Chapter 2 The Poisson Process

Size: px
Start display at page:

Download "Chapter 2 The Poisson Process"

Transcription

1 Chapr 2 Th oisso rocss 2. Expoial ad oisso disribuios 2... Th Birh Modl I scods, a oal of popl ar bor. Sarig a ay poi i im, wha is h waiig im for h firs birh? I milliscods, a oal of lpho calls arriv a a swichig sysm. Sarig a ay poi i im, wha is h waiig im for h firs call? A paricl ravls i a sraigh li io h cosmos. Assum ha i yars, i will cofro objcs. Wha is h waiig im for h firs objc? T Wihou furhr iformaio w ca oly assum ha h objcs ar idpd, ach occurrig a a im rprsd by a uiformly disribud radom variabl ovr [, ). Thus w hav uiform i.i.d. o b dod as X,..., X.

2 2 Th waiig im for h s objc is T mi{x,..., X } // This is also calld h firs ordrd saisic. // Covioal oaio for h h ordrd saisic is X (). Th disribuio of T ivolvs boh ad. (T > x) (x/) L b vry larg. Th, T wih probabiliy, i.., lim ( T > x) for all x > L b vry larg. Th, T wih probabiliy, i.., lim ( T > x) for all x Nihr is irsig. So, w cosidr lim ( T x) > wih h irpraio ha ad grow proporioally oghr: Th birh modl wih isiy : I ui ims, hr ar birhs. Fix h raio ad l. Thus. // isiy pr scod, pr miu, pr yar, c.

3 3 Thus, amog idpd uiform r.v. ovr h irval [, ), h miimum has h followig disribuio: // Cosidr oly hos valus of such ha is igral. lim ( T x) lim( x / ) > x Th disribuio fucio is F(x) dsiy fucio is f(x) x xpoial disribuio wih ra. x, ad h. This is calld h Wih birhs i ui ims, h umbr N of birhs i ui im has h Biomial(, /) disribuio. ( ) ( + )! ( ) ( + )!( )

4 4 As, (N ) /! for. This is calld h oisso disribuio wih h dsiy, which is h limi of Biomial(, /) disribuio as. I coclusio, waiig im for h firs birh is xpoial(), umbr of birhs wihi a ui im is oisso().

5 Ma of Expoial & oisso Disribuios Thorm. oisso disribuio wih h dsiy oisso disribuio wih h ma of pr scod roof. L N b a oisso disribud radom variabl wih h dsiy pr scod. E[N ] (N ) /! / ( )! /! // shif idx: pr scod Thorm. Expoial disribuio wih h ra Expoial disribuio wih h ma of / scods

6 6 roof. L M b a xpoially disribud radom variabl wih h ra pr scod. // h oaio M suggss mmorylss i h squl x E[M ] x( d x) x x [ x( )] ( ) d x // igraio by par x [ / ] [ /] / scods

7 Mmorylss propry of xpoial disribuios Th xpoial disribuio is h coiuous aalogu of h gomric disribuio i big mmorylss. Thorm. A xpoial disribud r.v. X is mmorylss. Mor prcisly, for all a ad x, (X>a+x X>a) (X>x) // Havig waid for a ui ims, h probabiliy // of waiig for x mor uis is uchagd. roof: (X>a+x X>a) // L x. (X>a+x) / (X>a) ( x+ a) a / // l b h para. i xp. disr. (X > x) Thorm. Covrsly, vry mmorylss coiuous disribuio is a xpoial disribuio. roof. L X b a r.v. such ha (X>a+x X>a) (X>x)

8 8 for all x ad a. Equivally, or (X>a+x) (X>a)(X>x) F X (a+x) [ F X (a)] (X>x) Diffriaig w.r.. h paramr a, S a. f X (a+x) f X (a) (X>x) f X (x) f X () (X>x) Wri f X (). W hav h followig diff. q. Thus, (X>x) f X (x) x [(X>x) f X (x)] d [ (X )] d x x > x x (X>x) cosa (X>) (X>x) x for all x. Homwor. You ar waiig for Godo, who will arriv o h N h bus, whr N is Gomric(p) disribud. If h ir-arrival ims of buss ar Expoial() i.i.d., wha is h disribuio of your waiig im?

9 Trasforms of oisso & Expo. disribuios A rasform mas a alraiv xprssio for a mahmaical objc. Exampl. For a lcric wav f(), whr im, h Fourir rasform φ(ω) iωf() d is a alraiv way o spcify h fucio: Giv h valu φ(ω) for all ω, h fucio f() is uiquly drmid. Th commo irpraio of h variabl ω is h frqucy, ad h valu φ(ω) spcifis h ampliud a h paricular frqucy ω. I shor, h o-o-o corrspodc f() a<<b φ(ω) <ω< is a rasform bw h im ad frqucy domais. Th rasform of a couuous r.v. X mas h rasform of is disribuio fucio FX() (X < ). Wh X, of w also adop h Laplac rasform: φ(ω) ωf() d

10 Dfiiio. Th Laplac rasform of a coiuous r.v. X is φx( θ) (X < M θ ) whr M θ is a idpd xpoial r.v. wih ma /θ. // φ X (θ) is h probabiliy of wiig i h rac // bw a v a im X agais a v // a h mmorylss im wih paramr θ. // Th disribuio of X is spcifid by (X<x) for all x. // A alraiv spcificaio is by φ X (θ) fo all θ. // Thi of rasform bw h x (im) domai ad // h θ (frqucy) domai. Formula. φ X (θ) E[ θx ] roof. (X < M θ ) (X < Mθ X x)dfx ( x) ( x < Mθ X x)dfx ( x) (M θ > x) df X ( x) // M θ is idp. of X x dfx ( x) θ E[ θx ]

11 Thorm. Th Laplac rasform of a xpoial() r.v. X is /(θ+). Compuaioal roof. θ X θx φx( θ) E[ ] df X( x) // F X (x) x θ x x d x / ( θ + ) Alraiv proof by h birh modl. Durig h im irval [, ], olld calls ad θ oll-fr calls arriv, rspcivly. All call arrivals ar i.i.d. W hav a rac amog h oal of (θ+) calls, of which hr ar olld calls. L. Th waiig im for h firs olld call is X M ad, for h firs oll-fr call, M θ. Th horm simply quas h Laplac rasform φ X (θ) o φx ( θ ) (X < M θ ) (probabiliy for h ovrall firs call o b olld) / ( θ + ) //qual chac for all i.i.d o wi i h rac

12 2 Dfiiio. Th Fourir rasform of a coiuous r.v. X i X is φ ( ω) E[ ω ] Similar o h Laplac rasform, h Fourir rasform of h xpoial radom variabl wih ra is foud o b φ(ω) / ( ω). From his, o ca calcula h variac of xpoial disribuio as follows: Dfiiio. Th z-rasform of a discr r.v. X is

13 3 φ ( z ) E[z X ] X z (X ) {all hads i X osss of a z-biasd coi} // z probabiliy of had {o ail i X osss of a z-biasd coi} I paricular, h z-rasform for a oisso() r.v. is z /! ( z) /! ( z ) Irpraio (will b furhr clarifid afr h discussio o oisso procss). Durig h im irval [, ], calls arriv a h swichig sysm. All call arrivals ar i.i.d. Thus is h arrival ra. If vry call has h probabiliy z of big a olld call. Th, h arrival ra is z for olld calls ad is (z) for oll-fr calls. Th probabiliy of o oll-fr calls wihi a ui im is (z).

14 Sum of Idpd oisso r.v. Thorm. L X ad Y b idpd oisso r.v. wih dsiis ad µ, rspcivly. Th X+Y is oisso(+µ). roof by h birh modl. Cosidr (+µ) uiform i.i.d. ovr h irval [, ), whr uiform i.i.d. of hm rprs arrivals of oll-fr pho calls a a lpho xchag ad h rmaiig µ rprs olld calls. As, umbr of oll-fr calls durig h irval [, ) is oisso(); umbr of olld calls durig h irval [, ) is oisso(µ); hs wo oisso r.v. ar idpd, sic oll-fr calls ar idpd of olld calls; h oal umbr of calls durig h irval [, ) is oisso wih h ma +µ. Compuaioal roof. (X+Y ) (X & Y )

15 5 (X ) (Y ) // idp. vs for fixd & µ µ! ( )! ( + µ )!!! µ ( )! ( + µ )! µ µ ( + ) ( + µ )! Alraiv roof from z-rasform. Th z-rasform for a oisso() r.v. is E[z X ] Similarly, E[z Y ] E[z X+Y ] ( + µ )(z) oisso(+µ) r.v. µ ( z) ( z). Bcaus of idpdc,, which is h z-rasform for a.

16 6 Thorm. L X ad Y b idpd oisso radom variabls wih dsiis ad µ, rspcivly. Wri p /(+µ). Th, udr h codiio of X+Y, h disribuio of X is Biomial(, p). Tha is, (X X +Y ) p ( p ) roof by oisso modl. L h arrivals of oll-fr lpho calls wih µ olld calls all b uiform i.i.d. ovr h im irval [, ). Assum ha of h oal (+µ) calls ur ou o fall i h irval [, ). Th probabiliy for xacly i h collcio of o b oll-fr is ( ) ( + ) µ ( µ ) ( µ + + ) [( + µ ) ][( + µ ) ] [( + µ ) + ] jus li drawig cards o by o from a dc of (+µ). As, h idpd radom variabls X ad Y rprs h umbrs of oll-fr ad olld calls, rspcivly, ovr h im irval [, ) ad hc h abov probabiliy covrgs o (X X+Y). Tha is, (X X+Y) ( ) ( + ) µ ( µ ) ( µ + + ) lim µ µ µ [( + ) ] [( + ) ] [( + ) + ] µ ( + µ) biomial probabiliy wih paramrs ad /(+µ)p Compuaioal roof.

17 7 (X X+ Y ) (X & Y ) (X+ Y ) (X ) (Y ) (X+ Y ) // wo idp. vs for fixd & µ [ /!][ / ( )!] ( + µ ) ( + µ ) /! + µ µ + µ

18 Spliig a oisso radom variabl Th prcdig horm mrgs idpd oisso radom variabls. Th followig horm is h ivrs. I splis a oisso radom variabl. Thorm. Assum h oal umbr of fauls is oisso wih dsiy ad hr is a idpd probabiliy p for ach faul o lad o a bradow. Th, () h umbr of bradows is oisso(p) disribud (2) h umbr of rcovrabl fauls is oisso(p) disribud, ad (3) hs wo oisso radom variabls ar idpd. Compuaioal roof of (). L N rprs h oal umbr of fauls ad X h umbr of bradows. W wa o show ha X is oisso(p) disribud. (X) (X N ) (N ) p p ( ) /! ( p) ( p) /!( )! // codiioig o N

19 9 [( p) /!] ( p) / ( )! [( p) /!] ( p) / m! m p [( p) /!] m // wriig m- p ( p) /! Compuaioal roof of (3). L X rprs h umbr of bradows, Y h umbr of rcovrabl fauls, ad N X+Y. W shall show ha X ad Y ar idpd. (X ad Yj) (X ad N+j) (X N+j) (N+j) + j j j p ( p) + / ( + j)! p j ( p [( p) /!] [( p) (X) (Yj) ) / j!] Iuiiv proof of (, 2) by h birh modl. lac fauls o h im irval [, ] by uiform i.i.d. Th umbr of fauls i h irval [, ] is Biomial(, /). // Biomial(, /) oisso() wh For ay sigl faul,

20 2 (I is a bradow & falls wihi h irval [, ]) (bradow) (wihi irval [, ]) // idp. v p / p/ Morovr, his probabiliy for ach faul is idpd of ha of vry ohr faul. Thus, h disribuio of h umbr of bradows i [, ] is Biomial(, p/). Similarly, h disribuio of rcovrabl fauls i [, ] is Biomial(, (p)/). Rcovrabl Bradow Now l. Th umbr of fauls, brasows, ad rcovrabls i h irval [, ] bcoms oisso(), oisso(p), ad oisso((p)), rspcivly. Iuiio bhid (3) by h birh modl. Th aformiod disribuios Biomial(, p/) ad Biomial(, (p)/) ar gaivly corrlad o ach ohr bcaus h four rcagls shar h oal pool of. Bu, as, h corrlaio bw h wo iy rcagls o h lf bcoms gligibl. // Imagi sow flurris,, fall dow o h big // plai of ara. Th umbr of flurris gahrig o // a ui-ara roof is idpd of ha o aohr.

21 2 Exampl of machi rpair shop A shop cosiss of M machis ad has a sigl rpairma. L h sa b h umbr of machis ha ar dow. Th sa spac is {,,, M}. Assum ha. h amou of im a machi rus bfor braig dow is Expoial() ad 2. h amou of im i as h rpairma o fix ay bro machi is Expoial(µ). Th probabiliy of ay of hs idpd vs o occur firs is proporioal o h ra. Upo h occurrc of a v, h waiig im for vryhig mmorylss is rwd. Th followig diagram shows h ras for rasiios. µ µ, ( M ),,,, M

22 22 L,, 2, b h saioary probabiliis of h Marov chai. Bcaus of h balacd flow bw sas ad, ( ) ( ) [ ] M M M M µ µ µ // sam as igvcor of rasiio marix bu br ( ) ( ) [ ] ( ) M M M M M M,,,,!! µ µ Now w ivo h boudary codiio. ( ) ( ) + M M M M!! µ I h log ru, h avrag umbr of dowd machis is ( ) ( ) µ ρ ρ ρ + whr,!!!! M M M M M M M

23 Mhod of Radomizaio A difficul qusio. Fix m. u balls radomly (uiform ad idpd disribuio) io m larg boxs. Calcula G() {vry box gs occupid by a las o of h balls} Radomizaio soluio. Disribu oisso() may balls radomly (uiform ad idpd disribuio) io m boxs, ach box idpdly rcivs oisso(/m) balls by h spliig of a oisso radom variabl. Hc (Box is occupid wh oal umbr of balls is oisso()) (Box is occupid wh his box coais oisso(/m) /m Thus, may balls) (all m boxs occupid wh hr ar oisso() balls) ( /m ) m // idpd & idical boxs L N b a oisso() disribud r.v. Th abov probabiliy, hrafr dod as φ(), rlas o h objciv fucio G() as follow. ( /m ) m φ() (N ) (all m boxs occupid wh hr ar balls)

24 24 (all m boxs occupid wh hr ar balls)! G()! Thus, h fucio φ() i h coiuous variabl ad h squc G(), G(2),, G(), i h discr idx uiquly drmi ach ohr by φ( )! G( ) Mahmaically, h fucio φ() is a rasform of h squc of G(), G(2),, G(), // Thi of as h discr im ad as h frqucy. W hav compud h fucio φ(), so w wa o ivr h rasform o g G(). Sic h righ-had sid is i h form of a sris xpasio wih rspc o, w shall rwri h soluio of φ() ( /m ) m i h sam form. φ() ( /m ) m m m / m m m ( ) // biomial xpasio of ( ) m ( / m)! m m ( ) // Taylor xpasio m m ( / m) ( )! m // irchag Σ ordr

25 25 This givs aohr sris xpasio of φ() wih rspc o. Th compariso of corrspodig cofficis i h wo xpasios yilds h o clos-form soluio: G() m m m ) ( m

26 Th oisso rocss A gric modl of pur birh: T T 2 T 3 T 4 S S 2 S 3 S 4 N() arrival cou Th procss ca b dscribd by ay of h followig: Th irarrival ims T, T 2, T 3, // discr idx // coiuous valu S Σ j T j ad T S S Th arrival ims S, S, S 2, S 3, // discr idx // coiuous valu N() S Th arrival cous N() i [, ], // coiuous-im // discr valu

27 Fiv quival dfiiios of oisso procss Dfiiio. Th oisso procss wih h isiy is a pur-birh procss. Th fiv dfiiios blow will spcify his pur-birh procss by imposig propris o: Dfiiio-A: Arrival ims ar ordrd saisics i h limiig modl. Dfiiio-B: Arrival cous ar oisso; codiioal arrival ims ar ordrd saisics Dfiiio-C: Irarrival ims ar xpoial i.i.d. Dfiiio-D: Icrms i arrival cou ar idpd; ar saioary oisso. Dfiiio-E: Icrms i arrival cou ar idpd; add wih probabiliy ovr im. Dfiiio-A (Arrival ims ar ordrd saisics i h limiig modl). Cosidr birhs ha ar uiform i.i.d. ovr h irval [, ). L. Th, h arrival im S has h sam disribuio as h h smalls amog hs uiform i.i.d. // h smalls amog i.i.d is calld h h ordrd saisic

28 28 Dfiiio-B (Arrival cous ar oisso; codiioal arrival ims ar ordrd saisics). Assum ha N() is oisso() for >. // Corrlaio bw N( ) & N( 2 ) o b spcifid blow For all >, h disribuio of S, S 2,, S udr h codiio ha N() ar h sam as h ordrd saisics of uiform i.i.d. ovr [, ].! f s,, s N( ), < s < s2 < < s ( ) // (s, s 2,, s ) rags ovr h -dim riagl, // which has h volum /(!). // Wri h uiform i.i.d. as U, U 2,, U. // Th f ( u,, u N( ) ), < u j for all j, // i.., (u, u 2,, u ) ragig ovr -dim squar. Dfiiio-C (Irarrival ims ar xpoial i.i.d.). Wh T, T 2, T 3, ar i.i.d. xpoially disribud wih ma /, his is h oisso procss wih h isiy.

29 29 Dfiiio-D (Icrms i arrival cou ar saioary oisso ad idpd). A pur birh procss {N()} is calld h oisso procss wih h isiy if h followig ar ru. (Saioary oisso icrm) Th icrm ovr ay im duraio of lgh is oisso() disribud. // (N(s+)N(s) ) ( ) /! for all s, (Idpd icrm) Icrms ovr disjoi irvals ar idpd. Dfiiio-E (Icrms i arrival cou ar idpd; add wih probabiliy ovr ifiisimal im). A pur birh procss {N()} is calld h oisso procss wih h isiy if h followig ar ru. Icrms ovr disjoi irvals ar idpd. Th icrm ovr ay im duraio of lgh saisfis h followig: (N(+ )N() ) + o( ) (N(+ )N() 2) o( )

30 3 (N(+ ) N()) + o( ) W shall xami a xampl of applicaio bfor provig h quivalc of hs fiv dfiiios.

31 Exampl of oisso procss i Aloha CSMA ac graio is by a oisso procss wih isiy /sc. Wh a pac is grad, h rasmissio is ampd immdia, which lass p scods. Durig h vulrabl priod, h rasmissio of a pac may collid wih aohr. I ha cas, h rasmissio fails ad h pac is discardd. I is possibl ha a similar pac may b amog hos grad lar o for r-amp. Do G avrag chal raffic (i.., umbr of ampd pac rasmissios pr priod of p scods) p probabiliy of succssful rasmissio (i.., wh o collisio durig h vulrabl priod) S G hroughpu of h chal (i.., avrag umbr of succssful rasmissio pr priod of p scods) Th hroughpu S is o a moooic fucio of h raffic lvl G. W ar irsd i h raffic lvl ha yilds h maximum hroughpu. Cosidr pur Aloha ad slod Aloha sparaly.

32 32 ur Aloha (duraio of h vulrabl priod 2p) ( ) ( ) ! max S wh G G dg ds G S G G G G p

33 33 Slod Aloha (duraio of h vulrabl priod p) S max G S G ds dg G G + G ( ) wh G.368 G

34 oisso icrm roof of Dfiiio-E (ifiisimal icrm) Dfiiio-D (oisso icrm) Abbrvia ( ) { N ( ) }. W wa o prov ha Dfiiio-E ( ) ( ) for! W shall prov his formula by iducio o. Wri h for brviy. Firs, w calcula ().

35 35 Nx, w show how o obai () from h iducio hypohss ha ( ) )! ( ) (. ( ) ( ) { } ( ) ( ) ( ) { } ( ) { } ( ) ( ) { } ( ) { } ( ) [ ] ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) h h h h o h h h o h h o h N N h N N N h N N h N h // ) ( ) ) ( lim( lim //idpd icrm, '

36 36 ( ) c +! ) ( Th boudary codiio () c. ( )! ) ( Homwor. rov ha Dfiiio-D Dfiiio-E. ( ) ( ) { } ( ) ( ) ( ) { } ( ) ( ) ( ) { } ( ) ( ) ( ) { } ( ) ( ) ( ) ( ) // idpd icrms,,, 2 h o h h N h N N N h N N N h N N h N h ( ) ( ) ( ) ( ) ( ) ( ) ( ) )! ( ) ( )! ( ) ( ' )' ( ' + +

37 Irarrival im disribuios roof of Dfiiios-D ad -E (icrm i arrival cou) Dfiiio-C (i.i.d. irarrival ims) Agai, abbrvia ( ) { N ( ) }. (T > ) () // oisso icrm ovr h irval (, ) (T 2 > T s) ( birh i (s, s+] T s) ( birh i (s, s+] birh i (, s]) ( birh i (s, s+]) // idp. icr. ovr 3 disjoi irvals // saioary oisso icrm This is ru for all s. Hc (T 2 > ) ad T 2 is idpd of T. (T 3 > T r, T 2 s) ( birh i (s, s+] T r, T 2 s) ( birh i (s, s+] birh i (, r]; birh i (r, s]) ( birh i (s, s+])

38 This is ru for all r ad s. Hc (T 3 > ) ad T 3 is idpd of T ad T 2. Rpaig h sam argums, w sablish h i.i.d. disribuios of T, T 2, T 3,, T, 38

39 Arrival im disribuios Thorm. Evry amog Dfiiios-B, -C, -D, ad -E implis ha S has h gamma disribuio wih paramrs ad. Tha is, S has h probabiliy dsiy fucio f() () / ()! roof from Dfiiios-B ad -D. N() is oisso(). Thus, {S } {N() } // N() S ( ) j j j! f S () d d {S } ( ) j j j d d! ( ) j j j d d! ( ) ( ) j j j j j! )! ( ( ) ( ) j j j!! () / ()!

40 4 roof from Dfiiio-C. S Σ j T j, h sum of xpoial i.i.d. I is wll ow ha h sum of xpoial() i.i.d. has h gamma(, ) disribuio. roof from Dfiiio-E. ( < S < + ) {N() ad birh i (, + )} + o( ) {N() } { birh i (, + )} + o( ) // idpd icrm [ () / ()!] [ + o( )] + o( ) // Df-E Df-D (oisso icrm) f S () lim ( < S < + )/ () / ()! // {N() }

41 Codiioal arrival ims Thorm 5.2. Dfiiio-D -C (i.i.d. irarrival ims) Dfiiio-B (oisso arrival cous; codiioal arrival ims ar ordrd saisics.) roof. L < x < < x <. L x, x / x,..., x / x 2 all b ifiisimally small. f S,,S (x,, x N()) lim {x x S <x + x,, x S <x + x, " " x S <x + x N()} / x x 2... x lim {x " x" S <x + x,, x S <x + x, x S <x + x, N()} / {N()} x x 2... x lim {x x S <x + x,, x S <x + x, " " x S <x + x, T + >x } / {N()} x x 2... x // blow w rasla vs abou S j io T j for all j lim {x x S <x + x,, x S <x + x, " " x x T <x x + x, T + >x } / {N()} x x 2... x // S T +x lim {x x T <x + x, x 2 x T 2 x 2 x + x 2,, " " x x T <x x + x, T + >x } / {N()} x x 2... x

42 42 lim {x x T <x + x, x 2 x T 2 x 2 x + x 2,, " " x x T <x x + x } {T + >x } / {N()} x x 2... x // idpdc f T,,T (x, x 2 x,, x x ) {T + >x } / {N()} x (x 2 x ) (x x (x ) / [ () /!] // irarrival ims ar xpoial i.i.d.! /, < x < < x < This says ha, udr h codiio of N(), h uordrd arrival ims {S,, S } ar h uiform i.i.d. ovr h irval (, ].

43 43 A Opimizaio Exampl. () Ims arriv a a procssig pla i accordac o a oisso procss wih isiy. A a fixd im, all ims ar dispachd from h sysm. Wha is h xpcd valu of h oal wai W of all ims? (2) Th ims ar o b dispachd from h sysm i wo bachs, firs a a irmdia im, τ (, ) ad h a h im. Choos τ so as o miimiz h oal xpcd wai of all ims. Aswr o (). Codiioig o N(), E[ W ] ( ) j E[ W N( ) j] j j! Udr h codiio of N(), h uordrd arrival ims (S, S 2,, S ) ar uiform i.i.d. ovr h irval (, ] by Thorm 5.2. Hc h codiioal r.v. [W N() ] has h sam disribuio as h sum of uiform i.i.d. ovr h irval (, ]. Thus, E[W N() ] /2. Hc, E[ W ] ( ) j E[ W N( ) j] j j! ( j j / 2) (/2) E[N()] (/2) 2 /2 ( ) Aswr o (2). Miimiz τ 2 /2 + (τ) 2 /2 by diffriaio w.r.. τ. Th opimal valu of τ is /2. j! j

44 44 Exampl of lcroic cour. Elcrical pulss arriv a a cour i accordac o a oisso procss wih isiy. L S, S 2, b arrival ims, ad l A, A 2, b hir rspciv iiial ampliuds, which ar i.i.d. wih a uspcifid disribuio. Through xpoial auaio, h ampliud of a puls j bcoms A j αx a h ag x. Thus, h oal ampliud a im is N ( ) A() Aj j α ( S W wa o calcula E[A()]. Codiioig o N(), ( ) E[ A( )] E[ A( ) N( ) ]! Udr h codiio of N(), h uordrd arrival ims (S, S 2,, S ) ar uiform i.i.d. ovr h irval (, ] by Thorm 5.2. Hc h codiioal r.v. [A() N() ] has h sam disribuio as Aj j uiform i.i.d. ovr (, ]. Thus, E[A() N() ] E[ Aj j α ( Y ) j α ( Y ) j ) α ( Y ) j, whr Y j ar ] // uordrd A j EA E[ ] // uordrd A From h uiform disribuio of Y, α α ( Y E[ ) α ( y) dy ] α

45 45 Thus, E[A() N() ] EA E[ A( )] α α ( ) E[ A( ) N( ) ]! α EA α α EA α α EA α EA α ( )! as

46 Combiig ad spliig of oisso procsss Thorm. Combiig wo idpd oisso procsss wih isiis ad 2 rsuls i a oisso procss wih isiy + 2. roof. Th combid procss ihris h propry of idpd icrms. Combiig wo idpd oisso r.v. wih dsiis ad 2 rsuls i a oisso r.v. wih dsiy ( + 2 ). Hc h icrm ovr a irval of ay lgh is oisso. Dfiiio-D ow prvails. Thorm. If vry arrival i a oisso procss wih isiy is idpdly of yp- wih probabiliy p (ad yp-2 wih probabiliy p), h h wo yps of arrivals form wo idpd oisso procsss wih rspciv isiis p ad (p). N(), -p p N (), p N 2 (), 2 (-p) roof. rviously, w hav s h spli of a oisso r.v. io wo idpd os. Thus, icrms of yp- ad yp-2 ovr a irval of lgh ar oisso(p) ad

47 47 oisso((p)), rspcivly. Thus h wo procsss {N ()} > ad {N 2 ()} > hav saioary oisso icrm. Morovr, for a fixd >, N N m N N m () { ( ) ( ) } { ( ) } { ( ) }, 2 2 I ordr o show ha {N ()} > is a oisso procss by Dfiiio-D, w d o show idpd icrm (Homwor blow). I ordr o show ha h wo oisso procsss rsulig from h spli ar idpd of ach ohr, w d idpdc bw h r.v. N (s) ad N 2 () for all s ad (Homwor 2 blow). Homwor. rov idpd icrm. Homwor 2. rov his idpdc usig sam () ad idpd icrm.

48 48 Iuiio bhid h Thorm. Divid h irval (, ] io qual subirvals. L so ha a subirval has o arrival a yp- arrival a yp-2 arrival mulipl arrivals wih probabiliy / + o(/) wih probabiliy p/ + o(/) wih probabiliy (p)/ + o(/) wih probabiliy o(/) Fix a. Spli h oisso r.v. N() io h wo oisso r.v. N () ad N 2 () wih rspciv dsiis p ad (p). To s ha N () ad N 2 () ar idpd, w assum, for isac, ha N (). Th, of h subirvals, will coai yp- arrivals, ad hc h probabiliy for ach of h ohr o coai a yp-2 is (yp-2 o yp-) ((p)/) / (p/) (p)/ Thus, giv ha N (), h disribuio of N 2 () is Biomial(, (p)/) oisso((p)) // o logr ivolv roposiio 5.3. Suppos N() is a oisso procss wih isiy. A v a im s is classifid as yp-i wih probabiliy i ( s), i,, umbr ( ), whr i ( s) i. Th, h N i of yp-i vs occurrig up o im, i,,, ar idpd oisso r.v. wih ma

49 49 ( s) ds ( ) E[ Ni ( )] i i whr i i ( s) ds is h probabiliy for a v i h irval (, ) o b yp-i. To simplify h oaio, w shall prov oly h spcial cas wh 2. roposiio 5.3 (Spcial cas wih jus yp- & yp-2). I a oisso procss wih isiy, if a arrival a im s i is idpdly of yp- wih probabiliy p(s) ad yp-2 wih probabiliy p(s), h h wo yps of arrivals durig h irval (, ) ar idpd oisso r.v. wih rspciv dsiis p( s) ds ad [ p( s)] ds Th prcdig Thorm Corollary 5.3 p(s) p p s s roof. Th proof is similar o ha i spliig a oisso r.v. io wo.

50 5 {m yp- arrivals ad yp-2 arrivals i (, )} (m+ arrivals i (, )) (m ar yp- ad ar yp-2 m+ arrivals i (, )) m + [ () m+ /(m+)!] p m q, // Each of h m+ arrrivals idpdly has h // uiform probabiliy p o b of yp-, whr // p [ p( s) / ] ds by codiioig o h uiform // arrival im ad qp. [ p (p) m /m!] [ q (q) /!] This o oly sablishs h dsird oisso disribuios wih dsiis p also provs hir idpdc. p( s) ds ad q [ p( s)] ds bu

51 5 Trmiology. For h us i lar xampls, w ow iroduc som basic rmiology of quuig. (s) M/M/s quu, whr s Irarrival im is Mmorylss Srvic im is Mmorylss Numbr of srvrs Assumpios: M: Ir-arrival im ar Expoial() i.i.d. M: Srvic ims ar Expoial(µ) i.i.d. All hs ar idpd.

52 52 Exampl of ifii-srvr sysm (M/G/ ). Cusomrs arriv a a srvic saio accordig o a oisso procss wih isiy. Upo arrival h cusomr is immdialy srvd by o of h ifiily may srvrs. Th srvic im has h disribuio fucio G. Q: Wha is h disribuio of h umbr of cusomrs ha hav compld srvic by a fixd im? Wha is h disribuio of h umbr of cusomrs ha ar big srvicd a im? To apply roposiio 5.3, w classify cusomrs as yp- or yp-2 dpdig whhr h srvic is compld by im. Thus, a cusomr arrivig a im s < is of h yp- or yp-2 wih rspciv probabiliis G(s) or G(s). // No ha G(s) wh <s Now apply roposiio 5.3 wih p(s) G(s).

53 53 Exampl of highway cours. Cars r a uidircioal highway of h lgh d i accordac wih a oisso procss wih isiy. Evry car idpdly ravls a a cosa spd X, which is radom wih h disribuio fucio F X. Wh a fasr car cours a slowr o, i passs i wih o im big los. If you r h highway, wha spd should you choos i ordr o miimiz h xpcd umbr of cours, i.., passig ohrs or big passd? Soluio. Your r h highway a im, choos h fixd spd x, ad xi a im d / x. Ohrs r h highway accordig o a oisso procss wih isiy. A car rig h road a im, chooss a spd X accordig o h disribuio F X, ad xis a + d/x. Wri T d/x. To apply roposiio 5.3, l a v ma ha a car ohr ha yours rs h road. A v a im is said o b of yp- if ha car will cour your car, i.., if < ad +T > or > ad +T < Thus w ar irsd i h disribuio fucio F T, which rlas o F X as follows. F T Thus, T ( ) { } X d FX d, // whr F {A v a im is of yp-} X F X

54 54 d { + T > } F T ( ) F if - X < d { } ( ) - + T < F T FX if > From roposiio 5.3, h oal umbr of yp- vs is oisso wih dsiy E [ N ] {a v a im is of yp-} d F F T T ( ) d + F ( ) ( y) dy + F ( y) dy // y To miimiz E[ N ], w d o choos h cosa spd x, or, quival, o choos h ravl im d / x. d E[ N] [ FT ( ) + FT ( )] [ 2FT ( ) ] d Thus, d E[ N] d F F T F X ( ) F T ( ) 2 ( d ) F ( d / ) / X 2 ( x) F ( x) X X 2 Tha is, h opimal spd x is h mdia spd udr h disribuio G. T T d

55 55 Exampl of racig h HIV ifcios. Suppos ha idividuals corac HIV virus i accordac wih a oisso procss wih a uow isiy. Th icubaio priod, i.., h duraio from h im wh a idividual bcoms HIV ifcd uil AIDS sympoms appar, has a ow disribuio fucio G ad is idpd for vry prso. L ( ) N h umbr of idividuals who hav show sympoms of h disas by im. N 2 ( ) h umbr of HIV-posiiv idividuals who hav o y show ay sympoms by im. Q: Suppos a valu of N () is obsrvd. Ca w us i o sima N 2 ()? Rcall from roposiio 5.3 ha E E [ N ( ) ] G( s) ds G( y) [ N ( ) ] G( s) ds G( y) 2 L h obsrvd valu of N () b. Th soluio is i wo sps: Firs, us his obsrvd valu o sima h isiy of h poiso procss i coracig h HIV virus. E [ N ( ) ] G( y) G ( y) dy dy dy dy // firs - ordr sima

56 56 Th, us h sima of o fid E[N 2 ()]. E [ N 2 ( ) ] G( y) dy G G ( y) ( y) Spcial isac. Suppos G is xpoial wih ma /µ yars ad ha 22 idividuals hav xhibid AIDS sympoms durig h firs 6 yars of h pidmic. Th, µ y G y E ( ) [ N ( ) ] ( y) µ y dy µ y ( y) dy ( ) dy dy µ ( )/ µ µ ( )/ µ 2 G G Wih µ., 6, ad 22, 22 E N ( ).6 6 dy dy.6 [ ] ( ) ( )

Poisson Arrival Process

Poisson Arrival Process 1 Poisso Arrival Procss Arrivals occur i) i a mmorylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = 1 λδ + ( Δ ) P o P j arrivals durig Δ = o Δ for j = 2,3, ( ) o Δ whr lim =

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Poisson Arrival Process

Poisson Arrival Process Poisso Arrival Procss Arrivals occur i) i a mmylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = λδ + ( Δ ) P o P j arrivals durig Δ = o Δ f j = 2,3, o Δ whr lim =. Δ Δ C C 2 C

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

( A) ( B) ( C) ( D) ( E)

( A) ( B) ( C) ( D) ( E) d Smsr Fial Exam Worksh x 5x.( NC)If f ( ) d + 7, h 4 f ( ) d is 9x + x 5 6 ( B) ( C) 0 7 ( E) divrg +. (NC) Th ifii sris ak has h parial sum S ( ) for. k Wha is h sum of h sris a? ( B) 0 ( C) ( E) divrgs

More information

Fourier Series: main points

Fourier Series: main points BIOEN 3 Lcur 6 Fourir rasforms Novmbr 9, Fourir Sris: mai pois Ifii sum of sis, cosis, or boh + a a cos( + b si( All frqucis ar igr mulipls of a fudamal frqucy, o F.S. ca rprs ay priodic fucio ha w ca

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

Continous system: differential equations

Continous system: differential equations /6/008 Coious sysm: diffrial quaios Drmiisic modls drivaivs isad of (+)-( r( compar ( + ) R( + r ( (0) ( R ( 0 ) ( Dcid wha hav a ffc o h sysm Drmi whhr h paramrs ar posiiv or gaiv, i.. giv growh or rducio

More information

Mixing time with Coupling

Mixing time with Coupling Mixig im wih Couplig Jihui Li Mig Zhg Saisics Dparm May 7 Goal Iroducio o boudig h mixig im for MCMC wih couplig ad pah couplig Prsig a simpl xampl o illusra h basic ida Noaio M is a Markov chai o fii

More information

) and furthermore all X. The definition of the term stationary requires that the distribution fulfills the condition:

) and furthermore all X. The definition of the term stationary requires that the distribution fulfills the condition: Assigm Thomas Aam, Spha Brumm, Haik Lor May 6 h, 3 8 h smsr, 357, 7544, 757 oblm For R b X a raom variabl havig ormal isribuio wih ma µ a variac σ (his is wri as ~ (,) X. by: R a. Is X ) a urhrmor all

More information

Some Applications of the Poisson Process

Some Applications of the Poisson Process Applid Maaics, 24, 5, 3-37 Publishd Oli Novbr 24 i SciRs. hp://www.scirp.org/oural/a hp://dx.doi.org/.4236/a.24.59288 So Applicaios of Poisso Procss Kug-Ku s Dpar of Maaics, Ka Uivrsiy, Uio, USA Eail:

More information

From Fourier Series towards Fourier Transform

From Fourier Series towards Fourier Transform From Fourir Sris owards Fourir rasform D D d D, d wh lim Dparm of Elcrical ad Compur Eiri D, d wh lim L s Cosidr a fucio G d W ca xprss D i rms of Gw D G Dparm of Elcrical ad Compur Eiri D G G 3 Dparm

More information

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals ELECTOMAGNETIC COMPATIBILITY HANDBOOK Chapr : Spcra of Priodic ad Apriodic Sigals. Drmi whhr ach of h followig fucios ar priodic. If hy ar priodic, provid hir fudamal frqucy ad priod. a) x 4cos( 5 ) si(

More information

UNIT III STANDARD DISTRIBUTIONS

UNIT III STANDARD DISTRIBUTIONS UNIT III STANDARD DISTRIBUTIONS Biomial, Poisso, Normal, Gomric, Uiform, Eoial, Gamma disribuios ad hir roris. Prard by Dr. V. Valliammal Ngaiv biomial disribuios Prard by Dr.A.R.VIJAYALAKSHMI Sadard Disribuios

More information

What Is the Difference between Gamma and Gaussian Distributions?

What Is the Difference between Gamma and Gaussian Distributions? Applid Mahmaics,,, 85-89 hp://ddoiorg/6/am Publishd Oli Fbruary (hp://wwwscirporg/joural/am) Wha Is h Diffrc bw Gamma ad Gaussia Disribuios? iao-li Hu chool of Elcrical Egirig ad Compur cic, Uivrsiy of

More information

Modeling of the CML FD noise-to-jitter conversion as an LPTV process

Modeling of the CML FD noise-to-jitter conversion as an LPTV process Modlig of h CML FD ois-o-ir covrsio as a LPV procss Marko Alksic. Rvisio hisory Vrsio Da Comms. //4 Firs vrsio mrgd wo docums. Cyclosaioary Nois ad Applicaio o CML Frqucy Dividr Jir/Phas Nois Aalysis fil

More information

Review Topics from Chapter 3&4. Fourier Series Fourier Transform Linear Time Invariant (LTI) Systems Energy-Type Signals Power-Type Signals

Review Topics from Chapter 3&4. Fourier Series Fourier Transform Linear Time Invariant (LTI) Systems Energy-Type Signals Power-Type Signals Rviw opics from Chapr 3&4 Fourir Sris Fourir rasform Liar im Ivaria (LI) Sysms Ergy-yp Sigals Powr-yp Sigals Fourir Sris Rprsaio for Priodic Sigals Dfiiio: L h sigal () b a priodic sigal wih priod. ()

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016 MAT3700/0//06 Tuorial Lr 0//06 Mahmaics III (Egirig) MAT3700 Smsr Dparm of Mahmaical scics This uorial lr coais soluios ad aswrs o assigms. BARCODE CONTENTS Pag SOLUTIONS ASSIGNMENT... 3 SOLUTIONS ASSIGNMENT...

More information

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

Mathematical Preliminaries for Transforms, Subbands, and Wavelets Mahmaical Prlimiaris for rasforms, Subbads, ad Wavls C.M. Liu Prcpual Sigal Procssig Lab Collg of Compur Scic Naioal Chiao-ug Uivrsiy hp://www.csi.cu.du.w/~cmliu/courss/comprssio/ Offic: EC538 (03)5731877

More information

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

MA6451-PROBABILITY AND RANDOM PROCESSES

MA6451-PROBABILITY AND RANDOM PROCESSES MA645-PROBABILITY AND RANDOM PROCESSES UNIT I RANDOM VARIABLES Dr. V. Valliammal Darm of Alid Mahmaics Sri Vkaswara Collg of Egirig Radom variabl Radom Variabls A ral variabl whos valu is drmid by h oucom

More information

, then the old equilibrium biomass was greater than the new B e. and we want to determine how long it takes for B(t) to reach the value B e.

, then the old equilibrium biomass was greater than the new B e. and we want to determine how long it takes for B(t) to reach the value B e. SURPLUS PRODUCTION (coiud) Trasiio o a Nw Equilibrium Th followig marials ar adapd from lchr (978), o h Rcommdd Radig lis caus () approachs h w quilibrium valu asympoically, i aks a ifii amou of im o acually

More information

Linear Systems Analysis in the Time Domain

Linear Systems Analysis in the Time Domain Liar Sysms Aalysis i h Tim Domai Firs Ordr Sysms di vl = L, vr = Ri, d di L + Ri = () d R x= i, x& = x+ ( ) L L X() s I() s = = = U() s E() s Ls+ R R L s + R u () = () =, i() = L i () = R R Firs Ordr Sysms

More information

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions IOSR Joural of Applid Chmisr IOSR-JAC -ISSN: 78-576.Volum 9 Issu 8 Vr. I Aug. 6 PP 4-8 www.iosrjourals.org Numrical Simulaio for h - Ha Equaio wih rivaiv Boudar Codiios Ima. I. Gorial parm of Mahmaics

More information

8. Queueing systems. Contents. Simple teletraffic model. Pure queueing system

8. Queueing systems. Contents. Simple teletraffic model. Pure queueing system 8. Quug sysms Cos 8. Quug sysms Rfrshr: Sml lraffc modl Quug dscl M/M/ srvr wag lacs Alcao o ack lvl modllg of daa raffc M/M/ srvrs wag lacs lc8. S-38.45 Iroduco o Tlraffc Thory Srg 5 8. Quug sysms 8.

More information

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May Exercise 3 Sochasic Models of Maufacurig Sysems 4T4, 6 May. Each week a very popular loery i Adorra pris 4 ickes. Each ickes has wo 4-digi umbers o i, oe visible ad he oher covered. The umbers are radomly

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function Chapr VII Spcial Fucios Ocobr 7, 7 479 CHAPTER VII SPECIAL FUNCTIONS Cos: Havisid sp fucio, filr fucio Dirac dla fucio, modlig of impuls procsss 3 Si igral fucio 4 Error fucio 5 Gamma fucio E Epoial igral

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

Fourier Techniques Chapters 2 & 3, Part I

Fourier Techniques Chapters 2 & 3, Part I Fourir chiqus Chaprs & 3, Par I Dr. Yu Q. Shi Dp o Elcrical & Compur Egirig Nw Jrsy Isiu o chology Email: shi@i.du usd or h cours: , 4 h Ediio, Lahi ad Dog, Oord

More information

ECE351: Signals and Systems I. Thinh Nguyen

ECE351: Signals and Systems I. Thinh Nguyen ECE35: Sigals ad Sysms I Thih Nguy FudamalsofSigalsadSysms x Fudamals of Sigals ad Sysms co. Fudamals of Sigals ad Sysms co. x x] Classificaio of sigals Classificaio of sigals co. x] x x] =xt s =x

More information

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11,

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11, Prai paprs A ad B, produd by Edl i 9, wih mark shms Prai Papr A. Fid h valus of for whih 5 osh sih =, givig your aswrs as aural logarihms. (Toal 6 marks) k. A = k, whr k is a ral osa. 9 (a) Fid valus of

More information

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite Wb-basd Supplmary Marials for Sampl siz cosidraios for GEE aalyss of hr-lvl clusr radomizd rials by Sv Trsra, Big Lu, oh S. Prissr, Tho va Achrbrg, ad Gorg F. Borm Wb-appdix : macro o calcula h rag of

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

Note 6 Frequency Response

Note 6 Frequency Response No 6 Frqucy Rpo Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada. alyical Exprio

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

F.Y. Diploma : Sem. II [AE/CH/FG/ME/PT/PG] Applied Mathematics

F.Y. Diploma : Sem. II [AE/CH/FG/ME/PT/PG] Applied Mathematics F.Y. Diploma : Sem. II [AE/CH/FG/ME/PT/PG] Applied Mahemaics Prelim Quesio Paper Soluio Q. Aemp ay FIVE of he followig : [0] Q.(a) Defie Eve ad odd fucios. [] As.: A fucio f() is said o be eve fucio if

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is 39 Anohr quival dfiniion of h Fri vlociy is pf vf (6.4) If h rgy is a quadraic funcion of k H k L, hs wo dfiniions ar idical. If is NOT a quadraic funcion of k (which could happ as will b discussd in h

More information

Microscopic Flow Characteristics Time Headway - Distribution

Microscopic Flow Characteristics Time Headway - Distribution CE57: Traffic Flow Thory Spring 20 Wk 2 Modling Hadway Disribuion Microscopic Flow Characrisics Tim Hadway - Disribuion Tim Hadway Dfiniion Tim Hadway vrsus Gap Ahmd Abdl-Rahim Civil Enginring Dparmn,

More information

Actuarial Society of India

Actuarial Society of India Acuarial Sociey of Idia EXAMINAIONS Jue 5 C4 (3) Models oal Marks - 5 Idicaive Soluio Q. (i) a) Le U deoe he process described by 3 ad V deoe he process described by 4. he 5 e 5 PU [ ] PV [ ] ( e ).538!

More information

Ring of Large Number Mutually Coupled Oscillators Periodic Solutions

Ring of Large Number Mutually Coupled Oscillators Periodic Solutions Iraioal Joural of horical ad Mahmaical Physics 4, 4(6: 5-9 DOI: 59/jijmp446 Rig of arg Numbr Muually Coupld Oscillaors Priodic Soluios Vasil G Aglov,*, Dafika z Aglova Dparm Nam of Mahmaics, Uivrsiy of

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: work Thory Broadbad Circui Dig Fall 04 Lcur 6: PLL Trai Bhavior Sam Palrmo Aalog & Mixd-Sigal Cr Txa A&M Uivriy Aoucm, Agda, & Rfrc HW i du oday by 5PM PLL Trackig Rpo Pha Dcor Modl PLL Hold Rag

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Mathematical Statistics. 1 Introduction to the materials to be covered in this course Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig

More information

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT [Typ x] [Typ x] [Typ x] ISSN : 974-7435 Volum 1 Issu 24 BioTchnology 214 An Indian Journal FULL PAPE BTAIJ, 1(24), 214 [15197-1521] A sag-srucurd modl of a singl-spcis wih dnsiy-dpndn and birh pulss LI

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations,

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations, Shiraz Uivrsiy of Tchology From h SlcdWorks of Habibolla Laifizadh Th Dvlopm of Suiabl ad Wll-foudd Numrical Mhods o Solv Sysms of Igro- Diffrial Equaios, Habibolla Laifizadh, Shiraz Uivrsiy of Tchology

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t AP CALCULUS FINAL UNIT WORKSHEETS ACCELERATION, VELOCTIY AND POSITION In problms -, drmin h posiion funcion, (), from h givn informaion.. v (), () = 5. v ()5, () = b g. a (), v() =, () = -. a (), v() =

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

Chap 2: Reliability and Availability Models

Chap 2: Reliability and Availability Models Chap : lably ad valably Modls lably = prob{s s fully fucog [,]} Suppos from [,] m prod, w masur ou of N compos, of whch N : # of compos oprag corrcly a m N f : # of compos whch hav fald a m rlably of h

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

Chapter 11 INTEGRAL EQUATIONS

Chapter 11 INTEGRAL EQUATIONS hapr INTERAL EQUATIONS hapr INTERAL EUATIONS Dcmbr 4, 8 hapr Igral Eqaios. Normd Vcor Spacs. Eclidia vcor spac. Vcor spac o coios cios ( ). Vcor Spac L ( ) 4. achy-byaowsi iqaliy 5. iowsi iqaliy. Liar

More information

Chapter4 Time Domain Analysis of Control System

Chapter4 Time Domain Analysis of Control System Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

Chapter 7 INTEGRAL EQUATIONS

Chapter 7 INTEGRAL EQUATIONS hapr 7 INTERAL EQUATIONS hapr 7 INTERAL EUATIONS hapr 7 Igral Eqaios 7. Normd Vcor Spacs. Eclidia vcor spac. Vcor spac o coios cios ( ). Vcor Spac L ( ) 4. ach-baowsi iqali 5. iowsi iqali 7. Liar Opraors

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

Control Systems (Lecture note #6)

Control Systems (Lecture note #6) 6.5 Corol Sysms (Lcur o #6 Las Tm: Lar algbra rw Lar algbrac quaos soluos Paramrzao of all soluos Smlary rasformao: compao form Egalus ad gcors dagoal form bg pcur: o brach of h cours Vcor spacs marcs

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012 AE7/AC/A7 SIGNALS AND SYSEMS DECEMBER Q. Drmi powr d rgy of h followig igl j i ii =A co iii = Solio: i E P I I l jw l I d jw d d Powr i fii, i i powr igl ii =A cow E P I co w d / co l I I l d wd d Powr

More information

Random Process Part 1

Random Process Part 1 Random Procss Part A random procss t (, ζ is a signal or wavform in tim. t : tim ζ : outcom in th sampl spac Each tim w rapat th xprimnt, a nw wavform is gnratd. ( W will adopt t for short. Tim sampls

More information

ON H-TRICHOTOMY IN BANACH SPACES

ON H-TRICHOTOMY IN BANACH SPACES CODRUTA STOICA IHAIL EGA O H-TRICHOTOY I BAACH SPACES Absrac: I his papr w mphasiz h oio of skw-oluio smiflows cosidrd a gralizaio of smigroups oluio opraors ad skw-produc smiflows which aris i h sabiliy

More information

B. Maddah INDE 504 Simulation 09/02/17

B. Maddah INDE 504 Simulation 09/02/17 B. Maddah INDE 54 Simulaio 9/2/7 Queueig Primer Wha is a queueig sysem? A queueig sysem cosiss of servers (resources) ha provide service o cusomers (eiies). A Cusomer requesig service will sar service

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique MASSACHUSETTS ISTITUTE OF TECHOLOGY 6.265/5.070J Fall 203 Lecure 4 9/6/203 Applicaios of he large deviaio echique Coe.. Isurace problem 2. Queueig problem 3. Buffer overflow probabiliy Safey capial for

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS Diol Bgyoko (0) I.INTRODUCTION LINEAR d ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS I. Dfiiio All suh diffril quios s i h sdrd or oil form: y + y + y Q( x) dy d y wih y d y d dx dx whr,, d

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

The transition:transversion rate ratio vs. the T-ratio.

The transition:transversion rate ratio vs. the T-ratio. PhyloMah Lcur 8 by Dan Vandrpool March, 00 opics of Discussion ransiion:ransvrsion ra raio Kappa vs. ransiion:ransvrsion raio raio alculaing h xpcd numbr of subsiuions using marix algbra Why h nral im

More information

FOURIER ANALYSIS Signals and System Analysis

FOURIER ANALYSIS Signals and System Analysis FOURIER ANALYSIS Isc Nwo Whi ligh cosiss of sv compos J Bpis Josph Fourir Bor: Mrch 768 i Auxrr, Bourgog, Frc Did: 6 My 83 i Pris, Frc Fourir Sris A priodic sigl of priod T sisfis ft f for ll f f for ll

More information

Right Angle Trigonometry

Right Angle Trigonometry Righ gl Trigoomry I. si Fs d Dfiiios. Righ gl gl msurig 90. Srigh gl gl msurig 80. u gl gl msurig w 0 d 90 4. omplmry gls wo gls whos sum is 90 5. Supplmry gls wo gls whos sum is 80 6. Righ rigl rigl wih

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

Calculus BC 2015 Scoring Guidelines

Calculus BC 2015 Scoring Guidelines AP Calculus BC 5 Scorig Guidelies 5 The College Board. College Board, Advaced Placeme Program, AP, AP Ceral, ad he acor logo are regisered rademarks of he College Board. AP Ceral is he official olie home

More information

Discussion 06 Solutions

Discussion 06 Solutions STAT Discussion Soluions Spring 8. Th wigh of fish in La Paradis follows a normal disribuion wih man of 8. lbs and sandard dviaion of. lbs. a) Wha proporion of fish ar bwn 9 lbs and lbs? æ 9-8. - 8. P

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison Economics 302 (Sc. 001) Inrmdia Macroconomic Thory and Policy (Spring 2011) 3/28/2012 Insrucor: Prof. Mnzi Chinn Insrucor: Prof. Mnzi Chinn UW Madison 16 1 Consumpion Th Vry Forsighd dconsumr A vry forsighd

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

Assessing Reliable Software using SPRT based on LPETM

Assessing Reliable Software using SPRT based on LPETM Iraioal Joural of Compur Applicaios (75 888) Volum 47 No., Ju Assssig Rliabl Sofwar usig SRT basd o LETM R. Saya rasad hd, Associa rofssor Dp. of CS &Egg. AcharyaNagarjua Uivrsiy D. Hariha Assisa rofssor

More information

Advanced Queueing Theory. M/G/1 Queueing Systems

Advanced Queueing Theory. M/G/1 Queueing Systems Advand Quung Thory Ths slds ar rad by Dr. Yh Huang of Gorg Mason Unvrsy. Sudns rgsrd n Dr. Huang's ourss a GMU an ma a sngl mahn-radabl opy and prn a sngl opy of ah sld for hr own rfrn, so long as ah sld

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Software Development Cost Model based on NHPP Gompertz Distribution

Software Development Cost Model based on NHPP Gompertz Distribution Idia Joural of Scic ad Tchology, Vol 8(12), DOI: 10.17485/ijs/2015/v8i12/68332, Ju 2015 ISSN (Pri) : 0974-6846 ISSN (Oli) : 0974-5645 Sofwar Dvlopm Cos Modl basd o NHPP Gomprz Disribuio H-Chul Kim 1* ad

More information

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz STAT UIUC Pracic Problms #7 SOLUTIONS Spanov Dalpiaz Th following ar a numbr of pracic problms ha ma b hlpful for compling h homwor, and will lil b vr usful for suding for ams.. Considr wo coninuous random

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

Chapter 4. Continuous Time Markov Chains. Babita Goyal

Chapter 4. Continuous Time Markov Chains. Babita Goyal Chapr 4 Couous Tm Markov Chas Baba Goyal Ky words: Couous m sochasc procsss, Posso procss, brh procss, dah procss, gralzd brh-dah procss, succssv occurrcs, r-arrval m. Suggsd radgs:. Mdh, J. (996, Sochasc

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering Lcur No Lcur-6-9 Ar rdig his lsso, you will lr ou Fourir sris xpsio rigoomric d xpoil Propris o Fourir Sris Rspos o lir sysm Normlizd powr i Fourir xpsio Powr spcrl dsiy Ec o rsr ucio o PSD. FOURIER SERIES

More information