STABILITY OF DGC S QUADRATIC FUNCTIONAL EQUATION IN QUASI-BANACH ALGEBRAS: DIRECT AND FIXED POINT METHODS

Size: px
Start display at page:

Download "STABILITY OF DGC S QUADRATIC FUNCTIONAL EQUATION IN QUASI-BANACH ALGEBRAS: DIRECT AND FIXED POINT METHODS"

Transcription

1 Internatonal Journal of Pure and ppled Mathematcal Scence. ISSN Volume 0, Number (07), pp Reearch Inda Publcaton STILITY OF DGC S QUDRTIC FUNCTIONL EQUTION IN QUSI-NCH LGERS: DIRECT ND FIXED POINT METHODS John M. Raa, M. runumar and S. Kartheyan 3* Pedagogcal Department E.E., Secton of Mathematc and Informatc, Natonal and Capodtran Unverty of then, 4, gamemnono Str., gha Paraev, then 534, Greece. E-mal: jraa@prmedu.uoa.gr, URL: Department of Mathematc, Government rt College, Truvannamala , TamlNadu, Inda. E-mal: annarun00@yahoo.co.n 3* Department of Mathematc, R.M.K. Engneerng College, Kavarapetta , Taml Nadu, Inda. E-mal:arth.ma04@yahoo.com STRCT In th paper, we obtan the general oluton and the generalzed Ulam-Hyer tablty of Degen-Grave-Cayley -Eght Square (DGC ) quadratc functonal equaton of the form 8 8 = = f ( x ) f ( y ) = f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y

2 4 John M. Raa, M. runumar and S. Kartheyan n qua-anach algebra ung drect and fxed pont method. 00 Mathematc Subject Clafcaton: 395, 37, 38. Key word and phrae: quadratc functonal equaton, generalzed Ulam-Hyer tablty, qua-anach algebra, fxed pont.. Introducton The tablty problem of a functonal equaton wa frt poed by Ulam [4] concernng the tablty of group homomorphm whch wa anwered by Hyer [] for anach pace. Hyer theorem wa generalzed by T. o [] for addtve mappng and by Th.M. Raa [36] for lnear mappng by conderng an unbounded Cauchy dfference. The paper of Th.M. Raa [36] ha provded a lot of nfluence n the development of what we call generalzed Hyer-Ulam tablty of functonal equaton. generalzaton of the Th.M. Raa theorem wa obtaned by P. Gavruta [8] by replacng the unbounded Cauchy dfference by a general control functon n the prt of Raa approach. In 98, J.M. Raa [3] followed the nnovatve approach of the Th.M. Raa theorem [36] n whch he replaced the p p p q factor x y by x y for p, q wth p q. In 994, the above tablty reult were further extended by P. P. G a vruta [8] who condered a more general control functon n the real varable y for the unbounded Cauchy dfference n the prt of Th.M. Raa tablty approach. In 008, a pecal cae of G a vruta theorem for the unbounded Cauchy dfference wa obtaned n [37] by condereng the ummaton of both the um and product of two p norm. The quadratc functon f ( x) = cx atfe the functonal equaton f ( x y) f ( x y) = f ( x) f ( y) (.) and therefore the equaton () called quadratc functonal equaton. In 04, M. runumar and S. Kartheyan [4] ntroduced and nvetgated the Ulam-Hyer tablty of rahmagupta quadratc functonal equaton f ( x ) nf ( x ) f ( x ) nf ( x ) f x x nx x nf x x x x (.) 3 4 = on non-rchmedean anach algebra ung drect and fxed pont method. 3 In 05, John M. Raa, M. runumar and S. Kartheyan [33] ntroduced and proved the generalzed Ulam-Hyer tablty of Lagrange quadratc functonal equaton 4 4 3

3 Stablty Of Dgc Quadratc Functonal Equaton In Qua-anach 43 n = n n f ( x ) f ( y ) = f x y f x y j x j y (.3) = = < jn where n a potve nteger n Le method. * C -algebra ung drect and fxed pont Recently, John M. Raa, M. runumar and S. Kartheyan [34] obtan the general oluton and the generalzed Ulam-Hyer tablty of Euler quadratc functonal equaton of the form 4 4 f ( x) f ( y) = f x y x y x3 y3 x4 y4 f x y xy x3y4 x4y3 = = (.4) f x y x y x y x y f x y x y x y x y * n JC -algebra ung drect and fxed pont method. n applcaton of th functonal equaton alo tuded. In th paper, we obtan the general oluton and the generalzed Ulam-Hyer tablty of Degen-Grave-Cayley -Eght Square (DGC ) quadratc functonal equaton of the form 8 8 = = f ( x ) f ( y ) = f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y (.5) n qua-anach algebra ung drect and fxed pont method.. Prelmnare We now gve ome bac defnton concernng qua-anach pace and ome prelmnary reult. Defnton. Let X be a real lnear pace. qua-norm a real-valued functon on X atfyng the followng:

4 44 John M. Raa, M. runumar and S. Kartheyan () x > 0 x X and x = 0 f and only f x = 0. () x =. x and x X. (3) There a contant K uch that x y K x y y X. The par,. called a qua-normed pace f. a qua norm on X. The mallet poble K called the modulu of concavty of.. qua-anach pace a complete qua-normed pace. Defnton. all qua-norm. called a p -norm (0 < p ) f p x y x y for y X. In th cae, a qua-anach pace called a p -anach pace. p p Gven a p -norm, the formula p d( y) := x y gve u a tranlaton nvarant metrc on X. y the o-rolewcz theorem [38] (ee alo [8]), each quanorm equvalent to ome p -norm. Snce t much eaer to wor wth p -norm than qua-norm, henceforth we retrct our attenton manly to p -norm. Defnton.3 Let,. be a qua-normed pace. The qua-normed pace,. called a qua-normed algebra f an algebra and there a contant C > 0 uch that xy C x y y. Defnton.4 qua-anach algebra a complete qua-normed algebra. If the quanorm. a p -norm, then the qua-anach algebra called a p -anach algebra. ourgn [9] proved the tablty of rng homomorphm n two untal anach algebra. adora [5] gave a generalzaton of the ourgn reult. The tablty reult concernng dervaton on operator algebra wa frt obtaned by Ŝ emrl [39]. In [6], adora proved the tablty of functonal equaton f ( xy) = xf ( y) f ( x) y, where f a mappng on normed algebra wth unt. Defnton.5 Let, be two algebra. mappng f : called a quadratc homomorphm f f a quadratc mappng atfyng f ( xy) = f ( x) f ( y) xy,. For ntance, let be commutatve. Then the mappng f :, defned

5 Stablty Of Dgc Quadratc Functonal Equaton In Qua-anach 45 by f ( x) = x ( x ), a quadratc homomorphm. Defnton.6 mappng f : called a quadratc dervaton f f a quadratc mappng atfyng f ( xy) = x f ( y) f ( x) y, xy. We note that quadratc dervaton and rng dervaton are dfferent. 3 General Soluton of the Functonal Equaton (.5) In th ecton, the author nvetgate the general oluton of the functonal equaton (.5). Through out th ecton, let u conder X and Y be real vector pace. Theorem 3. If the mappng f : X Y atfe the functonal equaton (.5) x, y, x, y,, x y X then f : X Y atfyng the functonal equaton (.) for 8, all y X. 8 Proof. Settng x y = = x = = 0 n (.5), we get 3 = 3 8 y8 f x ) f ( x ) f ( y ) f ( y ) = f ( x y x y ) f ( x y x ) ( y (3.) x, y, x y X. Replacng x, y, x, ) by ( x,0, 0) n (3.), we obtan, x = f ( x) ( y f (3.) x X. Settng x, y, x, ) by ( x,0, y,0) n (3.), we get xf y f x y ( y f = (3.3) y X. Replacng x, y, x, ) by ( x, x) n (3.) and ung (3.) and ung (3.3), we arrve x = f ( x) ( y f (3.4) x X. Lettng x, y, x, ) by ( x,0, 0) n (3.), we obtan ( y f x = f ( x ) x X. It can be rewrtten a f ( x) = f ( x ) (3.5)

6 46 John M. Raa, M. runumar and S. Kartheyan x X. Replacng x by x n (3.5), we get f ( x) = f ( x) an even functon. Settng (( x, y, y) by ( y, y) n () and ung (3.), (3.4), we get xf y = f ( x ) f ( x) f ( y) f y (3.6) y X. Lettng x, y, x, ) by ( x, y, y) n (3.) and ung (3.), (3.3), (3.4), we obtan ( y xf y = f ( x ) f ( x) f ( y) f y (3.7) y X. ddng (3.6) and (3.7), we derve (.) y X. Hence the proof complete. Hereafter throughout th paper, aume that a qua-normed algebra wth qua-norm. and that a p -anach algebra wth p -norm.. For convenence, we defne a mappng f : by 8 8 = = F( y, y,..., x8, y8) f ( x ) f ( y ) f x y x y x y x y x y x y x y x y x, y,, x8, y f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y Stablty of Quadratc Homomorphm and Dervaton of (.5): Drect Method In th ecton, the author preent the generalzed Ulam-Hyer tablty of the functonal equaton (.5). Defnton 4. -lnear mappng H: called a quadratc homomorphm n qua-banach algebra f H xy = HxH y (4.)

7 Stablty Of Dgc Quadratc Functonal Equaton In Qua-anach 47 y. Theorem 4. 6 Let j {,}. Let : [0, ) be a functon uch that x, y,, x, y j j j j 8 8 converge to (4.) j =0 j j x, y,, lm j x, 8 8 and <, j and f : be a mappng atfe the nequalty j y (4.3) F( x, y,, x, y ) x, y,, x, y (4.4) x, y,, x8, y8 and f ( xy) f ( x) f ( y) y,0,0,,0,0 (4.5) xy,. Then there ext a unque quadratc homomorphm H: whch atfe (.5) and j = j, j x f ( x) H( x) (4.6) j 8 x. The mappng H( x ) defned by j f( x) H( x) = lm j (4.7) x. Proof. ume j =. (4.4), we get Replacng, y,, x, ) 8 ( 8 y8 x by x, x, and dvdng by 8 n f( x) f ( x), x (4.8) x. Replacng x by x n (4.8) and dvded by, we have

8 48 John M. Raa, M. runumar and S. Kartheyan f ( 4 x) f (x), x (4.9).8 x. Combnng (4.8) and (4.9), we obtan f ( 4 x) f ( x) 8, x, x (4.0) f ( x by x. Ung nducton on a potve nteger, we obtan that x) f ( x), x (4.).7 =0,.7 =0 x. In order to prove the convergence of the equence m x and dvdng by m n (4.), for any, > 0 x m, we arrve f ( x ), replace.7 =0 m f ( x) f ( x) f ( x) m m m = m m m f ( m m m, ( m).7 m =0, ( m) m m x m x) m x (4.) x. Snce the rght hand de of the nequalty (4.) tend to 0 a m, f ( x) the equence a Cauchy equence. Snce complete, there ext a mappng H: uch that Lettng f( x) H( x) = lm, x. n (4.), we ee that (4.6) hold x. Now, we need to prove H atfe (.5), replacng x, y,, x, ) by ( y,, x8, y8) and dvdng by n (4.4), we arrve ( 8 y8

9 Stablty Of Dgc Quadratc Functonal Equaton In Qua-anach 49 F,,,,,,,, x y x8 y8 x y x8 y8 x, y,, x8, y8. Lettng n the above nequalte, we arrve H x, y,, x, y = Hence H atfe (.5) x, y,, x8, y8. Th how that H quadratc. lo H( x y ) H( x )H( y ) = lm f x y f x f y 4 lm x, y,0,0,,0,0 = 0 4 y. Therefore, H a quadratc homomorphm. In order to prove H unque, let H'( x ) be another quadratc homomorphm atfyng (4.6) and (.5). Then H( x) H'( x) = H( x) H'( x) ( x ) f ( x) f ( x) '( x), ( ).7 =0 0 a x. Hence unque. Thu the mappng H: a unque quadratc homomorphm mappng atfyng (4.6). of the theorem. For j =, we can prove the mlar tablty reult. Th complete the proof The followng corollary an mmedate conequence of Theorem 4. concernng the tablty of (.5). Corollary 4.3 Let and be nonnegatve real number. If a functon f : atfe the nequalty x

10 50 John M. Raa, M. runumar and S. Kartheyan F( x, y,, x, y ) 8 8, 8 x y, =, x y x y = = 8 x y = (4.3) x, y,, x8, y8 and f y f ( x) f ( y), x y, x y, x y x y (4.4) xy,. Then there ext a unque quadratc homomorphm H: uch that, / 6 x, 4; 7 f ( x) H( x) 8 x, ; x, (4.5) x. Defnton 4.4 -lnear mappng D: called a quadratc dervaton n quabanach algebra f xy x y x y D = D D (4.6) xy,. Theorem 4.5

11 Stablty Of Dgc Quadratc Functonal Equaton In Qua-anach 5 6 Let j {,}. Let : [0, ) be a functon uch that x, y,, x, y j j j j 8 8 converge to and (4.7) j =0 j j j j y,, x8, y8 <, lm j and f : be a functon atfe the nequalty (4.8) F( x, y,, x, y ) x, y,, x, y (4.9) x, y,, x8, y8 and f ( xy) x f ( y) f ( x) y y,0,0,,0,0 (4.0) xy,. Then there ext a unque quadratc dervaton D: whch atfe (.5) and j, j x f ( x) H( x) (4.).7 j j = x. The mappng D( x ) defned by j f( x) D( x) = lm j (4.) x. Proof. ume j =. y the ame reaonng a that n the proof of the Theorem 4., there ext a unque quadratc mappng D: atfyng (4.). The mappng j f( x) D: gven by D( x) = lm. It follow from (4.9) that j D( x y ) x D( y ) D( x ) y = f x y x f y f x y lm 4 j lm j x, y,0,0,,0,0 = 0 4 y. Therefore D: a quadratc dervaton atfyng (4.). The followng corollary an mmedate conequence of Theorem 4.5 concernng the tablty of (.5).

12 5 John M. Raa, M. runumar and S. Kartheyan Corollary 4.6 Let and be non-negatve real number. If a functon f : atfe the nequalty F( x, y,, x, y ) 8 8, 8 x y, =, x y x y, = = 8 x y = (4.3) x, y,, x8, y8 and f ( xy) x f ( y) f ( x) y, x y, x y, x y x y (4.4) xy,. Then there ext a unque quadratc dervaton D: uch that ; / 6 x, 4; 7 f ( x) D( x) 8 x, ; x, (4.5) x. 5. Stablty of Quadratc Homomorphm and Quadratc Dervaton of (.5): Fxed Pont Method In th ecton, the author preented the generalzed Ulam-Hyer tablty of the functonal equaton (.5) n qua-anach algebra ung fxed pont method. Now we wll recall the fundamental reult n fxed pont theory.

13 Stablty Of Dgc Quadratc Functonal Equaton In Qua-anach 53 Theorem 5. (anach Contracton Prncple) Let (, d) a non-rchmedean generalzed complete metrc pace and conder a mappng L <. Then, T : whch trctly contractve mappng, that () d( T Ty) Ld( y), y T for ome (Lpchtz contant) () The mappng T ha one and only fxed pont x = T( x ); ()The fxed pont for each gven element n () lm = n T x x, for any tartng pont x ; () One ha the followng etmaton nequalte: n n n (3) d( T x ) d( T T x), n 0, x; L (4) d ( x ) d( x ), x.. L Theorem 5. [3](The alternatve of fxed pont) x globally attractve, that Suppoe that for a complete generalzed metrc pace (, d) and a trctly contractve mappng T : wth Lpchtz contant L. Then, for each gven element x, ether ( ) d( T n T n x) = n 0, or ( ) there ext a natural number n 0 uch that: n n () d( T T x) < n n0 ; () The equence ( T n x) convergent to a fxed pont y of T () n 0 y the unque fxed pont of T n the et Y = { y : d( T y) < }; (v) d( y, y) d( y, Ty) L Theorem 5.3 y Y. 6 Let f : be a mappng for whch there ext a functon : [0, ) wth the condton

14 54 John M. Raa, M. runumar and S. Kartheyan lm ( y,, x8, y8) = 0 (5.) where = f = 0 and = f = uch that the functonal nequalty wth F( x, y,, x, y ) ( x, y,, x, y ) (5.) x, y,, x8, y8 and f ( xy) f ( x) f ( y) y,0,0,,0,0 (5.3) xy,. If there ext L = L( ) < uch that the functon x x x x x ( x) =,,,, 7 (5.4) ha the property ( x) = L (5.5) then there ext a unque quadratc homomorphm H: atfyng the functonal equaton (.5) and L f ( x) H( x) ( x) L (5.6) x. Proof. Conder the et and ntroduce the generalzed metrc on, It eay to ee that (, d) complete. ={ p/ p :, p(0) = 0} d( p, q) = nf{ K (0, ) : p( x) q( x) K ( x), x }. Defne T : by Tp( x) = p( x), x. Now p, q, we have d( p, q) K p( x) q( x) K ( x), x.

15 Stablty Of Dgc Quadratc Functonal Equaton In Qua-anach 55 p( x) q( x) K ( x), x, p( x) q( x) LK ( x), x, Tp( x) Tq( x) LK ( x), x, d( p, q) LK. Th mple d( Tp, Tq) Ld( p, q), p, q..e., T a trctly contractve mappng on wth Lpchtz contant L. (5.), we get Replacng, y,, x, ) ( 8 y8 x by x, x, and dvdng by 8 n f (x) f ( x), x (5.7) 7 x. Hence from the above nequalty, we have f (x) f ( x), x (5.8).7 x. Ung (5.4) and (5.5) for the cae = 0, t reduce to f (x) f ( x) ( x) x.. e., d( f, Tf ) L L <. gan replacng x by x n (5.7), we get x x x x x f ( x) f,,,, 7 (5.9) x. Ung (5.4) and (5.5) for the cae = t reduce to f ( x) x f ( x) x,

16 56 John M. Raa, M. runumar and S. Kartheyan. e., d( f, Tf ) L 0 <. In both cae, we arrve d( f, Tf ) L. Therefore ( ) hold. y ( ), t follow that there ext a fxed pont H of T n uch that H( x) = lm f ( x) (5.0) x. To prove H: quadratc. Replacng x, y,, x, ) by y,, x8, 8 ( 8 y8 x, y n (5.) and dvdng by, t follow from (5.) that F( y,, x8, y8) H( x, y,, x, y ) = lm 8 8 y,, x8, y8 = 0 lm x, y,, x8, y8..e., H atfe the functonal equaton (.5). lo, H( x y ) H( x )H( y ) lm f x y f x f y 4 x,0,,0= 0 lm 4 y y. Therefore, H a quadratc homomorphm. y ( 3), H the unque fxed pont of T n the et ={H : d( f,h) < },H the unque functon uch that f ( x) H( x) K ( x) x and K > 0. Fnally by ( 4), we obtan th mple d( f,h) d( f, Tf ) L

17 Stablty Of Dgc Quadratc Functonal Equaton In Qua-anach 57 whch yeld L d( f,h) L th complete the proof of the theorem. L f ( x) H( x) ( x) L The followng corollary an mmedate conequence of Theorem 5.3 concernng the tablty of (.5). Corollary 5.4 Let f : be a mappng and there ext real number and uch that F( x, y,, x, y ) 8 8, 8 x y, =, x y x y, = = 8 x y = (5.) x, y,, x8, y8 and f y f ( x) f ( y), x y, x y, x y x y (5.) xy,. Then there ext a unque quadratc homomorphm H: uch that

18 58 John M. Raa, M. runumar and S. Kartheyan, / 6 x, 4; 7 f ( x) H( x) 8 x, ; x, (5.3) x. Proof. Settng, 8 = 8 x y = x y, ( x, y,, x8, y8 ) =, x y x y, = = x, y,, x8, y8. Now,, 8, x y ( =,,, 8, 8) x y x y = 8, x y = x y x y, = =

19 Stablty Of Dgc Quadratc Functonal Equaton In Qua-anach 59, 8 ( ) x y, = 8 = (6) x y, = 8 8 (6) 6 6 x y x y, = = Thu, (5.) hold. 0 a 0 a = 0 a 0 a,,,. x x x x ut we have ( x) =,,,, 7 ( x) = L x x. Hence ha the property Now,, 7 6 x, x x x x 7 ( x) =,,,, = 7 8 x, x.

20 60 John M. Raa, M. runumar and S. Kartheyan, 7 ( x), 6 x, 4 7 ( ), x ( ) = = x 8 8, ( x), 8 x ( x). 8 8 x 7 From (5.6), we prove the followng x cae: Cae : If = 0 then Cae : If = then L = 0 f ( x) H( x) ( x) = =. ( ) 7 L = f ( x) H( x) ( x) = =. 7 Cae 3: ( 4)/ L = for < 4 f = 0 ( 4)/ 0 f x x x 6 x ( ) H( ) ( ) =. ( 4)/ 7 Cae 4: L = (4)/ for > 4 f = (4 )/ f x x x 6 x ( ) H( ) ( ) =. (4 )/ 7 Cae 5: 8 L = for < f = (8) 8 ( ) H( ) ( ) =. (8) 8 f x x x 7 x

21 Stablty Of Dgc Quadratc Functonal Equaton In Qua-anach 6 Cae 6: L 8 = for > f = 4 (8 ) 8 ( ) H( ) ( ) =. (8 ) 8 f x x x 7 x Hence the proof complete Theorem 5.5 Let f : be a mappng for whch there ext a functon 6 : [0, ) wth the condton lm ( y,, x8, y8) = 0 (5.4) where = f = 0 and = f = uch that the functonal nequalty wth F( x, y,, x, y ) ( x, y,, x, y ) (5.5) x, y,, x8, y8 and f ( xy) x f ( y) f ( x) y y,0,0,,0,0 (5.6) xy,. If there ext L = L( ) uch that the functon x x x x x ( x) =,,,,, ha the property (5.7) ( x) = L x (5.8) x, then there ext a unque quadratc dervaton D: atfyng the functonal equaton (.5) and L f ( x) D( x) ( x) L (5.9) x. Proof. y the ame reaonng a that n the proof of Theorem 5.3, there ext

22 6 John M. Raa, M. runumar and S. Kartheyan a unque quadratc mappng D: atfyng (5.9). The mappng D: f x gven by D( x) = lm x. It follow from (5.5) that D( x y ) x D( y ) D( x ) y lm f x y x f y f x y 4 lm x, y,0,0,,0,0= 0 4 y. Therefore, D: a quadratc dervaton atfyng. The ret of the proof mlar to that of Theorem 5.3 The followng corollary an mmedate conequence of Theorem 5.5 concernng the tablty of (.5). Corollary 5.6 Let and be non-negatve real number. If a functon f : atfe the nequalty F( x, y,, x, y ) 8 8, 8 x y, =, x y x y, = = 8 x y = (5.0) x, y,, x8, y8 and f ( xy) x f ( y) f ( x) y, x y, x y, x y x y (5.) xy,. Then there ext a unque quadratc dervaton D: uch that

23 Stablty Of Dgc Quadratc Functonal Equaton In Qua-anach 63 ; / 6 x, 4; 7 f ( x) D( x) 8 x, ; x, (5.) x. 6. pplcaton of The Functonal Equaton (.5) Conder the functonal equaton (.5), that Snce 8 8 = = f ( x ) f ( y ) = f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y f x y x y x y x y x y x y x y x y f ( x) = x the oluton of the above functonal equaton, then the above equaton can be wrtten a follow

24 64 John M. Raa, M. runumar and S. Kartheyan 8 8 ( x) ( y) = x y x y x y x y x y x y x y x y = = x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y xy 5 x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y The above dentty called Degen-Grave-Cayley-Eght Square dentty and how that the product of two um of eght quare agan a um of eght quare". REFERENCES [] J. czel and J. Dhombre, Functonal Equaton n Several Varable, Cambrdge Unv, Pre, 989. [] T. o, On the tablty of the lnear tranformaton n anach pace", J. Math. Soc. Japan, (950), [3] M. runumar, S. Jayanth, S. Hemalatha, Soluton Quadratc Dervaton of run -quadratc Functonal Equaton", Internatonal Journal of Mathematcal Scence and Engneerng pplcaton, Vol. 5, No.4, September 0, [4] M. runumar and S. Kartheyan, rahmagupta Quadratc Functonal Equaton Connected wth Homomorphm and Dervaton on Non- rchmedean lgebra: Drect and Fxed Pont Method", Proceedng of the Internatonal Conference on Mathematcal Scence (ICMS-04) Publhed by Elever, ISN: , pp, [5] R. adora, On approxmate rng homomorphm", J. Math. nal. ppl. 76, (00). [6] R. adora, On approxmate dervaton", Math. Inequal. ppl. 9, (006). [7] ae. Y.H, Jun. K. W, on the Hyer-Ulam-Raa tablty of a quadratc functonal equaton", ull.korean.math.soc., 38() (00), [8] enyamn Y. and Lndentrau J, Geometrc Nonlnear Functonal naly", vol., mer. Math. Soc. Colloq. Publ., vol. 48, mer. Math. Soc., Provdence, RI, 000.

25 Stablty Of Dgc Quadratc Functonal Equaton In Qua-anach 65 [9] D.G. ourgn, pproxmately ometrc and multplcatve tranformaton on contnuou functon rng", Due Math. J. 6, (949). [0] P. W. Cholewa, Remar on the tablty of functonal equaton", equatone Mathematcae, vol. 7, no. -, pp , 984. [] S. Czerw, Functonal Equaton and Inequalte n Several Varable, World Scentfc, Rver Edge, NJ, 00. [] I.S. Chang, H.M. Km, On the Hyer-Ulam-Raa tablty of a quadratc functonal equaton", J. Ineq. ppl. Math, 33 (00), -. [3] J. Daz,. Margol, fxed pont theorem of the alternatve for contracton on the generalzed complete metrc pace", ull. m. Math. Soc. 6, (968). [4] M. Ehagh Gordj and M. avand Savadouh, pproxmaton of generalzed homomorphm n qua-anach algebra", 7(), 03 4, 009. [5] M. Ehagh Gordj, Nearly rng homomorphm and nearly rng dervaton on non-rchmedean anach algebra". btr. ppl. nal. 00, rtcle ID (00). [6] M. Ehagh Gordj, H. Khodae, On the generalzed Hyer-Ulam-Raa tablty of quadratc functonal equaton". btr. ppl. nal. 009, rtcle ID (009). [7] M. Ehagh Gordj, H. Khodae, R. Khodabahh, C. Par, Fxed pont and quadratc equaton connected wth homomorphm and dervaton on non- rchmedean algebra". dvance n Dfference Equaton, 0, 0:8. [8] P. G a vruta, generalzaton of the Hyer-Ulam-Raa tablty of approxmately addtve mappng", J. Math. nal. ppl., 84 (994), [9] P. G a vruta, L. G a vruta, new method for the generalzed Hyer-Ulam- Raa tablty". Int. J. Nonlnear nal. ppl. (), -8 (00). [0]. Grabec, The generalzed Hyer-Ulam tablty of a cla of functonal equaton", Publcatone Mathematcae Debrecen, vol. 48, no. 3-4, pp. 7-35, 996. [] D.H. Hyer, On the tablty of the lnear functonal equaton", Proc.Nat. cad.sc.,u.s..,7 (94) -4. [] S.M. Jung, On the Hyer-Ulam tablty of the functonal equaton that have the quadratc property", J. Math. nal. ppl. (998), [3] Pl. Kannappan, Quadratc functonal equaton nner product pace", Reult Math. 7, No.3-4, (995), [4] Lee Jung-Rye, Shn Dong-Yun, Iomorphm nd Dervaton In C*- lgebra", cta Mathematca Scenta 0,3():

26 66 John M. Raa, M. runumar and S. Kartheyan [5] K. Mrmotafaee, Hyer-Ulam tablty of cubc mappng n non- rchmedean normed pace". Kyungpoo Math. J. 50, (00). [6] C. Par and bba Najat, Homomorphm and Dervaton n C*- lgebra", Hndaw Publhng Corporaton btract and ppled naly, Volume 007, rtcle ID 80630, page, do:0.55/007/ [7] C. Par, Homomorphm between Le JC*-algebra and Cauchy-Raa tablty of Le JC*-algebra dervaton", Journal of Le Theory, vol. 5, no., pp , 005. [8] C. Par, J. C.Hou, and S. Q. Oh, Homomorphm between JC*-algebra and Le C*-algebra", cta Mathematca Snca, vol., no. 6, pp , 005. [9] C. Par, Homomorphm between Poon JC*-algebra", ulletn of the razlan Mathematcal Socety, vol. 36, no., pp , 005. [30] V. Radu, The fxed pont alternatve and the tablty of functonal equaton". Fxed Pont Theory 4, 9-96 (003). [3] J.M. Raa, On approxmately of approxmately lnear mappng by lnear mappng", J. Funct. nal. US, 46, (98) [3] J.M. Raa, On approxmately of approxmately lnear mappng by lnear mappng", ull. Sc. Math, 08, (984) [33] J. M. Raa, M. runumar and S. Kartheyan, Lagrange Quadratc Functonal Equaton Connected Wth Homomorphm and Dervaton On Le C*-lgebra: Drect nd Fxed Pont Method", Malaya Journal of Matemat, S(), 8â 4, 05. [34] J. M. Raa, M. runumar and S. Kartheyan, Eulerâ quadratc functonal equaton aocated to JC*-algebra omorphm and JC*-algebra dervaton between JC*-algebra", Global Journal of Pure and ppled Mathematc, (3), , 06. [35] Th. M. Raa, On the tablty of functonal equaton and a problem of Ulam", cta ppl. Math., 6()(000), [36] Th.M. Raa, On the tablty of the lnear mappng n anach pace", Proc.mer.Math. Soc., 7 (978), [37] K. Rav, M. runumar and J.M. Raa, On the Ulam tablty for the orthogonally general Euler-Lagrange type functonal equaton", Internatonal Journal of Mathematcal Scence, utumn 008 Vol.3, no. 08, [38] Rolewcz S, Metrc Lnear Space, PWN-Polh Sc. Publ., Warzawa, Redel, Dordrecht, 984. [39] P. Ŝ emrl, The functonal equaton of multplcatve dervaton upertable on tandard operator algebra", Integral Equ. Oper. Theory 8, 8- (994).

27 Stablty Of Dgc Quadratc Functonal Equaton In Qua-anach 67 [40] F. Sof, Local properte and approxmaton of operator", Rendcont del Semnaro Matematco e Fco d Mlano, vol. 53, pp. 3-9, 983. [4] S.M. Ulam, Problem n Modern Mathematc, Scence Edton, Wley, NewYor, 964.

28 68 John M. Raa, M. runumar and S. Kartheyan

Malaya J. Mat. 2(1)(2014) 49 60

Malaya J. Mat. 2(1)(2014) 49 60 Malaya J. Mat. 2(1)(2014) 49 60 Functonal equaton orgnatng from sum of hgher owers of arthmetc rogresson usng dfference oerator s stable n Banach sace: drect and fxed ont methods M. Arunumar a, and G.

More information

Stability Of n Dimensional Quartic Functional Equation In Felbin s Spaces: Direct and Fixed Point Methods

Stability Of n Dimensional Quartic Functional Equation In Felbin s Spaces: Direct and Fixed Point Methods Malaya J. Mat. 5((207 58 7 Stablty Of n Dmensonal Quartc Functonal Equaton In Felbn s Spaces: Drect and Fxed Pont Methods M. Arunkumar, a S. Karthkeyan b and S. Ramamoorth c a Department of Mathematcs,

More information

General viscosity iterative method for a sequence of quasi-nonexpansive mappings

General viscosity iterative method for a sequence of quasi-nonexpansive mappings Avalable onlne at www.tjnsa.com J. Nonlnear Sc. Appl. 9 (2016), 5672 5682 Research Artcle General vscosty teratve method for a sequence of quas-nonexpansve mappngs Cuje Zhang, Ynan Wang College of Scence,

More information

Weak McCoy Ore Extensions

Weak McCoy Ore Extensions Internatonal Mathematcal Forum, Vol. 6, 2, no. 2, 75-86 Weak McCoy Ore Extenon R. Mohammad, A. Mouav and M. Zahr Department of Pure Mathematc, Faculty of Mathematcal Scence Tarbat Modare Unverty, P.O.

More information

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS Journal of Mathematcal Scences: Advances and Applcatons Volume 25, 2014, Pages 1-12 A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS JIA JI, WEN ZHANG and XIAOFEI QI Department of Mathematcs

More information

Improvements on Waring s Problem

Improvements on Waring s Problem Improvement on Warng Problem L An-Png Bejng, PR Chna apl@nacom Abtract By a new recurve algorthm for the auxlary equaton, n th paper, we wll gve ome mprovement for Warng problem Keyword: Warng Problem,

More information

Some basic inequalities. Definition. Let V be a vector space over the complex numbers. An inner product is given by a function, V V C

Some basic inequalities. Definition. Let V be a vector space over the complex numbers. An inner product is given by a function, V V C Some basc nequaltes Defnton. Let V be a vector space over the complex numbers. An nner product s gven by a functon, V V C (x, y) x, y satsfyng the followng propertes (for all x V, y V and c C) (1) x +

More information

On the U-WPF Acts over Monoids

On the U-WPF Acts over Monoids Journal of cence, Ilamc Republc of Iran 8(4): 33-38 (007) Unverty of Tehran, IN 06-04 http://jcence.ut.ac.r On the U-WPF ct over Monod. Golchn * and H. Mohammadzadeh Department of Mathematc, Unverty of

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder S-. The Method of Steepet cent Chapter. Supplemental Text Materal The method of teepet acent can be derved a follow. Suppoe that we have ft a frtorder model y = β + β x and we wh to ue th model to determne

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

Variable Structure Control ~ Basics

Variable Structure Control ~ Basics Varable Structure Control ~ Bac Harry G. Kwatny Department of Mechancal Engneerng & Mechanc Drexel Unverty Outlne A prelmnary example VS ytem, ldng mode, reachng Bac of dcontnuou ytem Example: underea

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Improvements on Waring s Problem

Improvements on Waring s Problem Imrovement on Warng Problem L An-Png Bejng 85, PR Chna al@nacom Abtract By a new recurve algorthm for the auxlary equaton, n th aer, we wll gve ome mrovement for Warng roblem Keyword: Warng Problem, Hardy-Lttlewood

More information

Two Approaches to Proving. Goldbach s Conjecture

Two Approaches to Proving. Goldbach s Conjecture Two Approache to Provng Goldbach Conecture By Bernard Farley Adved By Charle Parry May 3 rd 5 A Bref Introducton to Goldbach Conecture In 74 Goldbach made h mot famou contrbuton n mathematc wth the conecture

More information

A Review article on some generalizations of Banach s contraction principle

A Review article on some generalizations of Banach s contraction principle A Revew artcle on some generalzatons of Banach s contracton prncple Sujata Goyal Assstant professor, Dept. Of Mathematcs, A.S. College, Khanna, Punjab, Inda ----------------------------------------------------------------------------------------------------------------------------

More information

Chapter 6 The Effect of the GPS Systematic Errors on Deformation Parameters

Chapter 6 The Effect of the GPS Systematic Errors on Deformation Parameters Chapter 6 The Effect of the GPS Sytematc Error on Deformaton Parameter 6.. General Beutler et al., (988) dd the frt comprehenve tudy on the GPS ytematc error. Baed on a geometrc approach and aumng a unform

More information

Scattering of two identical particles in the center-of. of-mass frame. (b)

Scattering of two identical particles in the center-of. of-mass frame. (b) Lecture # November 5 Scatterng of two dentcal partcle Relatvtc Quantum Mechanc: The Klen-Gordon equaton Interpretaton of the Klen-Gordon equaton The Drac equaton Drac repreentaton for the matrce α and

More information

ENTROPY BOUNDS USING ARITHMETIC- GEOMETRIC-HARMONIC MEAN INEQUALITY. Guru Nanak Dev University Amritsar, , INDIA

ENTROPY BOUNDS USING ARITHMETIC- GEOMETRIC-HARMONIC MEAN INEQUALITY. Guru Nanak Dev University Amritsar, , INDIA Internatonal Journal of Pure and Appled Mathematc Volume 89 No. 5 2013, 719-730 ISSN: 1311-8080 prnted veron; ISSN: 1314-3395 on-lne veron url: http://.jpam.eu do: http://dx.do.org/10.12732/jpam.v895.8

More information

Separation Axioms of Fuzzy Bitopological Spaces

Separation Axioms of Fuzzy Bitopological Spaces IJCSNS Internatonal Journal of Computer Scence and Network Securty VOL3 No October 3 Separaton Axom of Fuzzy Btopologcal Space Hong Wang College of Scence Southwet Unverty of Scence and Technology Manyang

More information

STABILITY OF A GENERALIZED MIXED TYPE ADDITIVE, QUADRATIC, CUBIC AND QUARTIC FUNCTIONAL EQUATION

STABILITY OF A GENERALIZED MIXED TYPE ADDITIVE, QUADRATIC, CUBIC AND QUARTIC FUNCTIONAL EQUATION Volume 0 009), Issue 4, Article 4, 9 pp. STABILITY OF A GENERALIZED MIXED TYPE ADDITIVE, QUADRATIC, CUBIC AND QUARTIC FUNCTIONAL EQUATION K. RAVI, J.M. RASSIAS, M. ARUNKUMAR, AND R. KODANDAN DEPARTMENT

More information

Research Article A Generalized Sum-Difference Inequality and Applications to Partial Difference Equations

Research Article A Generalized Sum-Difference Inequality and Applications to Partial Difference Equations Hndaw Publshng Corporaton Advances n Dfference Equatons Volume 008, Artcle ID 695495, pages do:0.55/008/695495 Research Artcle A Generalzed Sum-Dfference Inequalty and Applcatons to Partal Dfference Equatons

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Perron Vectors of an Irreducible Nonnegative Interval Matrix Perron Vectors of an Irreducble Nonnegatve Interval Matrx Jr Rohn August 4 2005 Abstract As s well known an rreducble nonnegatve matrx possesses a unquely determned Perron vector. As the man result of

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Sharp integral inequalities involving high-order partial derivatives. Journal Of Inequalities And Applications, 2008, v. 2008, article no.

Sharp integral inequalities involving high-order partial derivatives. Journal Of Inequalities And Applications, 2008, v. 2008, article no. Ttle Sharp ntegral nequaltes nvolvng hgh-order partal dervatves Authors Zhao, CJ; Cheung, WS Ctaton Journal Of Inequaltes And Applcatons, 008, v. 008, artcle no. 5747 Issued Date 008 URL http://hdl.handle.net/07/569

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

2nd International Conference on Electronics, Network and Computer Engineering (ICENCE 2016)

2nd International Conference on Electronics, Network and Computer Engineering (ICENCE 2016) nd Internatonal Conference on Electroncs, Network and Computer Engneerng (ICENCE 6) Postve solutons of the fourth-order boundary value problem wth dependence on the frst order dervatve YuanJan Ln, a, Fe

More information

Cauchy-Schwarz Inequalities Associated with Positive Semidenite. Matrices. Roger A. Horn and Roy Mathias. October 9, 2000

Cauchy-Schwarz Inequalities Associated with Positive Semidenite. Matrices. Roger A. Horn and Roy Mathias. October 9, 2000 Cauchy-Schwarz Inequaltes ssocated wth Postve Semdente Matrces Roger. Horn and Roy Mathas Department of Mathematcal Scences The Johns Hopkns Unversty, altmore, Maryland 228 October 9, 2 Lnear lgebra and

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

Randić Energy and Randić Estrada Index of a Graph

Randić Energy and Randić Estrada Index of a Graph EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 5, No., 202, 88-96 ISSN 307-5543 www.ejpam.com SPECIAL ISSUE FOR THE INTERNATIONAL CONFERENCE ON APPLIED ANALYSIS AND ALGEBRA 29 JUNE -02JULY 20, ISTANBUL

More information

Deriving the X-Z Identity from Auxiliary Space Method

Deriving the X-Z Identity from Auxiliary Space Method Dervng the X-Z Identty from Auxlary Space Method Long Chen Department of Mathematcs, Unversty of Calforna at Irvne, Irvne, CA 92697 chenlong@math.uc.edu 1 Iteratve Methods In ths paper we dscuss teratve

More information

The binomial transforms of the generalized (s, t )-Jacobsthal matrix sequence

The binomial transforms of the generalized (s, t )-Jacobsthal matrix sequence Int. J. Adv. Appl. Math. and Mech. 6(3 (2019 14 20 (ISSN: 2347-2529 Journal homepage: www.jaamm.com IJAAMM Internatonal Journal of Advances n Appled Mathematcs and Mechancs The bnomal transforms of the

More information

Homogenization of reaction-diffusion processes in a two-component porous medium with a non-linear flux-condition on the interface

Homogenization of reaction-diffusion processes in a two-component porous medium with a non-linear flux-condition on the interface Homogenzaton of reacton-dffuson processes n a two-component porous medum wth a non-lnear flux-condton on the nterface Internatonal Conference on Numercal and Mathematcal Modelng of Flow and Transport n

More information

Math 217 Fall 2013 Homework 2 Solutions

Math 217 Fall 2013 Homework 2 Solutions Math 17 Fall 013 Homework Solutons Due Thursday Sept. 6, 013 5pm Ths homework conssts of 6 problems of 5 ponts each. The total s 30. You need to fully justfy your answer prove that your functon ndeed has

More information

Another converse of Jensen s inequality

Another converse of Jensen s inequality Another converse of Jensen s nequalty Slavko Smc Abstract. We gve the best possble global bounds for a form of dscrete Jensen s nequalty. By some examples ts frutfulness s shown. 1. Introducton Throughout

More information

SL n (F ) Equals its Own Derived Group

SL n (F ) Equals its Own Derived Group Internatonal Journal of Algebra, Vol. 2, 2008, no. 12, 585-594 SL n (F ) Equals ts Own Derved Group Jorge Macel BMCC-The Cty Unversty of New York, CUNY 199 Chambers street, New York, NY 10007, USA macel@cms.nyu.edu

More information

On some variants of Jensen s inequality

On some variants of Jensen s inequality On some varants of Jensen s nequalty S S DRAGOMIR School of Communcatons & Informatcs, Vctora Unversty, Vc 800, Australa EMMA HUNT Department of Mathematcs, Unversty of Adelade, SA 5005, Adelade, Australa

More information

Determinants Containing Powers of Generalized Fibonacci Numbers

Determinants Containing Powers of Generalized Fibonacci Numbers 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol 19 (2016), Artcle 1671 Determnants Contanng Powers of Generalzed Fbonacc Numbers Aram Tangboonduangjt and Thotsaporn Thanatpanonda Mahdol Unversty Internatonal

More information

The internal structure of natural numbers and one method for the definition of large prime numbers

The internal structure of natural numbers and one method for the definition of large prime numbers The nternal structure of natural numbers and one method for the defnton of large prme numbers Emmanul Manousos APM Insttute for the Advancement of Physcs and Mathematcs 3 Poulou str. 53 Athens Greece Abstract

More information

Small signal analysis

Small signal analysis Small gnal analy. ntroducton Let u conder the crcut hown n Fg., where the nonlnear retor decrbed by the equaton g v havng graphcal repreentaton hown n Fg.. ( G (t G v(t v Fg. Fg. a D current ource wherea

More information

Additional File 1 - Detailed explanation of the expression level CPD

Additional File 1 - Detailed explanation of the expression level CPD Addtonal Fle - Detaled explanaton of the expreon level CPD A mentoned n the man text, the man CPD for the uterng model cont of two ndvdual factor: P( level gen P( level gen P ( level gen 2 (.).. CPD factor

More information

Projective change between two Special (α, β)- Finsler Metrics

Projective change between two Special (α, β)- Finsler Metrics Internatonal Journal of Trend n Research and Development, Volume 2(6), ISSN 2394-9333 www.jtrd.com Projectve change between two Specal (, β)- Fnsler Metrcs Gayathr.K 1 and Narasmhamurthy.S.K 2 1 Assstant

More information

Appendix B. Criterion of Riemann-Stieltjes Integrability

Appendix B. Criterion of Riemann-Stieltjes Integrability Appendx B. Crteron of Remann-Steltes Integrablty Ths note s complementary to [R, Ch. 6] and [T, Sec. 3.5]. The man result of ths note s Theorem B.3, whch provdes the necessary and suffcent condtons for

More information

Specification -- Assumptions of the Simple Classical Linear Regression Model (CLRM) 1. Introduction

Specification -- Assumptions of the Simple Classical Linear Regression Model (CLRM) 1. Introduction ECONOMICS 35* -- NOTE ECON 35* -- NOTE Specfcaton -- Aumpton of the Smple Clacal Lnear Regreon Model (CLRM). Introducton CLRM tand for the Clacal Lnear Regreon Model. The CLRM alo known a the tandard lnear

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

A Computational Method for Solving Two Point Boundary Value Problems of Order Four

A Computational Method for Solving Two Point Boundary Value Problems of Order Four Yoge Gupta et al, Int. J. Comp. Tec. Appl., Vol (5), - ISSN:9-09 A Computatonal Metod for Solvng Two Pont Boundary Value Problem of Order Four Yoge Gupta Department of Matematc Unted College of Engg and

More information

The Degrees of Nilpotency of Nilpotent Derivations on the Ring of Matrices

The Degrees of Nilpotency of Nilpotent Derivations on the Ring of Matrices Internatonal Mathematcal Forum, Vol. 6, 2011, no. 15, 713-721 The Degrees of Nlpotency of Nlpotent Dervatons on the Rng of Matrces Homera Pajoohesh Department of of Mathematcs Medgar Evers College of CUNY

More information

Pythagorean triples. Leen Noordzij.

Pythagorean triples. Leen Noordzij. Pythagorean trple. Leen Noordz Dr.l.noordz@leennoordz.nl www.leennoordz.me Content A Roadmap for generatng Pythagorean Trple.... Pythagorean Trple.... 3 Dcuon Concluon.... 5 A Roadmap for generatng Pythagorean

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Harmonic oscillator approximation

Harmonic oscillator approximation armonc ocllator approxmaton armonc ocllator approxmaton Euaton to be olved We are fndng a mnmum of the functon under the retrcton where W P, P,..., P, Q, Q,..., Q P, P,..., P, Q, Q,..., Q lnwgner functon

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES SVANTE JANSON Abstract. We gve explct bounds for the tal probabltes for sums of ndependent geometrc or exponental varables, possbly wth dfferent

More information

Existence results for a fourth order multipoint boundary value problem at resonance

Existence results for a fourth order multipoint boundary value problem at resonance Avalable onlne at www.scencedrect.com ScenceDrect Journal of the Ngeran Mathematcal Socety xx (xxxx) xxx xxx www.elsever.com/locate/jnnms Exstence results for a fourth order multpont boundary value problem

More information

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES BÂRZĂ, Slvu Faculty of Mathematcs-Informatcs Spru Haret Unversty barza_slvu@yahoo.com Abstract Ths paper wants to contnue

More information

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution.

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution. Solutons HW #2 Dual of general LP. Fnd the dual functon of the LP mnmze subject to c T x Gx h Ax = b. Gve the dual problem, and make the mplct equalty constrants explct. Soluton. 1. The Lagrangan s L(x,

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) M(B) := # ( B Z N)

SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) M(B) := # ( B Z N) SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) S.BOUCKSOM Abstract. The goal of ths note s to present a remarably smple proof, due to Hen, of a result prevously obtaned by Gllet-Soulé,

More information

Team. Outline. Statistics and Art: Sampling, Response Error, Mixed Models, Missing Data, and Inference

Team. Outline. Statistics and Art: Sampling, Response Error, Mixed Models, Missing Data, and Inference Team Stattc and Art: Samplng, Repone Error, Mxed Model, Mng Data, and nference Ed Stanek Unverty of Maachuett- Amhert, USA 9/5/8 9/5/8 Outlne. Example: Doe-repone Model n Toxcology. ow to Predct Realzed

More information

CSCE 790S Background Results

CSCE 790S Background Results CSCE 790S Background Results Stephen A. Fenner September 8, 011 Abstract These results are background to the course CSCE 790S/CSCE 790B, Quantum Computaton and Informaton (Sprng 007 and Fall 011). Each

More information

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem.

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem. prnceton u. sp 02 cos 598B: algorthms and complexty Lecture 20: Lft and Project, SDP Dualty Lecturer: Sanjeev Arora Scrbe:Yury Makarychev Today we wll study the Lft and Project method. Then we wll prove

More information

Smarandache-Zero Divisors in Group Rings

Smarandache-Zero Divisors in Group Rings Smarandache-Zero Dvsors n Group Rngs W.B. Vasantha and Moon K. Chetry Department of Mathematcs I.I.T Madras, Chenna The study of zero-dvsors n group rngs had become nterestng problem snce 1940 wth the

More information

Spectral Graph Theory and its Applications September 16, Lecture 5

Spectral Graph Theory and its Applications September 16, Lecture 5 Spectral Graph Theory and ts Applcatons September 16, 2004 Lecturer: Danel A. Spelman Lecture 5 5.1 Introducton In ths lecture, we wll prove the followng theorem: Theorem 5.1.1. Let G be a planar graph

More information

SOME RESULTS ON TRANSFORMATIONS GROUPS OF N-LINEAR CONNECTIONS IN THE 2-TANGENT BUNDLE

SOME RESULTS ON TRANSFORMATIONS GROUPS OF N-LINEAR CONNECTIONS IN THE 2-TANGENT BUNDLE STUDIA UNIV. BABEŞ BOLYAI MATHEMATICA Volume LIII Number March 008 SOME RESULTS ON TRANSFORMATIONS GROUPS OF N-LINEAR CONNECTIONS IN THE -TANGENT BUNDLE GHEORGHE ATANASIU AND MONICA PURCARU Abstract. In

More information

THE ORNSTEIN-WEISS LEMMA FOR DISCRETE AMENABLE GROUPS.

THE ORNSTEIN-WEISS LEMMA FOR DISCRETE AMENABLE GROUPS. THE ORNSTEIN-WEISS LEMMA FOR DISCRETE AMENABLE GROUPS FABRICE KRIEGER Abstract In ths note we prove a convergence theorem for nvarant subaddtve functons defned on the fnte subsets of a dscrete amenable

More information

Beyond Zudilin s Conjectured q-analog of Schmidt s problem

Beyond Zudilin s Conjectured q-analog of Schmidt s problem Beyond Zudln s Conectured q-analog of Schmdt s problem Thotsaporn Ae Thanatpanonda thotsaporn@gmalcom Mathematcs Subect Classfcaton: 11B65 33B99 Abstract Usng the methodology of (rgorous expermental mathematcs

More information

Maximizing the number of nonnegative subsets

Maximizing the number of nonnegative subsets Maxmzng the number of nonnegatve subsets Noga Alon Hao Huang December 1, 213 Abstract Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what s the maxmum

More information

Fixed points of IA-endomorphisms of a free metabelian Lie algebra

Fixed points of IA-endomorphisms of a free metabelian Lie algebra Proc. Indan Acad. Sc. (Math. Sc.) Vol. 121, No. 4, November 2011, pp. 405 416. c Indan Academy of Scences Fxed ponts of IA-endomorphsms of a free metabelan Le algebra NAIME EKICI 1 and DEMET PARLAK SÖNMEZ

More information

Homework Notes Week 7

Homework Notes Week 7 Homework Notes Week 7 Math 4 Sprng 4 #4 (a Complete the proof n example 5 that s an nner product (the Frobenus nner product on M n n (F In the example propertes (a and (d have already been verfed so we

More information

SELECTED SOLUTIONS, SECTION (Weak duality) Prove that the primal and dual values p and d defined by equations (4.3.2) and (4.3.3) satisfy p d.

SELECTED SOLUTIONS, SECTION (Weak duality) Prove that the primal and dual values p and d defined by equations (4.3.2) and (4.3.3) satisfy p d. SELECTED SOLUTIONS, SECTION 4.3 1. Weak dualty Prove that the prmal and dual values p and d defned by equatons 4.3. and 4.3.3 satsfy p d. We consder an optmzaton problem of the form The Lagrangan for ths

More information

Affine and Riemannian Connections

Affine and Riemannian Connections Affne and Remannan Connectons Semnar Remannan Geometry Summer Term 2015 Prof Dr Anna Wenhard and Dr Gye-Seon Lee Jakob Ullmann Notaton: X(M) space of smooth vector felds on M D(M) space of smooth functons

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA. 4. Tensor product

12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA. 4. Tensor product 12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA Here s an outlne of what I dd: (1) categorcal defnton (2) constructon (3) lst of basc propertes (4) dstrbutve property (5) rght exactness (6) localzaton

More information

STEINHAUS PROPERTY IN BANACH LATTICES

STEINHAUS PROPERTY IN BANACH LATTICES DEPARTMENT OF MATHEMATICS TECHNICAL REPORT STEINHAUS PROPERTY IN BANACH LATTICES DAMIAN KUBIAK AND DAVID TIDWELL SPRING 2015 No. 2015-1 TENNESSEE TECHNOLOGICAL UNIVERSITY Cookevlle, TN 38505 STEINHAUS

More information

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0 Bezer curves Mchael S. Floater August 25, 211 These notes provde an ntroducton to Bezer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of the

More information

Exercise Solutions to Real Analysis

Exercise Solutions to Real Analysis xercse Solutons to Real Analyss Note: References refer to H. L. Royden, Real Analyss xersze 1. Gven any set A any ɛ > 0, there s an open set O such that A O m O m A + ɛ. Soluton 1. If m A =, then there

More information

Fixed point method and its improvement for the system of Volterra-Fredholm integral equations of the second kind

Fixed point method and its improvement for the system of Volterra-Fredholm integral equations of the second kind MATEMATIKA, 217, Volume 33, Number 2, 191 26 c Penerbt UTM Press. All rghts reserved Fxed pont method and ts mprovement for the system of Volterra-Fredholm ntegral equatons of the second knd 1 Talaat I.

More information

arxiv: v1 [math.ho] 18 May 2008

arxiv: v1 [math.ho] 18 May 2008 Recurrence Formulas for Fbonacc Sums Adlson J. V. Brandão, João L. Martns 2 arxv:0805.2707v [math.ho] 8 May 2008 Abstract. In ths artcle we present a new recurrence formula for a fnte sum nvolvng the Fbonacc

More information

MULTIPLE REGRESSION ANALYSIS For the Case of Two Regressors

MULTIPLE REGRESSION ANALYSIS For the Case of Two Regressors MULTIPLE REGRESSION ANALYSIS For the Cae of Two Regreor In the followng note, leat-quare etmaton developed for multple regreon problem wth two eplanator varable, here called regreor (uch a n the Fat Food

More information

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP C O L L O Q U I U M M A T H E M A T I C U M VOL. 80 1999 NO. 1 FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP BY FLORIAN K A I N R A T H (GRAZ) Abstract. Let H be a Krull monod wth nfnte class

More information

and decompose in cycles of length two

and decompose in cycles of length two Permutaton of Proceedng of the Natona Conference On Undergraduate Reearch (NCUR) 006 Domncan Unverty of Caforna San Rafae, Caforna Apr - 4, 007 that are gven by bnoma and decompoe n cyce of ength two Yeena

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

On the Connectedness of the Solution Set for the Weak Vector Variational Inequality 1

On the Connectedness of the Solution Set for the Weak Vector Variational Inequality 1 Journal of Mathematcal Analyss and Alcatons 260, 15 2001 do:10.1006jmaa.2000.7389, avalable onlne at htt:.dealbrary.com on On the Connectedness of the Soluton Set for the Weak Vector Varatonal Inequalty

More information

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0 Bézer curves Mchael S. Floater September 1, 215 These notes provde an ntroducton to Bézer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of

More information

The lower and upper bounds on Perron root of nonnegative irreducible matrices

The lower and upper bounds on Perron root of nonnegative irreducible matrices Journal of Computatonal Appled Mathematcs 217 (2008) 259 267 wwwelsevercom/locate/cam The lower upper bounds on Perron root of nonnegatve rreducble matrces Guang-Xn Huang a,, Feng Yn b,keguo a a College

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

HnUf> xk) = S0Jf(xk) (k = 1,..., «; j = 0,..., m - 1).

HnUf> xk) = S0Jf(xk) (k = 1,..., «; j = 0,..., m - 1). PROCEEDINGS of the AMERICAN MATHEMATICAL SOCIETY Volume 09, Number 4, August 990 ON (0,,2) INTERPOLATION IN UNIFORM METRIC J. SZABADOS AND A. K. VARMA (Communcated by R. Danel Mauldn) Abstract. From the

More information

Estimation of Finite Population Total under PPS Sampling in Presence of Extra Auxiliary Information

Estimation of Finite Population Total under PPS Sampling in Presence of Extra Auxiliary Information Internatonal Journal of Stattc and Analy. ISSN 2248-9959 Volume 6, Number 1 (2016), pp. 9-16 Reearch Inda Publcaton http://www.rpublcaton.com Etmaton of Fnte Populaton Total under PPS Samplng n Preence

More information

SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION

SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION talan journal of pure appled mathematcs n. 33 2014 (63 70) 63 SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION M.R. Farhangdoost Department of Mathematcs College of Scences Shraz Unversty Shraz, 71457-44776

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

The Second Eigenvalue of Planar Graphs

The Second Eigenvalue of Planar Graphs Spectral Graph Theory Lecture 20 The Second Egenvalue of Planar Graphs Danel A. Spelman November 11, 2015 Dsclamer These notes are not necessarly an accurate representaton of what happened n class. The

More information

arxiv: v1 [math.co] 12 Sep 2014

arxiv: v1 [math.co] 12 Sep 2014 arxv:1409.3707v1 [math.co] 12 Sep 2014 On the bnomal sums of Horadam sequence Nazmye Ylmaz and Necat Taskara Department of Mathematcs, Scence Faculty, Selcuk Unversty, 42075, Campus, Konya, Turkey March

More information

Inexact Newton Methods for Inverse Eigenvalue Problems

Inexact Newton Methods for Inverse Eigenvalue Problems Inexact Newton Methods for Inverse Egenvalue Problems Zheng-jan Ba Abstract In ths paper, we survey some of the latest development n usng nexact Newton-lke methods for solvng nverse egenvalue problems.

More information

arxiv: v1 [math.co] 1 Mar 2014

arxiv: v1 [math.co] 1 Mar 2014 Unon-ntersectng set systems Gyula O.H. Katona and Dánel T. Nagy March 4, 014 arxv:1403.0088v1 [math.co] 1 Mar 014 Abstract Three ntersecton theorems are proved. Frst, we determne the sze of the largest

More information

This appendix presents the derivations and proofs omitted from the main text.

This appendix presents the derivations and proofs omitted from the main text. Onlne Appendx A Appendx: Omtted Dervaton and Proof Th appendx preent the dervaton and proof omtted from the man text A Omtted dervaton n Secton Mot of the analy provded n the man text Here, we formally

More information

A METHOD TO REPRESENT THE SEMANTIC DESCRIPTION OF A WEB SERVICE BASED ON COMPLEXITY FUNCTIONS

A METHOD TO REPRESENT THE SEMANTIC DESCRIPTION OF A WEB SERVICE BASED ON COMPLEXITY FUNCTIONS UPB Sc Bull, Sere A, Vol 77, I, 5 ISSN 3-77 A METHOD TO REPRESENT THE SEMANTIC DESCRIPTION OF A WEB SERVICE BASED ON COMPLEXITY FUNCTIONS Andre-Hora MOGOS, Adna Magda FLOREA Semantc web ervce repreent

More information