An Introduction to Hybrid Systems Modeling

Size: px
Start display at page:

Download "An Introduction to Hybrid Systems Modeling"

Transcription

1 CS620, IIT BOMBAY An Introduction to Hybrid Systems Modeling Ashutosh Trivedi Department of Computer Science and Engineering, IIT Bombay CS620: New Trends in IT: Modeling and Verification of Cyber-Physical Systems (2 August 2013) A. Trivedi 1 of 12

2 Course overview 1. Formal Modeling of CPS Discrete Dynamical Systems (Extended Finite State Machines) Continuous Dynamical Systems (Ordinary Differential Equations) Hybrid Dynamical Systems Timed automata, Hybrid automata, PCDs, Multi-mode systems, and other decidable subclasses 2. Tools for modeling CPS UPPAAL HyTech Stateflow/Simulink 3. Verification and Synthesis Classical temporal logics LTL and CTL Real-time extensions of these logics, in particular MTL Model-Checking for timed and hybrid automata Automatic Synthesis for CPS (satisfiability, controller-environment games, code-generations, etc.) A. Trivedi 2 of 12

3 Grading 20% 30% 20% 30% End-semester Project Mid-semester Quizzes A. Trivedi 3 of 12

4 Dynamical Systems Dynamical System: A system whose state evolves with time governed by a fixed set of rules or dynamics. state: valuation to variables (discrete or continuous) of the system time: discrete or continuous dynamics: discrete, continuous, or hybrid A. Trivedi 4 of 12

5 Dynamical Systems Dynamical System: A system whose state evolves with time governed by a fixed set of rules or dynamics. state: valuation to variables (discrete or continuous) of the system time: discrete or continuous dynamics: discrete, continuous, or hybrid Discrete System Continuous System Hybrid Systems. A. Trivedi 4 of 12

6 Dynamical Systems Discrete Dynamical Systems A. Trivedi 5 of 12

7 Most General Model for Dynamical Systems Definition (State Transition Systems) A state transition system is a tuple T = (S, S 0, Σ, ) where: S is a (potentially infinite) set of states; S 0 S is the set of initial states; Σ is a (potentially infinite) set of actions; and S Σ S is the transition relation; A. Trivedi 6 of 12

8 Most General Model for Dynamical Systems Definition (State Transition Systems) A state transition system is a tuple T = (S, S 0, Σ, ) where: S is a (potentially infinite) set of states; S 0 S is the set of initial states; Σ is a (potentially infinite) set of actions; and S Σ S is the transition relation; tick tick tick tick, 0, 1, 2, 3 tick tick tick count, 0 count, 1 count, 2 count, 3 tick A. Trivedi 6 of 12

9 State Transition Systems Definition (State Transition Systems) A state transition system is a tuple T = (S, S 0, Σ, ) where: S is a (potentially infinite) set of states; S 0 S is the set of initial states; Σ is a (potentially infinite) set of actions; and S Σ S is the transition relation; Finite and countable state transition systems A finite run is a sequence s 0, a 1, s 1, s 2, s 2,..., s n such that s 0 S 0 and for all 0 i < n we have that (s i, a i+1, s i+1 ). Reachability and Safe-Schedulability problems A. Trivedi 7 of 12

10 State Transition Systems Definition (State Transition Systems) A state transition system is a tuple T = (S, S 0, Σ, ) where: S is a (potentially infinite) set of states; S 0 S is the set of initial states; Σ is a (potentially infinite) set of actions; and S Σ S is the transition relation; Finite and countable state transition systems A finite run is a sequence s 0, a 1, s 1, s 2, s 2,..., s n such that s 0 S 0 and for all 0 i < n we have that (s i, a i+1, s i+1 ). Reachability and Safe-Schedulability problems We need efficient computer-readable representations of infinite systems! A. Trivedi 7 of 12

11 Extended Finite State Machines Let X be the set of variables (real-valued) of the system let X = N. A valuation ν of X is a function ν : X R. We consider a valuation as a point in R N equipped with Euclidean Norm. A. Trivedi 8 of 12

12 Extended Finite State Machines Let X be the set of variables (real-valued) of the system let X = N. A valuation ν of X is a function ν : X R. We consider a valuation as a point in R N equipped with Euclidean Norm. A predicate is defined simply as a subset of R N represented (non-linear) algebraic equations involving X. Non-linear predicates, e.g. x sin(z) = 0 A. Trivedi 8 of 12

13 Extended Finite State Machines Let X be the set of variables (real-valued) of the system let X = N. A valuation ν of X is a function ν : X R. We consider a valuation as a point in R N equipped with Euclidean Norm. A predicate is defined simply as a subset of R N represented (non-linear) algebraic equations involving X. Non-linear predicates, e.g. x sin(z) = 0 Polyhedral predicates: a 1x 1 + a 2x a nx n k where a i R, x i X, and = {<,, =,, >}. A. Trivedi 8 of 12

14 Extended Finite State Machines Let X be the set of variables (real-valued) of the system let X = N. A valuation ν of X is a function ν : X R. We consider a valuation as a point in R N equipped with Euclidean Norm. A predicate is defined simply as a subset of R N represented (non-linear) algebraic equations involving X. Non-linear predicates, e.g. x sin(z) = 0 Polyhedral predicates: a 1x 1 + a 2x a nx n k where a i R, x i X, and = {<,, =,, >}. Octagonal predicates x i x j k or x i k where x i, x j X, and = {<,, =,, >}. Rectangular predicates x i k where x i X, and = {<,, =,, >}. Singular Predicates x i = c. A. Trivedi 8 of 12

15 Poly-, Rect-, and Octa- Predicates x y y x z x z y (a) (b) (b) (c) A. Trivedi 9 of 12

16 Extended Finite State Machines x<3, tick, x =x + 1,, x =x, tick, x =x count,, x =x x=3, tick, x =0 Extended Finite State Machines (EFSMs): Finite state-transition systems coupled with a finite set of variables The valuation remains unchanged while system stays in a mode (state) The valuation changes during a transition when it jumps to the valuation governed by a predicate over X X specified in the transition relation. Transitions are guarded by predicates over X Mode invariants Initial state and valuation A. Trivedi 10 of 12

17 Extended Finite State Machines x<3, tick, x =x + 1,, x =x, tick, x =x count,, x =x x=3, tick, x =0 Definition (EFSM: Syntax) An extended finite state machine is a tuple M = (M, M 0, Σ, X,, I, V 0 ) such that: M is a finite set of control modes including a distinguished initial set of control modes M 0 M, Σ is a finite set of actions, X is a finite set of real-valued variable, M pred(x) Σ pred(x X ) M is the transition relation, I : M pred(x) is the mode-invariant function, and V 0 pred(x) is the set of initial valuations. A. Trivedi 11 of 12

18 EFSM: Semantics x<3, tick, x =x + 1,, x =x, tick, x =x count,, x =x x=3, tick, x =0 tick tick tick tick, 0, 1, 2, 3 tick tick tick count, 0 count, 1 count, 2 count, 3 tick A. Trivedi 12 of 12

19 EFSM: Semantics The semantics of an EFSM M = (M, M 0, Σ, X,, I, V 0 ) is given as a state transition graph T M = (S M, S0 M, Σ M, M ) where S M (M R X ) is the set of configurations of M such that for all (m, ν) S M we have that ν I(m); S M 0 S M such that (m, ν) S M if m M 0 and ν V 0 ; Σ M = Σ is the set of labels; M S M Σ M S M is the set of transitions such that ((m, ν), a, (m, ν )) M if there exists a transition δ = (m, g, a, j, m ) such that the current valuation ν satisfies the guard of δ, i.e. ν g; the pair of current and next valuations (ν, ν ) satisfies the jump constraint of δ, i.e. (ν, ν ) j; and the next valuation satisfies the invariant of the target mode of δ, i.e. ν I(m ). A. Trivedi 13 of 12

An Introduction to Hybrid Systems Modeling

An Introduction to Hybrid Systems Modeling CS620, IIT BOMBAY An Introduction to Hybrid Systems Modeling Ashutosh Trivedi Department of Computer Science and Engineering, IIT Bombay CS620: New Trends in IT: Modeling and Verification of Cyber-Physical

More information

Timed Automata VINO 2011

Timed Automata VINO 2011 Timed Automata VINO 2011 VeriDis Group - LORIA July 18, 2011 Content 1 Introduction 2 Timed Automata 3 Networks of timed automata Motivation Formalism for modeling and verification of real-time systems.

More information

The algorithmic analysis of hybrid system

The algorithmic analysis of hybrid system The algorithmic analysis of hybrid system Authors: R.Alur, C. Courcoubetis etc. Course teacher: Prof. Ugo Buy Xin Li, Huiyong Xiao Nov. 13, 2002 Summary What s a hybrid system? Definition of Hybrid Automaton

More information

Decidability Results for Probabilistic Hybrid Automata

Decidability Results for Probabilistic Hybrid Automata Decidability Results for Probabilistic Hybrid Automata Prof. Dr. Erika Ábrahám Informatik 2 - Theory of Hybrid Systems RWTH Aachen SS09 - Probabilistic hybrid automata 1 / 17 Literatur Jeremy Sproston:

More information

Finite Automata and Languages

Finite Automata and Languages CS62, IIT BOMBAY Finite Automata and Languages Ashutosh Trivedi Department of Computer Science and Engineering, IIT Bombay CS62: New Trends in IT: Modeling and Verification of Cyber-Physical Systems (2

More information

Hybrid systems and computer science a short tutorial

Hybrid systems and computer science a short tutorial Hybrid systems and computer science a short tutorial Eugene Asarin Université Paris 7 - LIAFA SFM 04 - RT, Bertinoro p. 1/4 Introductory equations Hybrid Systems = Discrete+Continuous SFM 04 - RT, Bertinoro

More information

Recent results on Timed Systems

Recent results on Timed Systems Recent results on Timed Systems Time Petri Nets and Timed Automata Béatrice Bérard LAMSADE Université Paris-Dauphine & CNRS berard@lamsade.dauphine.fr Based on joint work with F. Cassez, S. Haddad, D.

More information

Guest lecturer: Prof. Mark Reynolds, The University of Western Australia

Guest lecturer: Prof. Mark Reynolds, The University of Western Australia Università degli studi di Udine Corso per il dottorato di ricerca: Temporal Logics: Satisfiability Checking, Model Checking, and Synthesis January 2017 Lecture 01, Part 02: Temporal Logics Guest lecturer:

More information

Models for Efficient Timed Verification

Models for Efficient Timed Verification Models for Efficient Timed Verification François Laroussinie LSV / ENS de Cachan CNRS UMR 8643 Monterey Workshop - Composition of embedded systems Model checking System Properties Formalizing step? ϕ Model

More information

Introduction to Temporal Logic. The purpose of temporal logics is to specify properties of dynamic systems. These can be either

Introduction to Temporal Logic. The purpose of temporal logics is to specify properties of dynamic systems. These can be either Introduction to Temporal Logic The purpose of temporal logics is to specify properties of dynamic systems. These can be either Desired properites. Often liveness properties like In every infinite run action

More information

Lecture 6: Reachability Analysis of Timed and Hybrid Automata

Lecture 6: Reachability Analysis of Timed and Hybrid Automata University of Illinois at Urbana-Champaign Lecture 6: Reachability Analysis of Timed and Hybrid Automata Sayan Mitra Special Classes of Hybrid Automata Timed Automata ß Rectangular Initialized HA Rectangular

More information

Timed Automata. Chapter Clocks and clock constraints Clock variables and clock constraints

Timed Automata. Chapter Clocks and clock constraints Clock variables and clock constraints Chapter 10 Timed Automata In the previous chapter, we have discussed a temporal logic where time was a discrete entities. A time unit was one application of the transition relation of an LTS. We could

More information

Bounded Model Checking with SAT/SMT. Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39

Bounded Model Checking with SAT/SMT. Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39 Bounded Model Checking with SAT/SMT Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39 Recap: Symbolic Model Checking with BDDs Method used by most industrial strength model checkers:

More information

540 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 4, APRIL Algorithmic Analysis of Nonlinear Hybrid Systems

540 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 4, APRIL Algorithmic Analysis of Nonlinear Hybrid Systems 540 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 4, APRIL 1998 Algorithmic Analysis of Nonlinear Hybrid Systems Thomas A. Henzinger, Pei-Hsin Ho, Howard Wong-Toi Abstract Hybrid systems are digital

More information

Computation Tree Logic (CTL) & Basic Model Checking Algorithms

Computation Tree Logic (CTL) & Basic Model Checking Algorithms Computation Tree Logic (CTL) & Basic Model Checking Algorithms Martin Fränzle Carl von Ossietzky Universität Dpt. of Computing Science Res. Grp. Hybride Systeme Oldenburg, Germany 02917: CTL & Model Checking

More information

Lecture 11: Timed Automata

Lecture 11: Timed Automata Real-Time Systems Lecture 11: Timed Automata 2014-07-01 11 2014-07-01 main Dr. Bernd Westphal Albert-Ludwigs-Universität Freiburg, Germany Contents & Goals Last Lecture: DC (un)decidability This Lecture:

More information

Real-Time Systems. Lecture 10: Timed Automata Dr. Bernd Westphal. Albert-Ludwigs-Universität Freiburg, Germany main

Real-Time Systems. Lecture 10: Timed Automata Dr. Bernd Westphal. Albert-Ludwigs-Universität Freiburg, Germany main Real-Time Systems Lecture 10: Timed Automata 2013-06-04 10 2013-06-04 main Dr. Bernd Westphal Albert-Ludwigs-Universität Freiburg, Germany Contents & Goals Last Lecture: PLC, PLC automata This Lecture:

More information

T Reactive Systems: Temporal Logic LTL

T Reactive Systems: Temporal Logic LTL Tik-79.186 Reactive Systems 1 T-79.186 Reactive Systems: Temporal Logic LTL Spring 2005, Lecture 4 January 31, 2005 Tik-79.186 Reactive Systems 2 Temporal Logics Temporal logics are currently the most

More information

for System Modeling, Analysis, and Optimization

for System Modeling, Analysis, and Optimization Fundamental Algorithms for System Modeling, Analysis, and Optimization Stavros Tripakis UC Berkeley EECS 144/244 Fall 2013 Copyright 2013, E. A. Lee, J. Roydhowdhury, S. A. Seshia, S. Tripakis All rights

More information

Discrete abstractions of hybrid systems for verification

Discrete abstractions of hybrid systems for verification Discrete abstractions of hybrid systems for verification George J. Pappas Departments of ESE and CIS University of Pennsylvania pappasg@ee.upenn.edu http://www.seas.upenn.edu/~pappasg DISC Summer School

More information

Time and Timed Petri Nets

Time and Timed Petri Nets Time and Timed Petri Nets Serge Haddad LSV ENS Cachan & CNRS & INRIA haddad@lsv.ens-cachan.fr DISC 11, June 9th 2011 1 Time and Petri Nets 2 Timed Models 3 Expressiveness 4 Analysis 1/36 Outline 1 Time

More information

Time(d) Petri Net. Serge Haddad. Petri Nets 2016, June 20th LSV ENS Cachan, Université Paris-Saclay & CNRS & INRIA

Time(d) Petri Net. Serge Haddad. Petri Nets 2016, June 20th LSV ENS Cachan, Université Paris-Saclay & CNRS & INRIA Time(d) Petri Net Serge Haddad LSV ENS Cachan, Université Paris-Saclay & CNRS & INRIA haddad@lsv.ens-cachan.fr Petri Nets 2016, June 20th 2016 1 Time and Petri Nets 2 Time Petri Net: Syntax and Semantic

More information

Alan Bundy. Automated Reasoning LTL Model Checking

Alan Bundy. Automated Reasoning LTL Model Checking Automated Reasoning LTL Model Checking Alan Bundy Lecture 9, page 1 Introduction So far we have looked at theorem proving Powerful, especially where good sets of rewrite rules or decision procedures have

More information

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford Probabilistic Model Checking Michaelmas Term 2011 Dr. Dave Parker Department of Computer Science University of Oxford Overview Temporal logic Non-probabilistic temporal logic CTL Probabilistic temporal

More information

Automata-Theoretic Model Checking of Reactive Systems

Automata-Theoretic Model Checking of Reactive Systems Automata-Theoretic Model Checking of Reactive Systems Radu Iosif Verimag/CNRS (Grenoble, France) Thanks to Tom Henzinger (IST, Austria), Barbara Jobstmann (CNRS, Grenoble) and Doron Peled (Bar-Ilan University,

More information

Timo Latvala. February 4, 2004

Timo Latvala. February 4, 2004 Reactive Systems: Temporal Logic LT L Timo Latvala February 4, 2004 Reactive Systems: Temporal Logic LT L 8-1 Temporal Logics Temporal logics are currently the most widely used specification formalism

More information

Modelling Real-Time Systems. Henrik Ejersbo Jensen Aalborg University

Modelling Real-Time Systems. Henrik Ejersbo Jensen Aalborg University Modelling Real-Time Systems Henrik Ejersbo Jensen Aalborg University Hybrid & Real Time Systems Control Theory Plant Continuous sensors actuators Task TaskTask Controller Program Discrete Computer Science

More information

Modal and Temporal Logics

Modal and Temporal Logics Modal and Temporal Logics Colin Stirling School of Informatics University of Edinburgh July 26, 2003 Computational Properties 1 Satisfiability Problem: Given a modal µ-calculus formula Φ, is Φ satisfiable?

More information

Reasoning about Strategies: From module checking to strategy logic

Reasoning about Strategies: From module checking to strategy logic Reasoning about Strategies: From module checking to strategy logic based on joint works with Fabio Mogavero, Giuseppe Perelli, Luigi Sauro, and Moshe Y. Vardi Luxembourg September 23, 2013 Reasoning about

More information

Synthesis weakness of standard approach. Rational Synthesis

Synthesis weakness of standard approach. Rational Synthesis 1 Synthesis weakness of standard approach Rational Synthesis 3 Overview Introduction to formal verification Reactive systems Verification Synthesis Introduction to Formal Verification of Reactive Systems

More information

Control Synthesis of Discrete Manufacturing Systems using Timed Finite Automata

Control Synthesis of Discrete Manufacturing Systems using Timed Finite Automata Control Synthesis of Discrete Manufacturing Systems using Timed Finite utomata JROSLV FOGEL Institute of Informatics Slovak cademy of Sciences ratislav Dúbravská 9, SLOVK REPULIC bstract: - n application

More information

Relational Interfaces and Refinement Calculus for Compositional System Reasoning

Relational Interfaces and Refinement Calculus for Compositional System Reasoning Relational Interfaces and Refinement Calculus for Compositional System Reasoning Viorel Preoteasa Joint work with Stavros Tripakis and Iulia Dragomir 1 Overview Motivation General refinement Relational

More information

ESE601: Hybrid Systems. Introduction to verification

ESE601: Hybrid Systems. Introduction to verification ESE601: Hybrid Systems Introduction to verification Spring 2006 Suggested reading material Papers (R14) - (R16) on the website. The book Model checking by Clarke, Grumberg and Peled. What is verification?

More information

Model Checking. Temporal Logic. Fifth International Symposium in Programming, volume. of concurrent systems in CESAR. In Proceedings of the

Model Checking. Temporal Logic. Fifth International Symposium in Programming, volume. of concurrent systems in CESAR. In Proceedings of the Sérgio Campos, Edmund Why? Advantages: No proofs Fast Counter-examples No problem with partial specifications can easily express many concurrency properties Main Disadvantage: State Explosion Problem Too

More information

Software Verification using Predicate Abstraction and Iterative Refinement: Part 1

Software Verification using Predicate Abstraction and Iterative Refinement: Part 1 using Predicate Abstraction and Iterative Refinement: Part 1 15-414 Bug Catching: Automated Program Verification and Testing Sagar Chaki November 28, 2011 Outline Overview of Model Checking Creating Models

More information

Preface. Motivation and Objectives

Preface. Motivation and Objectives Preface Motivation and Objectives In control theory, complex models of physical processes, such as systems of differential or difference equations, are usually checked against simple specifications, such

More information

Automata, Logic and Games: Theory and Application

Automata, Logic and Games: Theory and Application Automata, Logic and Games: Theory and Application 1. Büchi Automata and S1S Luke Ong University of Oxford TACL Summer School University of Salerno, 14-19 June 2015 Luke Ong Büchi Automata & S1S 14-19 June

More information

Parameter Synthesis for Timed Kripke Structures

Parameter Synthesis for Timed Kripke Structures Parameter Synthesis for Timed Kripke Structures Extended Abstract Micha l Knapik 1 and Wojciech Penczek 1,2 1 Institute of Computer Science, PAS, Warsaw, Poland 2 University of Natural Sciences and Humanities,

More information

Complexity Issues in Automated Addition of Time-Bounded Liveness Properties 1

Complexity Issues in Automated Addition of Time-Bounded Liveness Properties 1 Complexity Issues in Automated Addition of Time-Bounded Liveness Properties 1 Borzoo Bonakdarpour and Sandeep S. Kulkarni Software Engineering and Network Systems Laboratory, Department of Computer Science

More information

APPROXIMATE SIMULATION RELATIONS FOR HYBRID SYSTEMS 1. Antoine Girard A. Agung Julius George J. Pappas

APPROXIMATE SIMULATION RELATIONS FOR HYBRID SYSTEMS 1. Antoine Girard A. Agung Julius George J. Pappas APPROXIMATE SIMULATION RELATIONS FOR HYBRID SYSTEMS 1 Antoine Girard A. Agung Julius George J. Pappas Department of Electrical and Systems Engineering University of Pennsylvania Philadelphia, PA 1914 {agirard,agung,pappasg}@seas.upenn.edu

More information

Testing System Conformance for Cyber-Physical Systems

Testing System Conformance for Cyber-Physical Systems Testing System Conformance for Cyber-Physical Systems Testing systems by walking the dog Rupak Majumdar Max Planck Institute for Software Systems Joint work with Vinayak Prabhu (MPI-SWS) and Jyo Deshmukh

More information

ONR MURI AIRFOILS: Animal Inspired Robust Flight with Outer and Inner Loop Strategies. Calin Belta

ONR MURI AIRFOILS: Animal Inspired Robust Flight with Outer and Inner Loop Strategies. Calin Belta ONR MURI AIRFOILS: Animal Inspired Robust Flight with Outer and Inner Loop Strategies Provable safety for animal inspired agile flight Calin Belta Hybrid and Networked Systems (HyNeSs) Lab Department of

More information

Interchange Semantics For Hybrid System Models

Interchange Semantics For Hybrid System Models Interchange Semantics For Hybrid System Models Alessandro Pinto 1, Luca P. Carloni 2, Roberto Passerone 3 and Alberto Sangiovanni-Vincentelli 1 1 University of California at Berkeley apinto,alberto@eecs.berkeley.edu

More information

Formal Verification. Lecture 1: Introduction to Model Checking and Temporal Logic¹

Formal Verification. Lecture 1: Introduction to Model Checking and Temporal Logic¹ Formal Verification Lecture 1: Introduction to Model Checking and Temporal Logic¹ Jacques Fleuriot jdf@inf.ed.ac.uk ¹Acknowledgement: Adapted from original material by Paul Jackson, including some additions

More information

Algorithmic Verification of Stability of Hybrid Systems

Algorithmic Verification of Stability of Hybrid Systems Algorithmic Verification of Stability of Hybrid Systems Pavithra Prabhakar Kansas State University University of Kansas February 24, 2017 1 Cyber-Physical Systems (CPS) Systems in which software "cyber"

More information

Timed Automata. Semantics, Algorithms and Tools. Zhou Huaiyang

Timed Automata. Semantics, Algorithms and Tools. Zhou Huaiyang Timed Automata Semantics, Algorithms and Tools Zhou Huaiyang Agenda } Introduction } Timed Automata } Formal Syntax } Operational Semantics } Verification Problems } Symbolic Semantics & Verification }

More information

From Monadic Second-Order Definable String Transformations to Transducers

From Monadic Second-Order Definable String Transformations to Transducers From Monadic Second-Order Definable String Transformations to Transducers Rajeev Alur 1 Antoine Durand-Gasselin 2 Ashutosh Trivedi 3 1 University of Pennsylvania 2 LIAFA, Université Paris Diderot 3 Indian

More information

Abstraction-based synthesis: Challenges and victories

Abstraction-based synthesis: Challenges and victories Abstraction-based synthesis: Challenges and victories Majid Zamani Hybrid Control Systems Group Electrical Engineering Department Technische Universität München December 14, 2015 Majid Zamani (TU München)

More information

Overview. Discrete Event Systems Verification of Finite Automata. What can finite automata be used for? What can finite automata be used for?

Overview. Discrete Event Systems Verification of Finite Automata. What can finite automata be used for? What can finite automata be used for? Computer Engineering and Networks Overview Discrete Event Systems Verification of Finite Automata Lothar Thiele Introduction Binary Decision Diagrams Representation of Boolean Functions Comparing two circuits

More information

Lecture 16: Computation Tree Logic (CTL)

Lecture 16: Computation Tree Logic (CTL) Lecture 16: Computation Tree Logic (CTL) 1 Programme for the upcoming lectures Introducing CTL Basic Algorithms for CTL CTL and Fairness; computing strongly connected components Basic Decision Diagrams

More information

The State Explosion Problem

The State Explosion Problem The State Explosion Problem Martin Kot August 16, 2003 1 Introduction One from main approaches to checking correctness of a concurrent system are state space methods. They are suitable for automatic analysis

More information

Communication in Petri nets

Communication in Petri nets Communication in Petri nets Kamal Lodaya work in progress with Ramchandra Phawade The Institute of Mathematical Sciences, Chennai February 2010 Petri nets - introduction Mathematical model. Widely used

More information

Topics in Verification AZADEH FARZAN FALL 2017

Topics in Verification AZADEH FARZAN FALL 2017 Topics in Verification AZADEH FARZAN FALL 2017 Last time LTL Syntax ϕ ::= true a ϕ 1 ϕ 2 ϕ ϕ ϕ 1 U ϕ 2 a AP. ϕ def = trueu ϕ ϕ def = ϕ g intuitive meaning of and is obt Limitations of LTL pay pay τ τ soda

More information

Towards a Mechanised Denotational Semantics for Modelica

Towards a Mechanised Denotational Semantics for Modelica Towards a Mechanised Denotational Semantics for Modelica Simon Foster Bernhard Thiele Jim Woodcock Peter Fritzson Department of Computer Science, University of York PELAB, Linköping University 3rd February

More information

Linear Time Logic Control of Discrete-Time Linear Systems

Linear Time Logic Control of Discrete-Time Linear Systems University of Pennsylvania ScholarlyCommons Departmental Papers (ESE) Department of Electrical & Systems Engineering December 2006 Linear Time Logic Control of Discrete-Time Linear Systems Paulo Tabuada

More information

DES. 4. Petri Nets. Introduction. Different Classes of Petri Net. Petri net properties. Analysis of Petri net models

DES. 4. Petri Nets. Introduction. Different Classes of Petri Net. Petri net properties. Analysis of Petri net models 4. Petri Nets Introduction Different Classes of Petri Net Petri net properties Analysis of Petri net models 1 Petri Nets C.A Petri, TU Darmstadt, 1962 A mathematical and graphical modeling method. Describe

More information

An Algebra of Hybrid Systems

An Algebra of Hybrid Systems Peter Höfner University of Augsburg August 22, 2008 The University of Queensland, August 2008 1 c Peter Höfner Hybrid Systems Definition hybrid systems are heterogeneous systems characterised by the interaction

More information

An Introduction to Temporal Logics

An Introduction to Temporal Logics An Introduction to Temporal Logics c 2001,2004 M. Lawford Outline Motivation: Dining Philosophers Safety, Liveness, Fairness & Justice Kripke structures, LTS, SELTS, and Paths Linear Temporal Logic Branching

More information

Failure Diagnosis of Discrete-Time Stochastic Systems subject to Temporal Logic Correctness Requirements

Failure Diagnosis of Discrete-Time Stochastic Systems subject to Temporal Logic Correctness Requirements Failure Diagnosis of Discrete-Time Stochastic Systems subject to Temporal Logic Correctness Requirements Jun Chen, Student Member, IEEE and Ratnesh Kumar, Fellow, IEEE Dept. of Elec. & Comp. Eng., Iowa

More information

Complexity Issues in Automated Addition of Time-Bounded Liveness Properties 1

Complexity Issues in Automated Addition of Time-Bounded Liveness Properties 1 Complexity Issues in Automated Addition of Time-Bounded Liveness Properties 1 Borzoo Bonakdarpour and Sandeep S. Kulkarni Software Engineering and Network Systems Laboratory, Department of Computer Science

More information

7. F.Balarin and A.Sangiovanni-Vincentelli, A Verication Strategy for Timing-

7. F.Balarin and A.Sangiovanni-Vincentelli, A Verication Strategy for Timing- 7. F.Balarin and A.Sangiovanni-Vincentelli, A Verication Strategy for Timing- Constrained Systems, Proc. 4th Workshop Computer-Aided Verication, Lecture Notes in Computer Science 663, Springer-Verlag,

More information

TIMED automata, introduced by Alur and Dill in [3], have

TIMED automata, introduced by Alur and Dill in [3], have 1 Language Inclusion Checking of Timed Automata with Non-Zenoness Xinyu Wang, Jun Sun, Ting Wang, and Shengchao Qin Abstract Given a timed automaton P modeling an implementation and a timed automaton S

More information

Semantic Equivalences and the. Verification of Infinite-State Systems 1 c 2004 Richard Mayr

Semantic Equivalences and the. Verification of Infinite-State Systems 1 c 2004 Richard Mayr Semantic Equivalences and the Verification of Infinite-State Systems Richard Mayr Department of Computer Science Albert-Ludwigs-University Freiburg Germany Verification of Infinite-State Systems 1 c 2004

More information

Pushdown timed automata:a binary reachability characterization and safety verication

Pushdown timed automata:a binary reachability characterization and safety verication Theoretical Computer Science 302 (2003) 93 121 www.elsevier.com/locate/tcs Pushdown timed automata:a binary reachability characterization and safety verication Zhe Dang School of Electrical Engineering

More information

Verification of Linear Duration Invariants by Model Checking CTL Properties

Verification of Linear Duration Invariants by Model Checking CTL Properties UNU-IIST International Institute for Software Technology Verification of Linear Duration Invariants by Model Checking CTL Properties Miaomiao Zhang, Dang Van Hung and Zhiming Liu June 2008 UNU-IIST Report

More information

Modeling and Analysis of Hybrid Systems

Modeling and Analysis of Hybrid Systems Modeling and Analysis of Hybrid Systems Algorithmic analysis for linear hybrid systems Prof. Dr. Erika Ábrahám Informatik 2 - Theory of Hybrid Systems RWTH Aachen University SS 2015 Ábrahám - Hybrid Systems

More information

Hybrid Automata. Lecturer: Tiziano Villa 1. Università di Verona

Hybrid Automata. Lecturer: Tiziano Villa 1. Università di Verona Hybrid Automata Lecturer: Tiziano Villa 1 1 Dipartimento d Informatica Università di Verona tiziano.villa@univr.it Thanks to Carla Piazza, Dipartimento di Matematica ed Informatica, Università di Udine

More information

Learning Goals of CS245 Logic and Computation

Learning Goals of CS245 Logic and Computation Learning Goals of CS245 Logic and Computation Alice Gao April 27, 2018 Contents 1 Propositional Logic 2 2 Predicate Logic 4 3 Program Verification 6 4 Undecidability 7 1 1 Propositional Logic Introduction

More information

Infinite Games. Sumit Nain. 28 January Slides Credit: Barbara Jobstmann (CNRS/Verimag) Department of Computer Science Rice University

Infinite Games. Sumit Nain. 28 January Slides Credit: Barbara Jobstmann (CNRS/Verimag) Department of Computer Science Rice University Infinite Games Sumit Nain Department of Computer Science Rice University 28 January 2013 Slides Credit: Barbara Jobstmann (CNRS/Verimag) Motivation Abstract games are of fundamental importance in mathematics

More information

State-Space Exploration. Stavros Tripakis University of California, Berkeley

State-Space Exploration. Stavros Tripakis University of California, Berkeley EE 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2014 State-Space Exploration Stavros Tripakis University of California, Berkeley Stavros Tripakis (UC Berkeley) EE

More information

Finite-State Model Checking

Finite-State Model Checking EECS 219C: Computer-Aided Verification Intro. to Model Checking: Models and Properties Sanjit A. Seshia EECS, UC Berkeley Finite-State Model Checking G(p X q) Temporal logic q p FSM Model Checker Yes,

More information

Computer-Aided Program Design

Computer-Aided Program Design Computer-Aided Program Design Spring 2015, Rice University Unit 3 Swarat Chaudhuri February 5, 2015 Temporal logic Propositional logic is a good language for describing properties of program states. However,

More information

Robust Controller Synthesis in Timed Automata

Robust Controller Synthesis in Timed Automata Robust Controller Synthesis in Timed Automata Ocan Sankur LSV, ENS Cachan & CNRS Joint with Patricia Bouyer, Nicolas Markey, Pierre-Alain Reynier. Ocan Sankur (ENS Cachan) Robust Control in Timed Automata

More information

CS 208: Automata Theory and Logic

CS 208: Automata Theory and Logic CS 208: Automata Theory and Logic b a a start A x(la(x) y.(x < y) L b (y)) B b Department of Computer Science and Engineering, Indian Institute of Technology Bombay. 1 of 19 Logistics Course Web-page:

More information

Liveness in L/U-Parametric Timed Automata

Liveness in L/U-Parametric Timed Automata Liveness in L/U-Parametric Timed Automata Étienne André and Didier Lime [AL17] Université Paris 13, LIPN and École Centrale de Nantes, LS2N Highlights, 14 September 2017, London, England Étienne André

More information

From games to executables!

From games to executables! From games to executables! Implementations of strategies generated from UPPAAL TIGA by Kenneth Blanner Holleufer and Jesper Brix Rosenkilde THESIS for the degree of MASTER OF SCIENCE (Master of computer

More information

A Decidable Class of Planar Linear Hybrid Systems

A Decidable Class of Planar Linear Hybrid Systems A Decidable Class of Planar Linear Hybrid Systems Pavithra Prabhakar, Vladimeros Vladimerou, Mahesh Viswanathan, and Geir E. Dullerud University of Illinois at Urbana-Champaign. Abstract. The paper shows

More information

Towards Co-Engineering Communicating Autonomous Cyber-physical Systems. Bujorianu, M.C. and Bujorianu, M.L. MIMS EPrint:

Towards Co-Engineering Communicating Autonomous Cyber-physical Systems. Bujorianu, M.C. and Bujorianu, M.L. MIMS EPrint: Towards Co-Engineering Communicating Autonomous Cyber-physical Systems Bujorianu M.C. and Bujorianu M.L. 009 MIMS EPrint: 00.53 Manchester Institute for Mathematical Sciences School of Mathematics The

More information

Software Verification with Abstraction-Based Methods

Software Verification with Abstraction-Based Methods Software Verification with Abstraction-Based Methods Ákos Hajdu PhD student Department of Measurement and Information Systems, Budapest University of Technology and Economics MTA-BME Lendület Cyber-Physical

More information

arxiv: v1 [cs.fl] 25 Nov 2018

arxiv: v1 [cs.fl] 25 Nov 2018 Real-Time Systems Modeling and Analysis Lakhan Shiva Kamireddy [0000 0001 6007 5408] University of Colorado, Boulder CO 80302, USA {lakhan.kamireddy}@colorado.edu arxiv:1811.10083v1 [cs.fl] 25 Nov 2018

More information

Unbounded, Fully Symbolic Model Checking of Timed Automata using Boolean Methods

Unbounded, Fully Symbolic Model Checking of Timed Automata using Boolean Methods Unbounded, Fully Symbolic Model Checking of Timed Automata using Boolean Methods Sanjit A. Seshia and Randal E. Bryant Computer Science Department Carnegie Mellon University Verifying Timed Embedded Systems

More information

Verification of temporal properties on hybrid automata by simulation relations

Verification of temporal properties on hybrid automata by simulation relations Proceedings of the 46th IEEE Conference on Decision and Control New Orleans, LA, USA, Dec. 2-4, 2007 Verification of temporal properties on hybrid automata by simulation relations A. D Innocenzo, A.A.

More information

Logic Model Checking

Logic Model Checking Logic Model Checking Lecture Notes 10:18 Caltech 101b.2 January-March 2004 Course Text: The Spin Model Checker: Primer and Reference Manual Addison-Wesley 2003, ISBN 0-321-22862-6, 608 pgs. the assignment

More information

CS256/Winter 2009 Lecture #1. Zohar Manna. Instructor: Zohar Manna Office hours: by appointment

CS256/Winter 2009 Lecture #1. Zohar Manna. Instructor: Zohar Manna   Office hours: by appointment CS256/Winter 2009 Lecture #1 Zohar Manna FORMAL METHODS FOR REACTIVE SYSTEMS Instructor: Zohar Manna Email: manna@cs.stanford.edu Office hours: by appointment TA: Boyu Wang Email: wangboyu@stanford.edu

More information

Modal logics and their semantics

Modal logics and their semantics Modal logics and their semantics Joshua Sack Department of Mathematics and Statistics, California State University Long Beach California State University Dominguez Hills Feb 22, 2012 Relational structures

More information

FORMAL METHODS LECTURE III: LINEAR TEMPORAL LOGIC

FORMAL METHODS LECTURE III: LINEAR TEMPORAL LOGIC Alessandro Artale (FM First Semester 2007/2008) p. 1/39 FORMAL METHODS LECTURE III: LINEAR TEMPORAL LOGIC Alessandro Artale Faculty of Computer Science Free University of Bolzano artale@inf.unibz.it http://www.inf.unibz.it/

More information

Reversal-Bounded Counter Machines

Reversal-Bounded Counter Machines Reversal-Bounded Counter Machines Stéphane Demri LSV, CNRS, ENS Cachan Workshop on Logics for Resource-Bounded Agents, Barcelona, August 2015 Overview Presburger Counter Machines Reversal-Bounded Counter

More information

Overview of Topics. Finite Model Theory. Finite Model Theory. Connections to Database Theory. Qing Wang

Overview of Topics. Finite Model Theory. Finite Model Theory. Connections to Database Theory. Qing Wang Overview of Topics Finite Model Theory Part 1: Introduction 1 What is finite model theory? 2 Connections to some areas in CS Qing Wang qing.wang@anu.edu.au Database theory Complexity theory 3 Basic definitions

More information

On simulations and bisimulations of general flow systems

On simulations and bisimulations of general flow systems On simulations and bisimulations of general flow systems Jen Davoren Department of Electrical & Electronic Engineering The University of Melbourne, AUSTRALIA and Paulo Tabuada Department of Electrical

More information

Logics for Hybrid Systems

Logics for Hybrid Systems Logics for Hybrid Systems J. M. DAVOREN, MEMBER, IEEE, AND ANIL NERODE, MEMBER, IEEE Invited Paper Hybrid systems are heterogenous dynamical systems characterized by interacting continuous discrete dynamics.

More information

CS477 Formal Software Dev Methods

CS477 Formal Software Dev Methods CS477 Formal Software Dev Methods Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu http://courses.engr.illinois.edu/cs477 Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

More information

MODEL CHECKING TIMED SAFETY INSTRUMENTED SYSTEMS

MODEL CHECKING TIMED SAFETY INSTRUMENTED SYSTEMS TKK Reports in Information and Computer Science Espoo 2008 TKK-ICS-R3 MODEL CHECKING TIMED SAFETY INSTRUMENTED SYSTEMS Jussi Lahtinen ABTEKNILLINEN KORKEAKOULU TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF

More information

Alternating Time Temporal Logics*

Alternating Time Temporal Logics* Alternating Time Temporal Logics* Sophie Pinchinat Visiting Research Fellow at RSISE Marie Curie Outgoing International Fellowship * @article{alur2002, title={alternating-time Temporal Logic}, author={alur,

More information

Flat counter automata almost everywhere!

Flat counter automata almost everywhere! Flat counter automata almost everywhere! Jérôme Leroux and Grégoire Sutre Projet Vertecs, IRISA / INRIA Rennes, FRANCE Équipe MVTsi, CNRS / LABRI, FRANCE Counter-automata verification A simple counter-automata:

More information

Verification of Polynomial Interrupt Timed Automata

Verification of Polynomial Interrupt Timed Automata Verification of Polynomial Interrupt Timed Automata Béatrice Bérard 1, Serge Haddad 2, Claudine Picaronny 2, Mohab Safey El Din 1, Mathieu Sassolas 3 1 Université P. & M. Curie, LIP6 2 ENS Cachan, LSV

More information

Visibly Linear Dynamic Logic

Visibly Linear Dynamic Logic Visibly Linear Dynamic Logic Joint work with Alexander Weinert (Saarland University) Martin Zimmermann Saarland University September 8th, 2016 Highlights Conference, Brussels, Belgium Martin Zimmermann

More information

Formal Verification Techniques. Riccardo Sisto, Politecnico di Torino

Formal Verification Techniques. Riccardo Sisto, Politecnico di Torino Formal Verification Techniques Riccardo Sisto, Politecnico di Torino State exploration State Exploration and Theorem Proving Exhaustive exploration => result is certain (correctness or noncorrectness proof)

More information

Modeling & Control of Hybrid Systems. Chapter 7 Model Checking and Timed Automata

Modeling & Control of Hybrid Systems. Chapter 7 Model Checking and Timed Automata Modeling & Control of Hybrid Systems Chapter 7 Model Checking and Timed Automata Overview 1. Introduction 2. Transition systems 3. Bisimulation 4. Timed automata hs check.1 1. Introduction Model checking

More information

Temporal Logic of Actions

Temporal Logic of Actions Advanced Topics in Distributed Computing Dominik Grewe Saarland University March 20, 2008 Outline Basic Concepts Transition Systems Temporal Operators Fairness Introduction Definitions Example TLC - A

More information

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège Temporal logics and explicit-state model checking Pierre Wolper Université de Liège 1 Topics to be covered Introducing explicit-state model checking Finite automata on infinite words Temporal Logics and

More information