Worl pplie Science J., 8 7): , 00, ISSN CONCLUSION 9. Qiuhen, L., C. Hon an L. Guiqin, 996. Static an Dnamic anali of traiht bar with The overnin equation for tabilit anali of a variable cro-ection bar ubject to variabl itribute axial loa, namic anali of multi-tore builin, tall builin an other tem are written in the form of a unifie elf-ajoint equation of the econ orer. Thee are reuce to Beel' equation in thi paper. The ke tep in tranformin the unifie equation to Beel' equation i the election of h(x) an (x) in equation (). Man ifficult problem in the fiel of tatic an namic mechanic are olve b the unifie equation propoe in thi paper. REFERENCES. rfken, G., 985. Self-joint Differential Equation. 9. in Mathematical Metho for Phicit, r e. Orlano, FL: caemic Pre, pp: Ganaria, M., 0. Weak elf-ajoint ifferential equation, J. Ph. : Math. Theor., 44: Mohu-Din, S.T., 009. Solution of Nonlinear Differential Equation b Exp-function Metho, Worl pplie Science J., 7(Special Iue for pplie Math): 6-47, 009, ISSN variable cro-ection, Computer & Structure, 59(6): Qiuhen, L., C. Hon an L. Guiqin, 96. nali of Free Vibration of Tall Builin, J. Enineerin Mechanic, 0(9): Demir, D., N. Bilik,. Konuralp an. Demir, 0. The Numerical Solution for the Dampe Generalize Reularize Lon-wave Equation b Variational Metho, Worl pplie Science J., (Special Iue of pplie Math): 08-7, 0, ISSN Hilerbran, F.B., 976. vance Calculu for pplication (-e), New Jere.. Javapour, S.H., 99. n Introuction to Orinar an Partial Differential Equation, Iran, lavi. 4. O Neil, P.V., 987. vance Enineerin Mathematic (-e), California, Waworth. 5. Olver, F. an L. Maximon, 00. Beel function, NIST Hanbook of Mathematical Function, Cambrie Univerit Pre, ISBN , MR748, Teukolk, S. an W.T. Vetterlin, 007. Section 6.5. Beel Function of Inteer Orer, Numerical Recipe: The rt of Scientific Computin (r e.), New York: Cambrie Univerit Pre, ISBN

DESIGN OF CONTROLLERS FOR STABLE AND UNSTABLE SYSTEMS WITH TIME DELAY

DESIGN OF CONTROLLERS FOR STABLE AND UNSTABLE SYSTEMS WITH TIME DELAY DESIGN OF CONTROLLERS FOR STABLE AND UNSTABLE SYSTEMS WITH TIME DELAY P. Dotál, V. Bobál Department of Proce Control, Facult of Technolog, Toma Bata Univerit in Zlín Nám. T. G. Maarka 75, 76 7 Zlín, Czech

More information

A new conjugate gradient method with the new Armijo search based on a modified secant equations

A new conjugate gradient method with the new Armijo search based on a modified secant equations ISSN: 35-38 Enineerin an echnoloy Vol 5 Iue 7 July 8 A new conjuate raient metho with the new Armijo earch bae on a moifie ecant equation Weijuan Shi Guohua Chen Zhibin Zhu Department of Mathematic & Applie

More information

EXERCISES FOR SECTION 6.3

EXERCISES FOR SECTION 6.3 y 6. Secon-Orer Equation 499.58 4 t EXERCISES FOR SECTION 6.. We ue integration by part twice to compute Lin ωt Firt, letting u in ωt an v e t t,weget Lin ωt in ωt e t e t lim b in ωt e t t. in ωt ω e

More information

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002 Correction for Simple Sytem Example and Note on Laplace Tranform / Deviation Variable ECHE 55 Fall 22 Conider a tank draining from an initial height of h o at time t =. With no flow into the tank (F in

More information

THE DIVERGENCE-FREE JACOBIAN CONJECTURE IN DIMENSION TWO

THE DIVERGENCE-FREE JACOBIAN CONJECTURE IN DIMENSION TWO THE DIVERGENCE-FREE JACOBIAN CONJECTURE IN DIMENSION TWO J. W. NEUBERGER Abtract. A pecial cae, called the divergence-free cae, of the Jacobian Conjecture in dimenion two i proved. Thi note outline an

More information

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions For Quetion -6, rewrite the piecewie function uing tep function, ketch their graph, and find F () = Lf(t). 0 0 < t < 2. f(t) = (t 2 4) 2 < t In tep-function form, f(t) = u 2 (t 2 4) The graph i the olid

More information

Chapter 4. The Laplace Transform Method

Chapter 4. The Laplace Transform Method Chapter 4. The Laplace Tranform Method The Laplace Tranform i a tranformation, meaning that it change a function into a new function. Actually, it i a linear tranformation, becaue it convert a linear combination

More information

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281 72 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 28 and i 2 Show how Euler formula (page 33) can then be ued to deduce the reult a ( a) 2 b 2 {e at co bt} {e at in bt} b ( a) 2 b 2 5 Under what condition

More information

Compensation of backlash effects in an Electrical Actuator

Compensation of backlash effects in an Electrical Actuator 1 Compenation of backlah effect in an Electrical Actuator R. Merzouki, J. C. Caiou an N. M Siri LaboratoireeRobotiqueeVeraille 10-12, avenue e l Europe 78140 Vélizy e-mail: merzouki@robot.uvq.fr Abtract

More information

Solving Ordinary differential equations with variable coefficients

Solving Ordinary differential equations with variable coefficients Jornal of Progreive Reearch in Mathematic(JPRM) ISSN: 2395-218 SCITECH Volme 1, Ie 1 RESEARCH ORGANISATION Pblihe online: November 3, 216 Jornal of Progreive Reearch in Mathematic www.citecreearch.com/jornal

More information

Introduction to Laplace Transform Techniques in Circuit Analysis

Introduction to Laplace Transform Techniques in Circuit Analysis Unit 6 Introduction to Laplace Tranform Technique in Circuit Analyi In thi unit we conider the application of Laplace Tranform to circuit analyi. A relevant dicuion of the one-ided Laplace tranform i found

More information

Calculation of the temperature of boundary layer beside wall with time-dependent heat transfer coefficient

Calculation of the temperature of boundary layer beside wall with time-dependent heat transfer coefficient Ŕ periodica polytechnica Mechanical Engineering 54/1 21 15 2 doi: 1.3311/pp.me.21-1.3 web: http:// www.pp.bme.hu/ me c Periodica Polytechnica 21 RESERCH RTICLE Calculation of the temperature of boundary

More information

Module: 8 Lecture: 1

Module: 8 Lecture: 1 Moule: 8 Lecture: 1 Energy iipate by amping Uually amping i preent in all ocillatory ytem. It effect i to remove energy from the ytem. Energy in a vibrating ytem i either iipate into heat oun or raiate

More information

Numerical algorithm for the analysis of linear and nonlinear microstructure fibres

Numerical algorithm for the analysis of linear and nonlinear microstructure fibres Numerical algorithm for the anali of linear and nonlinear microtructure fibre Mariuz Zdanowicz *, Marian Marciniak, Marek Jaworki, Igor A. Goncharenko National Intitute of Telecommunication, Department

More information

Reformulation of Block Implicit Linear Multistep Method into Runge Kutta Type Method for Initial Value Problem

Reformulation of Block Implicit Linear Multistep Method into Runge Kutta Type Method for Initial Value Problem International Journal of Science and Technology Volume 4 No. 4, April, 05 Reformulation of Block Implicit Linear Multitep Method into Runge Kutta Type Method for Initial Value Problem Muhammad R., Y. A

More information

Chapter 3 : Transfer Functions Block Diagrams Signal Flow Graphs

Chapter 3 : Transfer Functions Block Diagrams Signal Flow Graphs Chapter 3 : Tranfer Function Block Diagram Signal Flow Graph 3.. Tranfer Function 3.. Block Diagram of Control Sytem 3.3. Signal Flow Graph 3.4. Maon Gain Formula 3.5. Example 3.6. Block Diagram to Signal

More information

Hybrid Control and Switched Systems. Lecture #6 Reachability

Hybrid Control and Switched Systems. Lecture #6 Reachability Hbrid Control and Switched Stem Lecture #6 Reachabilit João P. Hepanha Univerit of California at Santa Barbara Summar Review of previou lecture Reachabilit tranition tem reachabilit algorithm backward

More information

2.0 ANALYTICAL MODELS OF THERMAL EXCHANGES IN THE PYRANOMETER

2.0 ANALYTICAL MODELS OF THERMAL EXCHANGES IN THE PYRANOMETER 2.0 ANAYTICA MODE OF THERMA EXCHANGE IN THE PYRANOMETER In Chapter 1, it wa etablihe that a better unertaning of the thermal exchange within the intrument i neceary to efine the quantitie proucing an offet.

More information

Analysis of Step Response, Impulse and Ramp Response in the Continuous Stirred Tank Reactor System

Analysis of Step Response, Impulse and Ramp Response in the Continuous Stirred Tank Reactor System ISSN: 454-50 Volume 0 - Iue 05 May 07 PP. 7-78 Analyi of Step Repone, Impule and Ramp Repone in the ontinuou Stirred Tank Reactor Sytem * Zohreh Khohraftar, Pirouz Derakhhi, (Department of hemitry, Science

More information

LTV System Modelling

LTV System Modelling Helinki Univerit of Technolog S-72.333 Potgraduate Coure in Radiocommunication Fall 2000 LTV Stem Modelling Heikki Lorentz Sonera Entrum O heikki.lorentz@onera.fi Januar 23 rd 200 Content. Introduction

More information

ESCI 343 Atmospheric Dynamics II Lesson 9 Internal Gravity Waves

ESCI 343 Atmospheric Dynamics II Lesson 9 Internal Gravity Waves ESCI 343 Atmopheric Dynami II Leon 9 Internal Gravity Wave Reference: An Introduction to Dynamic Meteoroloy (3 rd edition), J.R. olton Atmophere-Ocean Dynami, A.E. Gill Wave in Fluid, J. Lihthill Readin:

More information

EconS Advanced Microeconomics II Handout on Bayesian Nash Equilibrium

EconS Advanced Microeconomics II Handout on Bayesian Nash Equilibrium EconS 503 - Avance icroeconomic II Hanout on Bayeian Nah Equilibrium 1. WG 8.E.1 Conier the following trategic ituation. Two oppoe armie are poie to eize an ilan. Each army general can chooe either "attack"

More information

L 2 -transforms for boundary value problems

L 2 -transforms for boundary value problems Computational Method for Differential Equation http://cmde.tabrizu.ac.ir Vol. 6, No., 8, pp. 76-85 L -tranform for boundary value problem Arman Aghili Department of applied mathematic, faculty of mathematical

More information

where F (x) (called the Similarity Factor (SF)) denotes the function

where F (x) (called the Similarity Factor (SF)) denotes the function italian journal of pure and applied mathematic n. 33 014 15 34) 15 GENERALIZED EXPONENTIAL OPERATORS AND DIFFERENCE EQUATIONS Mohammad Aif 1 Anju Gupta Department of Mathematic Kalindi College Univerity

More information

Behavior Factor of Flat double-layer Space Structures Behnam Shirkhanghah, Vahid Shahbaznejhad-Fard, Houshyar Eimani-Kalesar, Babak Pahlevan

Behavior Factor of Flat double-layer Space Structures Behnam Shirkhanghah, Vahid Shahbaznejhad-Fard, Houshyar Eimani-Kalesar, Babak Pahlevan Abtract Flat double-laer grid i from categor of pace tructure that are formed from two flat laer connected together with diagonal member. Increaed tiffne and better eimic reitance in relation to other

More information

Laplace Adomian Decomposition Method for Solving the Nonlinear Volterra Integral Equation with Weakly Kernels

Laplace Adomian Decomposition Method for Solving the Nonlinear Volterra Integral Equation with Weakly Kernels Studie in Nonlinear Science (4): 9-4, ISSN -9 IDOSI Publication, Laplace Adomian Decompoition Method for Solving the Nonlinear Volterra Integral Equation with Weakly Kernel F.A. Hendi Department of Mathematic

More information

Feasible set in a discrete epidemic model

Feasible set in a discrete epidemic model Journal of Phic: Conference Serie Feaible et in a dicrete epidemic model To cite thi article: E-G Gu 008 J. Ph.: Conf. Ser. 96 05 View the article online for update and enhancement. Related content - Phic

More information

Position. If the particle is at point (x, y, z) on the curved path s shown in Fig a,then its location is defined by the position vector

Position. If the particle is at point (x, y, z) on the curved path s shown in Fig a,then its location is defined by the position vector 34 C HAPTER 1 KINEMATICS OF A PARTICLE 1 1.5 Curvilinear Motion: Rectangular Component Occaionall the motion of a particle can bet be decribed along a path that can be epreed in term of it,, coordinate.

More information

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions Chapter 4 Laplace Tranform 4 Introduction Reading aignment: In thi chapter we will cover Section 4 45 4 Definition and the Laplace tranform of imple function Given f, a function of time, with value f(t

More information

Approximate Analytical Solution for Quadratic Riccati Differential Equation

Approximate Analytical Solution for Quadratic Riccati Differential Equation Iranian J. of Numerical Analyi and Optimization Vol 3, No. 2, 2013), pp 21-31 Approximate Analytical Solution for Quadratic Riccati Differential Equation H. Aminikhah Abtract In thi paper, we introduce

More information

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog Chapter Sampling and Quantization.1 Analog and Digital Signal In order to invetigate ampling and quantization, the difference between analog and digital ignal mut be undertood. Analog ignal conit of continuou

More information

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas)

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas) Lecture 7: Analytic Function and Integral (See Chapter 4 in Boa) Thi i a good point to take a brief detour and expand on our previou dicuion of complex variable and complex function of complex variable.

More information

Name: Solutions Exam 3

Name: Solutions Exam 3 Intruction. Anwer each of the quetion on your own paper. Put your name on each page of your paper. Be ure to how your work o that partial credit can be adequately aeed. Credit will not be given for anwer

More information

ME 375 EXAM #1 Tuesday February 21, 2006

ME 375 EXAM #1 Tuesday February 21, 2006 ME 375 EXAM #1 Tueday February 1, 006 Diviion Adam 11:30 / Savran :30 (circle one) Name Intruction (1) Thi i a cloed book examination, but you are allowed one 8.5x11 crib heet. () You have one hour to

More information

Solutions to homework #10

Solutions to homework #10 Solution to homework #0 Problem 7..3 Compute 6 e 3 t t t 8. The firt tep i to ue the linearity of the Laplace tranform to ditribute the tranform over the um and pull the contant factor outide the tranform.

More information

Advanced methods for ODEs and DAEs

Advanced methods for ODEs and DAEs Lecture : Implicit Runge Kutta method Bojana Roić, 9. April 7 What you need to know before thi lecture numerical integration: Lecture from ODE iterative olver: Lecture 5-8 from ODE 9. April 7 Bojana Roić

More information

A Constraint Propagation Algorithm for Determining the Stability Margin. The paper addresses the stability margin assessment for linear systems

A Constraint Propagation Algorithm for Determining the Stability Margin. The paper addresses the stability margin assessment for linear systems A Contraint Propagation Algorithm for Determining the Stability Margin of Linear Parameter Circuit and Sytem Lubomir Kolev and Simona Filipova-Petrakieva Abtract The paper addree the tability margin aement

More information

4-4 E-field Calculations using Coulomb s Law

4-4 E-field Calculations using Coulomb s Law 1/21/24 ection 4_4 -field calculation uing Coulomb Law blank.doc 1/1 4-4 -field Calculation uing Coulomb Law Reading Aignment: pp. 9-98 1. xample: The Uniform, Infinite Line Charge 2. xample: The Uniform

More information

[Pandichelvi*, 4.(7): July, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Pandichelvi*, 4.(7): July, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 [Pandichelvi*, 4.(7): Jul, 5] ISSN: 77-955 (IOR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY INTEGRAL SOLUTIONS OF THE BINARY QUADRATIC

More information

College of Engineering Mechanics and Soft Materials, Hohai University, Jiangning, Nanjing, China b

College of Engineering Mechanics and Soft Materials, Hohai University, Jiangning, Nanjing, China b THERMA SCIENCE: Year 28, Vol. 22, Suppl., pp. S65-S75 S65 A MODIFICATION FRACTIONA VARIATIONA ITERATION METHOD FOR SOVING NON-INEAR GAS DYNAMIC AND COUPED KdV EQUATIONS INVOVING OCA FRACTIONA OPERATORS

More information

ANALYSIS OF SECTION. Behaviour of Beam in Bending

ANALYSIS OF SECTION. Behaviour of Beam in Bending ANALYSIS OF SECTION Behaviour o Beam in Bening Conier a imply upporte eam ujecte to graually increaing loa. The loa caue the eam to en an eert a ening moment a hown in igure elow. The top urace o the eam

More information

Finite Element Truss Problem

Finite Element Truss Problem 6. rue Uing FEA Finite Element ru Problem We tarted thi erie of lecture looking at tru problem. We limited the dicuion to tatically determinate tructure and olved for the force in element and reaction

More information

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions Chapter 4 Laplace Tranform 4 Introduction Reading aignment: In thi chapter we will cover Section 4 45 4 Definition and the Laplace tranform of imple function Given f, a function of time, with value f(t

More information

The Riemann Transform

The Riemann Transform The Riemann Tranform By Armando M. Evangelita Jr. armando78973@gmail.com Augut 28, 28 ABSTRACT In hi 859 paper, Bernhard Riemann ued the integral equation f (x ) x dx to develop an explicit formula for

More information

See exam 1 and exam 2 study guides for previous materials covered in exam 1 and 2. Stress transformation. Positive τ xy : τ xy

See exam 1 and exam 2 study guides for previous materials covered in exam 1 and 2. Stress transformation. Positive τ xy : τ xy ME33: Mechanic of Material Final Eam Stud Guide 1 See eam 1 and eam tud guide for previou material covered in eam 1 and. Stre tranformation In ummar, the tre tranformation equation are: + ' + co θ + in

More information

arxiv: v2 [math.ap] 2 Sep 2016

arxiv: v2 [math.ap] 2 Sep 2016 LOWER BOUNDS FOR POSSIBLE SINGULAR SOLUTIONS FOR THE NAVIER STOKES AND EULER EQUATIONS REVISITED arxiv:50303063v [mathap] Sep 06 JEAN C CORTISSOZ AND JULIO A MONTERO Abtract In thi paper we give optimal

More information

*Agbo, F. I. and # Olowu, O.O. *Department of Production Engineering, University of Benin, Benin City, Nigeria.

*Agbo, F. I. and # Olowu, O.O. *Department of Production Engineering, University of Benin, Benin City, Nigeria. REDUCING REDUCIBLE LINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH FUNCTION COEFFICIENTS TO LINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS ABSTRACT *Abo, F. I. an # Olowu, O.O. *Department

More information

Per Unit Analysis. Single-Phase systems

Per Unit Analysis. Single-Phase systems Per Unit Analyi The per unit method of power ytem analyi eliminate the need for converion of voltae, current and impedance acro every tranformer in the circuit. n addition, the need to tranform from 3-

More information

Chapter 5 Consistency, Zero Stability, and the Dahlquist Equivalence Theorem

Chapter 5 Consistency, Zero Stability, and the Dahlquist Equivalence Theorem Chapter 5 Conitency, Zero Stability, and the Dahlquit Equivalence Theorem In Chapter 2 we dicued convergence of numerical method and gave an experimental method for finding the rate of convergence (aka,

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecture 1 Root Locu Emam Fathy Department of Electrical and Control Engineering email: emfmz@aat.edu http://www.aat.edu/cv.php?dip_unit=346&er=68525 1 Introduction What i root locu?

More information

SECTION x2 x > 0, t > 0, (8.19a)

SECTION x2 x > 0, t > 0, (8.19a) SECTION 8.5 433 8.5 Application of aplace Tranform to Partial Differential Equation In Section 8.2 and 8.3 we illutrated the effective ue of aplace tranform in olving ordinary differential equation. The

More information

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

Green-Kubo formulas with symmetrized correlation functions for quantum systems in steady states: the shear viscosity of a fluid in a steady shear flow

Green-Kubo formulas with symmetrized correlation functions for quantum systems in steady states: the shear viscosity of a fluid in a steady shear flow Green-Kubo formula with ymmetrized correlation function for quantum ytem in teady tate: the hear vicoity of a fluid in a teady hear flow Hirohi Matuoa Department of Phyic, Illinoi State Univerity, Normal,

More information

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Single-Particle Dynamics in High Energy Accelerators Nonlinear Single-Particle Dynamic in High Energy Accelerator Part 6: Canonical Perturbation Theory Nonlinear Single-Particle Dynamic in High Energy Accelerator Thi coure conit of eight lecture: 1. Introduction

More information

Application of Laplace Adomian Decomposition Method on Linear and Nonlinear System of PDEs

Application of Laplace Adomian Decomposition Method on Linear and Nonlinear System of PDEs Applied Mathematical Science, Vol. 5, 2011, no. 27, 1307-1315 Application of Laplace Adomian Decompoition Method on Linear and Nonlinear Sytem of PDE Jaem Fadaei Mathematic Department, Shahid Bahonar Univerity

More information

Evolutionary Algorithms Based Fixed Order Robust Controller Design and Robustness Performance Analysis

Evolutionary Algorithms Based Fixed Order Robust Controller Design and Robustness Performance Analysis Proceeding of 01 4th International Conference on Machine Learning and Computing IPCSIT vol. 5 (01) (01) IACSIT Pre, Singapore Evolutionary Algorithm Baed Fixed Order Robut Controller Deign and Robutne

More information

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax: Control Sytem Engineering ( Chapter 7. Steady-State Error Prof. Kwang-Chun Ho kwangho@hanung.ac.kr Tel: 0-760-453 Fax:0-760-4435 Introduction In thi leon, you will learn the following : How to find the

More information

FI 3221 ELECTROMAGNETIC INTERACTIONS IN MATTER

FI 3221 ELECTROMAGNETIC INTERACTIONS IN MATTER 6/0/06 FI 3 ELECTROMAGNETIC INTERACTION IN MATTER Alexander A. Ikandar Phyic of Magnetim and Photonic CATTERING OF LIGHT Rayleigh cattering cattering quantitie Mie cattering Alexander A. Ikandar Electromagnetic

More information

Characteristic Impedances Calculations in Arteries with Atherosclerosis Using MAPLE

Characteristic Impedances Calculations in Arteries with Atherosclerosis Using MAPLE INTENATIONAL JOUNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Characteritic Impeance Calculation in Arterie with Atherocleroi Uing MAPLE Davinon Cataño Cano Abtract Cariovacular ieae caue

More information

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. VIII Decoupling Control - M. Fikar

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. VIII Decoupling Control - M. Fikar DECOUPLING CONTROL M. Fikar Department of Proce Control, Faculty of Chemical and Food Technology, Slovak Univerity of Technology in Bratilava, Radlinkého 9, SK-812 37 Bratilava, Slovakia Keyword: Decoupling:

More information

Modeling in the Frequency Domain

Modeling in the Frequency Domain T W O Modeling in the Frequency Domain SOLUTIONS TO CASE STUDIES CHALLENGES Antenna Control: Tranfer Function Finding each tranfer function: Pot: V i θ i 0 π ; Pre-Amp: V p V i K; Power Amp: E a V p 50

More information

Actuarial Models 1: solutions example sheet 4

Actuarial Models 1: solutions example sheet 4 Actuarial Moel 1: olution example heet 4 (a) Anwer to Exercie 4.1 Q ( e u ) e σ σ u η η. (b) The forwar equation correponing to the backwar tate e are t p ee(t) σp ee (t) + ηp eu (t) t p eu(t) σp ee (t)

More information

Chapter 7. Root Locus Analysis

Chapter 7. Root Locus Analysis Chapter 7 Root Locu Analyi jw + KGH ( ) GH ( ) - K 0 z O 4 p 2 p 3 p Root Locu Analyi The root of the cloed-loop characteritic equation define the ytem characteritic repone. Their location in the complex

More information

MAE 101A. Homework 3 Solutions 2/5/2018

MAE 101A. Homework 3 Solutions 2/5/2018 MAE 101A Homework 3 Solution /5/018 Munon 3.6: What preure gradient along the treamline, /d, i required to accelerate water upward in a vertical pipe at a rate of 30 ft/? What i the anwer if the flow i

More information

Moment of Inertia of an Equilateral Triangle with Pivot at one Vertex

Moment of Inertia of an Equilateral Triangle with Pivot at one Vertex oment of nertia of an Equilateral Triangle with Pivot at one Vertex There are two wa (at leat) to derive the expreion f an equilateral triangle that i rotated about one vertex, and ll how ou both here.

More information

Simple Observer Based Synchronization of Lorenz System with Parametric Uncertainty

Simple Observer Based Synchronization of Lorenz System with Parametric Uncertainty IOSR Journal of Electrical and Electronic Engineering (IOSR-JEEE) ISSN: 78-676Volume, Iue 6 (Nov. - Dec. 0), PP 4-0 Simple Oberver Baed Synchronization of Lorenz Sytem with Parametric Uncertainty Manih

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS Matheatic Reviion Guide Introduction to Differential Equation Page of Author: Mark Kudlowki MK HOME TUITION Matheatic Reviion Guide Level: A-Level Year DIFFERENTIAL EQUATIONS Verion : Date: 3-4-3 Matheatic

More information

696 Fu Jing-Li et al Vol. 12 form in generalized coordinate Q ffiq dt = 0 ( = 1; ;n): (3) For nonholonomic ytem, ffiq are not independent of

696 Fu Jing-Li et al Vol. 12 form in generalized coordinate Q  ffiq dt = 0 ( = 1; ;n): (3) For nonholonomic ytem, ffiq are not independent of Vol 12 No 7, July 2003 cfl 2003 Chin. Phy. Soc. 1009-1963/2003/12(07)/0695-05 Chinee Phyic and IOP Publihing Ltd Lie ymmetrie and conerved quantitie of controllable nonholonomic dynamical ytem Fu Jing-Li(ΛΠ±)

More information

System models. We look at LTI systems for the time being Time domain models

System models. We look at LTI systems for the time being Time domain models Stem moel We look at LTI tem for the time being Time omain moel High orer orinar ifferential equation moel Contain onl input variable, output variable, their erivative, an contant parameter Proper: highet

More information

TWO-DEGREE-OF-FREEDOM CONTROL SCHEME FOR PROCESSES WITH LARGE TIME DELAY

TWO-DEGREE-OF-FREEDOM CONTROL SCHEME FOR PROCESSES WITH LARGE TIME DELAY 50 Aian Journal of Control, Vol 8, No, pp 50-55, March 006 -Brief aper- TWO-DEGREE-OF-FREEDOM CONTROL SCHEME FOR ROCESSES WITH LARGE TIME DELAY Bin Zhang and Weidong Zhang ABSTRACT In thi paper, an analtical

More information

FUZZY LOGIC BASED FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

FUZZY LOGIC BASED FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR International Journal of Electrical, Electronic an Data Communication, ISSN: 2320-2084 Volume-3, Iue-8, Aug.-2015 FUZZY LOGIC BASED FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR 1 BINITA

More information

ON ITERATIVE FEEDBACK TUNING AND DISTURBANCE REJECTION USING SIMPLE NOISE MODELS. Bo Wahlberg

ON ITERATIVE FEEDBACK TUNING AND DISTURBANCE REJECTION USING SIMPLE NOISE MODELS. Bo Wahlberg ON ITERATIVE FEEDBACK TUNING AND DISTURBANCE REJECTION USING SIMPLE NOISE MODELS Bo Wahlberg S3 Automatic Control, KTH, SE 100 44 Stockholm, Sween. Email: bo.wahlberg@3.kth.e Abtract: The objective of

More information

Ordinary Differential Equations

Ordinary Differential Equations Orinary Differential Equations Example: Harmonic Oscillator For a perfect Hooke s-law spring,force as a function of isplacement is F = kx Combine with Newton s Secon Law: F = ma with v = a = v = 2 x 2

More information

Control Systems Analysis and Design by the Root-Locus Method

Control Systems Analysis and Design by the Root-Locus Method 6 Control Sytem Analyi and Deign by the Root-Locu Method 6 1 INTRODUCTION The baic characteritic of the tranient repone of a cloed-loop ytem i cloely related to the location of the cloed-loop pole. If

More information

Math 201 Lecture 17: Discontinuous and Periodic Functions

Math 201 Lecture 17: Discontinuous and Periodic Functions Math 2 Lecture 7: Dicontinuou and Periodic Function Feb. 5, 22 Many example here are taken from the textbook. he firt number in () refer to the problem number in the UA Cutom edition, the econd number

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.2 DIFFERENTIATION 2 (Rates of change) by A.J.Hobson 10.2.1 Introuction 10.2.2 Average rates of change 10.2.3 Instantaneous rates of change 10.2.4 Derivatives 10.2.5 Exercises

More information

Modified H-Tran sform and Pathway Fractional Integral Operator

Modified H-Tran sform and Pathway Fractional Integral Operator Global Journal o Science Frontier Reearch Mathematic an Deciion Science Volume Iue 8 Verion. Type : Double Blin eer Reviewe International Reearch Journal ubliher: Global Journal Inc. (USA Online ISSN:

More information

Some Sets of GCF ϵ Expansions Whose Parameter ϵ Fetch the Marginal Value

Some Sets of GCF ϵ Expansions Whose Parameter ϵ Fetch the Marginal Value Journal of Mathematical Reearch with Application May, 205, Vol 35, No 3, pp 256 262 DOI:03770/jin:2095-26520503002 Http://jmredluteducn Some Set of GCF ϵ Expanion Whoe Parameter ϵ Fetch the Marginal Value

More information

in a circular cylindrical cavity K. Kakazu Department of Physics, University of the Ryukyus, Okinawa , Japan Y. S. Kim

in a circular cylindrical cavity K. Kakazu Department of Physics, University of the Ryukyus, Okinawa , Japan Y. S. Kim Quantization of electromagnetic eld in a circular cylindrical cavity K. Kakazu Department of Phyic, Univerity of the Ryukyu, Okinawa 903-0, Japan Y. S. Kim Department of Phyic, Univerity of Maryland, College

More information

Dynamical Behavior Analysis and Control of a Fractional-order Discretized Tumor Model

Dynamical Behavior Analysis and Control of a Fractional-order Discretized Tumor Model 6 International Conference on Information Engineering and Communication Technolog (IECT 6) ISBN: 978--6595-375-5 Dnamical Behavior Anali and Control of a Fractional-order Dicretied Tumor Model Yaling Zhang,a,

More information

IEOR 3106: Fall 2013, Professor Whitt Topics for Discussion: Tuesday, November 19 Alternating Renewal Processes and The Renewal Equation

IEOR 3106: Fall 2013, Professor Whitt Topics for Discussion: Tuesday, November 19 Alternating Renewal Processes and The Renewal Equation IEOR 316: Fall 213, Profeor Whitt Topic for Dicuion: Tueday, November 19 Alternating Renewal Procee and The Renewal Equation 1 Alternating Renewal Procee An alternating renewal proce alternate between

More information

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL 98 CHAPTER DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL INTRODUCTION The deign of ytem uing tate pace model for the deign i called a modern control deign and it i

More information

A Single Particle Thermal Model for Lithium Ion Batteries

A Single Particle Thermal Model for Lithium Ion Batteries A Single Particle Thermal Model for Lithium Ion Batterie R. Painter* 1, B. Berryhill 1, L. Sharpe 2 and S. Keith Hargrove 2 1 Civil Engineering, Tenneee State Univerity, Nahville, TN, USA 2 Mechanical

More information

MODELLING OF FRICTIONAL SOIL DAMPING IN FINITE ELEMENT ANALYSIS

MODELLING OF FRICTIONAL SOIL DAMPING IN FINITE ELEMENT ANALYSIS MODELLING OF FRICTIONAL SOIL DAMPING IN FINITE ELEMENT ANALYSIS S. VAN BAARS Department of Science, Technology and Communication, Univerity of Luxembourg, Luxembourg ABSTRACT: In oil dynamic, the oil i

More information

ESTIMATIONS OF THE COLLISION INTEGRAL IN THE CHAOTIC GUN EFFECT

ESTIMATIONS OF THE COLLISION INTEGRAL IN THE CHAOTIC GUN EFFECT Romanian Report in Phic, Vol. 60, No., P. 7 80, 008 ESTIMATIONS OF THE COLLISION INTEGRAL IN THE CHAOTIC GUN EFFECT GHEORGHE DUMITRESCU Gr. Sc. Ind. Toma N. Socolecu Ploieti, Romania, meditatie@ahoo.com

More information

Chapter 4 Interconnection of LTI Systems

Chapter 4 Interconnection of LTI Systems Chapter 4 Interconnection of LTI Sytem 4. INTRODUCTION Block diagram and ignal flow graph are commonly ued to decribe a large feedback control ytem. Each block in the ytem i repreented by a tranfer function,

More information

EE Control Systems LECTURE 6

EE Control Systems LECTURE 6 Copyright FL Lewi 999 All right reerved EE - Control Sytem LECTURE 6 Updated: Sunday, February, 999 BLOCK DIAGRAM AND MASON'S FORMULA A linear time-invariant (LTI) ytem can be repreented in many way, including:

More information

Convective Heat Transfer

Convective Heat Transfer Convective Heat Tranfer Example 1. Melt Spinning of Polymer fiber 2. Heat tranfer in a Condener 3. Temperature control of a Re-entry vehicle Fiber pinning The fiber pinning proce preent a unique engineering

More information

Solving Differential Equations by the Laplace Transform and by Numerical Methods

Solving Differential Equations by the Laplace Transform and by Numerical Methods 36CH_PHCalter_TechMath_95099 3//007 :8 PM Page Solving Differential Equation by the Laplace Tranform and by Numerical Method OBJECTIVES When you have completed thi chapter, you hould be able to: Find the

More information

Name: Solutions Exam 2

Name: Solutions Exam 2 Name: Solution Exam Intruction. Anwer each of the quetion on your own paper. Put your name on each page of your paper. Be ure to how your work o that partial credit can be adequately aeed. Credit will

More information

HOMEWORK ASSIGNMENT #2

HOMEWORK ASSIGNMENT #2 Texa A&M Univerity Electrical Engineering Department ELEN Integrated Active Filter Deign Methodologie Alberto Valde-Garcia TAMU ID# 000 17 September 0, 001 HOMEWORK ASSIGNMENT # PROBLEM 1 Obtain at leat

More information

Optimization model in Input output analysis and computable general. equilibrium by using multiple criteria non-linear programming.

Optimization model in Input output analysis and computable general. equilibrium by using multiple criteria non-linear programming. Optimization model in Input output analyi and computable general equilibrium by uing multiple criteria non-linear programming Jing He * Intitute of ytem cience, cademy of Mathematic and ytem cience Chinee

More information

AN EXAMPLE FOR THE GENERALIZATION OF THE INTEGRATION OF SPECIAL FUNCTIONS BY USING THE LAPLACE TRANSFORM

AN EXAMPLE FOR THE GENERALIZATION OF THE INTEGRATION OF SPECIAL FUNCTIONS BY USING THE LAPLACE TRANSFORM Journal of Inequalitie Special Function ISSN: 7-433, URL: http://www.iliria.com Volume 6 Iue 5, Page 5-3. AN EXAMPLE FOR THE GENERALIZATION OF THE INTEGRATION OF SPECIAL FUNCTIONS BY USING THE LAPLACE

More information

Laplace Transformation

Laplace Transformation Univerity of Technology Electromechanical Department Energy Branch Advance Mathematic Laplace Tranformation nd Cla Lecture 6 Page of 7 Laplace Tranformation Definition Suppoe that f(t) i a piecewie continuou

More information

Homework #7 Solution. Solutions: ΔP L Δω. Fig. 1

Homework #7 Solution. Solutions: ΔP L Δω. Fig. 1 Homework #7 Solution Aignment:. through.6 Bergen & Vittal. M Solution: Modified Equation.6 becaue gen. peed not fed back * M (.0rad / MW ec)(00mw) rad /ec peed ( ) (60) 9.55r. p. m. 3600 ( 9.55) 3590.45r.

More information

Performance Evaluation of Acoustic Scene Classification Using DNN-GMM and Frame-Concatenated Acoustic Features

Performance Evaluation of Acoustic Scene Classification Using DNN-GMM and Frame-Concatenated Acoustic Features Proceeing of APSIPA Annual Summit an Conference 2017 Performance Evaluation of Acoutic Scene Claification Uing NN-GMM an Frame-Concatenate Acoutic Feature Gen Takahahi, Takehi Yamaa, Nobutaka Ono an Shoji

More information

Lecture 10 Filtering: Applied Concepts

Lecture 10 Filtering: Applied Concepts Lecture Filtering: Applied Concept In the previou two lecture, you have learned about finite-impule-repone (FIR) and infinite-impule-repone (IIR) filter. In thee lecture, we introduced the concept of filtering

More information

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays Gain and Phae Margin Baed Delay Dependent Stability Analyi of Two- Area LFC Sytem with Communication Delay Şahin Sönmez and Saffet Ayaun Department of Electrical Engineering, Niğde Ömer Halidemir Univerity,

More information

Digital Control System

Digital Control System Digital Control Sytem - A D D A Micro ADC DAC Proceor Correction Element Proce Clock Meaurement A: Analog D: Digital Continuou Controller and Digital Control Rt - c Plant yt Continuou Controller Digital

More information

R L R L L sl C L 1 sc

R L R L L sl C L 1 sc 2260 N. Cotter PRACTICE FINAL EXAM SOLUTION: Prob 3 3. (50 point) u(t) V i(t) L - R v(t) C - The initial energy tored in the circuit i zero. 500 Ω L 200 mh a. Chooe value of R and C to accomplih the following:

More information