TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES

Size: px
Start display at page:

Download "TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES"

Transcription

1 TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES SVANTE JANSON Abstract. We gve explct bounds for the tal probabltes for sums of ndependent geometrc or exponental varables, possbly wth dfferent parameters. 1. Introducton and notaton Let X n X, where n 1 and X, 1,..., n, are ndependent geometrc random varables wth possbly dfferent dstrbutons: X Ge wth 0 < 1,.e., PX k 1 k 1, k 1, 2, Our goal s to estmate the tal probabltes PX x. Snce X s ntegervalued, t suffces to consder nteger x. However, t s convenent to allow arbtrary real x, and we do so. We defne µ : E X E X 1, 1.2 : mn. 1.3 We shall see that plays an mportant role n our estmates, whch roughly speakng show that the tal probabltes of X decrease at about the same rate as the tal probabltes of Ge,.e., as for the varable X wth smallest and thus fattest tal. Recall the smple and well-known fact that 1.1 mples that, for any non-zero z such that z 1 < 1, E z X z k PX k k1 z 1 1 z z For future use, note that snce x ln1 x s convex on 0, 1 and 0 for x 0, ln1 x x ln1 y, 0 < x y < y Date: 28 June, 2014; typo corrected 24 September, Partly supported by the Knut and Alce Wallenberg Foundaton. 1

2 2 SVANTE JANSON Remark 1.1. The theorems and corollares below hold also, wth the same proofs, for nfnte sums X X, provded E X p 1 <. Acknowledgement. Ths work was ntated durng the 25th Internatonal Conference on Probablstc, Combnatoral and Asymptotc Methods for the Analyss of Algorthms, AofA14, n Pars-Jusseu, June 2014, n response to a queston by Donald Knuth. I thank Donald Knuth and Coln McDarmd for helpful dscussons. 2. Upper bounds for the upper tal We begn wth a smple upper bound obtaned by the classcal method of estmatng the moment generatng functon or probablty generatng functon and usng the standard nequalty an nstance of Markov s nequalty PX x z x E z X, z 1, 2.1 or equvalently PX x e tx E e tx, t Cf. the related Chernoff bounds for the bnomal dstrbuton that are proved by ths method, see e.g. [3, Theorem 2.1], and see e.g. [1] for other applcatons of ths method. See also e.g. [2, Chapter 2] or [4, Chapter 27] for more general large devaton theory. Theorem 2.1. For any p 1,..., p n 0, 1] and any λ 1, PX λµ e p µλ 1 ln λ. 2.3 Proof. If 0 t <, then e t 1 + t > 0, and thus by 1.4, E e tx e t p 1 + t 1 t Hence, f 0 t < mn, then E e tx E e tx 1 t and, by 2.2, PX λµ e tλµ E e tx exp tλµ + ln 1 t. 2.6 By 1.5 and 0 < / 1, we have, for 0 t <, ln 1 t p ln 1 t. 2.7 Consequently, 2.6 yelds PX λµ exp tλµ ln exp tλµ µ ln 1 t 1 t. 2.8

3 TAIL BOUNDS FOR GEOMETRIC AND EXPONENTIAL VARIABLES 3 Choosng t 1 λ 1 whch s optmal n 2.8, we obtan 2.3. As a corollary we obtan a bound that s generally much cruder, but has the advantage of not dependng on the s at all. Corollary 2.2. For any p 1,..., p n 0, 1] and any λ 1, PX λµ λe 1 λ eλe λ. 2.9 Proof. Use µ 1/ for each, and thus µ 1 n 2.3. Alternatvely, use t 1 λ 1 /µ n 2.8. The bound n Theorem 2.1 s rather sharn many cases. Also the cruder 2.9 s almost sharp for n 1 a sngle X and small p 1 ; n ths case µ 1/p 1 and PX λµ 1 p 1 λµ 1 exp λ + Oλp Nevertheless, we can mprove 2.3 somewhat, n partcular when mn s not small, by usng more careful estmates. Theorem 2.3. For any p 1,..., p n 0, 1] and any λ 1, PX λµ λ 1 1 λ 1 ln λµ The proof s gven below. We note that Theorem 2.3 mples a mnor mprovement of Corollary 2.2: Corollary 2.4. For any p 1,..., p n 0, 1] and any λ 1, Proof. Use 2.11 and 1 µ e p µ e 1. PX λµ e 1 λ We begn the proof of Theorem 2.3 wth two lemmas yeldng a mnor mprovement of 2.1 usng the fact that the varables are geometrc. The lemmas actually use only that one of the varables s geometrc. Lemma 2.5. For any ntegers j and k wth j k, PX j 1 j k PX k For any real numbers x and y wth x y, PX x 1 x y+1 PX y Proof.. We may wthout loss of generalty assume that p 1. Then, for any ntegers, j, k wth j k, PX j X X 1 PX 1 j 1 j 1 +, 2.15 and smlarly for PX k X X 1. Snce j 1 + j k + k 1 +, t follows that PX j X X 1 1 j k PX k X X for every, and thus 2.13 follows by takng the expectaton.

4 4 SVANTE JANSON. For real x and y we obtan from 2.13 PX x PX x 1 x y PX y 1 x y+1 PX y Lemma 2.6. For any x 0 and z 1 wth z1 < 1, PX x 1 z1 z x E z X Proof. Snce z 1, 2.13 mples that for every k 1, X 1 E z X Ez X 1{X k} E z k + z 1 z 1{X j k} E z k 1{X k} + z 1 z k PX k + z 1 jk z j 1{X j + 1} jk z j PX j + 1 jk z k PX k 1 + z 1 z j k 1 j+1 k jk z k PX k 1 + z 11 p 1 z1 z k PX k 1 z The result 2.18 follows when x k s a postve nteger. The general case follows by takng k max x, 1 snce then PX x PX k. Proof of Theorem 2.3. We may assume that < 1. Otherwse every 1 and X 1 a.s., so X n µ a.s. and the result s trval. We then choose.e., z : z 1 λ1 λ λ λ1, λ 1 λ ; 2.21 note that z 1 1 so z 1 and z 1 > 1 1 for every. Thus, by 1.4, E z X E z X z z 1 /. 2.22

5 TAIL BOUNDS FOR GEOMETRIC AND EXPONENTIAL VARIABLES 5 By 2.22, 2.7 wth t 1 z 1 < and 2.21, ln E z X ln 1 1 z 1 ln 1 1 z 1 Furthermore, by 2.20, p ln 1 λ 1 µ ln 1 µ ln λ. λ λ 1 1 z1 Hence, Lemma 2.6, 2.20 and 2.23 yeld where ln PX λµ ln λ λµ ln z + ln E z X λ /λ 1 λ ln λ λµ ln λ λ1 + µ ln λ 1 ln λ + λµ ln1 + µfλ, 2.25 fλ : λ ln λ + ln λ λ 1 λ lnλ + λ ln λ ln We have f1 ln1 and, for λ 1, usng 1.5, f λ lnλ + ln λ ln 1 p 1 λ λ ln Consequently, by ntegratng 2.27, for all λ 1, fλ ln1 ln λ ln1, 2.28 and the result 2.11 follows by Remark 2.7. Note that for large λ, the exponents above are roughly lnear n λ, whle for λ 1+o1 we have λ 1 ln λ 1 2 λ 12 so the exponents are quadratc n λ 1. The latter s to be expected from the central lmt theorem. However, f λ 1 + ε wth ε very small and the central lmt theorem s applcable, then PX 1 + εµ s roughly exp ε 2 µ 2 /2σ 2, where σ 2 Var X n Var X n 1. Hence, n ths case the p 2 exponents n 2.3 and 2.11 are asymptotcally too small by a factor of rougly, for small, µ µ 2 /σ 2 p n p 2, 2.29 whch may be much smaller than 1. p 1 p 2 /n 1/3. n p 1 For example f p 2 p n and

6 6 SVANTE JANSON 3. Upper bounds for the lower tal We can smlarly bound the probablty PX λµ for λ 1. We gve only a smple bound correspondng to Theorem 2.1. Note that λ 1 ln λ > 0 for both λ 0, 1 and λ 1,. Theorem 3.1. For any p 1,..., p n 0, 1] and any λ 1, PX λµ e p µλ 1 ln λ. 3.1 Proof. We follow closely the proof of Theorem 2.1. If t 0, then by 1.4, E e tx 1 + t Hence E e tx e t 1 + E e tx t t and, n analogy to 2.2, PX λµ e tλµ E e tx exp tλµ ln 1 + t. 3.4 In analogy wth 2.7, stll by the convexty of ln x, ln 1 + t p ln 1 + t, 3.5 and 3.4 yelds PX λµ exp tλµ ln exp tλµ µ ln Choosng t λ 1 1, we obtan t 4. A lower bound 1 + t. 3.6 We show also a general lower bound for the upper tal probabltes, whch shows that for constant λ > 1, the exponents n Theorems 2.1 and 2.3 are at most a constant factor away from best possble. Theorem 4.1. For any p 1,..., p n 0, 1] and any λ 1, PX λµ 1 1+1/p 1 λ 1µ µ Lemma 4.2. If A 1 and 0 x 1/A, then A x + ln1 x ln 1 Ax 2 /2. 4.2

7 TAIL BOUNDS FOR GEOMETRIC AND EXPONENTIAL VARIABLES 7 Proof. Let fx : A x + ln1 x ln 1 Ax 2 /2. Then f0 0 and f x A 1 1 Ax + 1 x 1 Ax 2 /2 Ax 1 x + Ax 1 Ax /2 for 0 x < 1/A 1, snce then 0 < 1 x 1 Ax 2 /2. Hence fx 0 for 0 x 1/A. Proof of Theorem 4.1. Let ε : 1/ µ. By Theorem 3.1 wth λ 1 ε and Lemma 4.2 wth A µ 1, PX 1 εµ exp µ ε ln1 ε 1 µε 2 Hence, PX 1 εµ 1/2 µ, and by Lemma 2.5, µ. 4.4 PX λµ 1 λ 1+εµ+1 PX 1 εµ 1 λ 1+εµ µ, whch completes the proof snce εµ 1/. 5. Exponental dstrbutons In ths secton we assume that X n X where X, 1,..., n, are ndependent random varables wth exponental dstrbutons: X Expa, wth densty functon a xe ax, x > 0, and expectaton E X 1/a. Thus a can be nterpreted as a rate. The exponental dstrbuton s the contnuous analogue of the geometrc dstrbutons, and the results above have smpler analogues for exponental dstrbutons. We now defne µ : E X E X 1 a, 5.1 a : mn a. 5.2 Theorem 5.1. Let X n X wth X Expa ndependent. For any λ 1, PX λµ λ 1 e a µλ 1 ln λ. 5.3 For any λ 1, we have also the smpler but weaker For any λ 1, v For any λ 1, PX λµ e 1 λ. 5.4 PX λµ e a µλ 1 ln λ. 5.5 PX λµ 1 2ea µ e a µλ

8 8 SVANTE JANSON Proof. Let X N Gea /N be ndependent for N > max a. Then X N /N d d X, where denotes convergence n dstrbuton, and thus X N /N d X, where X N : n XN. Furthermore, µ N : E X N Mν and : mn a /N a /N. The results follow by takng the lmt as N n 2.11, 2.12, 3.1 and 4.1. Alternatvely, we may mtate the proofs above, usng E e tx a /a t for t < a. References [1] Stéphane Boucheron, Gábor Lugos and Pascal Massart, Concentraton Inequaltes, Oxford Unv. Press, Oxford, [2] Amr Dembo and Ofer Zetoun, Large Devatons Technques and Applcatons. 2nd ed., Sprnger, New York, [3] Svante Janson, Tomasz Luczak & Andrzej Rucńsk, Random Graphs. Wley, New York, [4] Olav Kallenberg, Foundatons of Modern Probablty. 2nd ed., Sprnger, New York, Department of Mathematcs, Uppsala Unversty, PO Box 480, SE Uppsala, Sweden E-mal address: svante.janson@math.uu.se URL: svante/

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 1 10/1/013 Martngale Concentraton Inequaltes and Applcatons Content. 1. Exponental concentraton for martngales wth bounded ncrements.

More information

Eigenvalues of Random Graphs

Eigenvalues of Random Graphs Spectral Graph Theory Lecture 2 Egenvalues of Random Graphs Danel A. Spelman November 4, 202 2. Introducton In ths lecture, we consder a random graph on n vertces n whch each edge s chosen to be n the

More information

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2) 1/16 MATH 829: Introducton to Data Mnng and Analyss The EM algorthm (part 2) Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 20, 2016 Recall 2/16 We are gven ndependent observatons

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Edge Isoperimetric Inequalities

Edge Isoperimetric Inequalities November 7, 2005 Ross M. Rchardson Edge Isopermetrc Inequaltes 1 Four Questons Recall that n the last lecture we looked at the problem of sopermetrc nequaltes n the hypercube, Q n. Our noton of boundary

More information

Lecture 4: Universal Hash Functions/Streaming Cont d

Lecture 4: Universal Hash Functions/Streaming Cont d CSE 5: Desgn and Analyss of Algorthms I Sprng 06 Lecture 4: Unversal Hash Functons/Streamng Cont d Lecturer: Shayan Oves Gharan Aprl 6th Scrbe: Jacob Schreber Dsclamer: These notes have not been subjected

More information

Lecture 4: September 12

Lecture 4: September 12 36-755: Advanced Statstcal Theory Fall 016 Lecture 4: September 1 Lecturer: Alessandro Rnaldo Scrbe: Xao Hu Ta Note: LaTeX template courtesy of UC Berkeley EECS dept. Dsclamer: These notes have not been

More information

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora prnceton unv. F 13 cos 521: Advanced Algorthm Desgn Lecture 3: Large devatons bounds and applcatons Lecturer: Sanjeev Arora Scrbe: Today s topc s devaton bounds: what s the probablty that a random varable

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

s: 1 (corresponding author); 2

s: 1 (corresponding author); 2 Internatonal Workshop Stochastc Programmng for Implementaton and Advanced Applcatons (STOPROG-01) July 3 6, 01, Nernga, Lthuana ISBN 978-609-9541-4-6 L Sakalauskas, A Tomasgard, S WWallace (Eds): Proceedngs

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Mamum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models for

More information

Boning Yang. March 8, 2018

Boning Yang. March 8, 2018 Concentraton Inequaltes by concentraton nequalty Introducton to Basc Concentraton Inequaltes by Florda State Unversty March 8, 2018 Framework Concentraton Inequaltes by 1. concentraton nequalty concentraton

More information

Dirichlet s Theorem In Arithmetic Progressions

Dirichlet s Theorem In Arithmetic Progressions Drchlet s Theorem In Arthmetc Progressons Parsa Kavkan Hang Wang The Unversty of Adelade February 26, 205 Abstract The am of ths paper s to ntroduce and prove Drchlet s theorem n arthmetc progressons,

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

Complete subgraphs in multipartite graphs

Complete subgraphs in multipartite graphs Complete subgraphs n multpartte graphs FLORIAN PFENDER Unverstät Rostock, Insttut für Mathematk D-18057 Rostock, Germany Floran.Pfender@un-rostock.de Abstract Turán s Theorem states that every graph G

More information

Maximizing the number of nonnegative subsets

Maximizing the number of nonnegative subsets Maxmzng the number of nonnegatve subsets Noga Alon Hao Huang December 1, 213 Abstract Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what s the maxmum

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

Randić Energy and Randić Estrada Index of a Graph

Randić Energy and Randić Estrada Index of a Graph EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 5, No., 202, 88-96 ISSN 307-5543 www.ejpam.com SPECIAL ISSUE FOR THE INTERNATIONAL CONFERENCE ON APPLIED ANALYSIS AND ALGEBRA 29 JUNE -02JULY 20, ISTANBUL

More information

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities Supplementary materal: Margn based PU Learnng We gve the complete proofs of Theorem and n Secton We frst ntroduce the well-known concentraton nequalty, so the covarance estmator can be bounded Then we

More information

Distribution of subgraphs of random regular graphs

Distribution of subgraphs of random regular graphs Dstrbuton of subgraphs of random regular graphs Zhcheng Gao Faculty of Busness Admnstraton Unversty of Macau Macau Chna zcgao@umac.mo N. C. Wormald Department of Combnatorcs and Optmzaton Unversty of Waterloo

More information

Probability and Random Variable Primer

Probability and Random Variable Primer B. Maddah ENMG 622 Smulaton 2/22/ Probablty and Random Varable Prmer Sample space and Events Suppose that an eperment wth an uncertan outcome s performed (e.g., rollng a de). Whle the outcome of the eperment

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 6 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutons to assst canddates preparng for the eamnatons n future years and for

More information

Strong Markov property: Same assertion holds for stopping times τ.

Strong Markov property: Same assertion holds for stopping times τ. Brownan moton Let X ={X t : t R + } be a real-valued stochastc process: a famlty of real random varables all defned on the same probablty space. Defne F t = nformaton avalable by observng the process up

More information

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1 MATH 5707 HOMEWORK 4 SOLUTIONS CİHAN BAHRAN 1. Let v 1,..., v n R m, all lengths v are not larger than 1. Let p 1,..., p n [0, 1] be arbtrary and set w = p 1 v 1 + + p n v n. Then there exst ε 1,..., ε

More information

This document is downloaded from the Digital Open Access Repository of VTT. VTT P.O. box 1000 FI VTT Finland

This document is downloaded from the Digital Open Access Repository of VTT. VTT   P.O. box 1000 FI VTT Finland Ths document s downloaded from the Dgtal Open Access Repostory of VTT Ttle Large clques n a power-law random graph Author(s) Janson, Svante; Luczak, Tomasz; Norros, Ilkka Ctaton Journal of Appled Probablty

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm The Expectaton-Maxmaton Algorthm Charles Elan elan@cs.ucsd.edu November 16, 2007 Ths chapter explans the EM algorthm at multple levels of generalty. Secton 1 gves the standard hgh-level verson of the algorthm.

More information

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7 Stanford Unversty CS54: Computatonal Complexty Notes 7 Luca Trevsan January 9, 014 Notes for Lecture 7 1 Approxmate Countng wt an N oracle We complete te proof of te followng result: Teorem 1 For every

More information

P exp(tx) = 1 + t 2k M 2k. k N

P exp(tx) = 1 + t 2k M 2k. k N 1. Subgaussan tals Defnton. Say that a random varable X has a subgaussan dstrbuton wth scale factor σ< f P exp(tx) exp(σ 2 t 2 /2) for all real t. For example, f X s dstrbuted N(,σ 2 ) then t s subgaussan.

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

A new construction of 3-separable matrices via an improved decoding of Macula s construction

A new construction of 3-separable matrices via an improved decoding of Macula s construction Dscrete Optmzaton 5 008 700 704 Contents lsts avalable at ScenceDrect Dscrete Optmzaton journal homepage: wwwelsevercom/locate/dsopt A new constructon of 3-separable matrces va an mproved decodng of Macula

More information

The lower and upper bounds on Perron root of nonnegative irreducible matrices

The lower and upper bounds on Perron root of nonnegative irreducible matrices Journal of Computatonal Appled Mathematcs 217 (2008) 259 267 wwwelsevercom/locate/cam The lower upper bounds on Perron root of nonnegatve rreducble matrces Guang-Xn Huang a,, Feng Yn b,keguo a a College

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore Sesson Outlne Introducton to classfcaton problems and dscrete choce models. Introducton to Logstcs Regresson. Logstc functon and Logt functon. Maxmum Lkelhood Estmator (MLE) for estmaton of LR parameters.

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

An (almost) unbiased estimator for the S-Gini index

An (almost) unbiased estimator for the S-Gini index An (almost unbased estmator for the S-Gn ndex Thomas Demuynck February 25, 2009 Abstract Ths note provdes an unbased estmator for the absolute S-Gn and an almost unbased estmator for the relatve S-Gn for

More information

MAT 578 Functional Analysis

MAT 578 Functional Analysis MAT 578 Functonal Analyss John Qugg Fall 2008 Locally convex spaces revsed September 6, 2008 Ths secton establshes the fundamental propertes of locally convex spaces. Acknowledgment: although I wrote these

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

b ), which stands for uniform distribution on the interval a x< b. = 0 elsewhere

b ), which stands for uniform distribution on the interval a x< b. = 0 elsewhere Fall Analyss of Epermental Measurements B. Esensten/rev. S. Errede Some mportant probablty dstrbutons: Unform Bnomal Posson Gaussan/ormal The Unform dstrbuton s often called U( a, b ), hch stands for unform

More information

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING MACHINE LEANING Vasant Honavar Bonformatcs and Computatonal Bology rogram Center for Computatonal Intellgence, Learnng, & Dscovery Iowa State Unversty honavar@cs.astate.edu www.cs.astate.edu/~honavar/

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

SELECTED SOLUTIONS, SECTION (Weak duality) Prove that the primal and dual values p and d defined by equations (4.3.2) and (4.3.3) satisfy p d.

SELECTED SOLUTIONS, SECTION (Weak duality) Prove that the primal and dual values p and d defined by equations (4.3.2) and (4.3.3) satisfy p d. SELECTED SOLUTIONS, SECTION 4.3 1. Weak dualty Prove that the prmal and dual values p and d defned by equatons 4.3. and 4.3.3 satsfy p d. We consder an optmzaton problem of the form The Lagrangan for ths

More information

Conjugacy and the Exponential Family

Conjugacy and the Exponential Family CS281B/Stat241B: Advanced Topcs n Learnng & Decson Makng Conjugacy and the Exponental Famly Lecturer: Mchael I. Jordan Scrbes: Bran Mlch 1 Conjugacy In the prevous lecture, we saw conjugate prors for the

More information

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU Group M D L M Chapter Bayesan Decson heory Xn-Shun Xu @ SDU School of Computer Scence and echnology, Shandong Unversty Bayesan Decson heory Bayesan decson theory s a statstcal approach to data mnng/pattern

More information

Another converse of Jensen s inequality

Another converse of Jensen s inequality Another converse of Jensen s nequalty Slavko Smc Abstract. We gve the best possble global bounds for a form of dscrete Jensen s nequalty. By some examples ts frutfulness s shown. 1. Introducton Throughout

More information

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES BÂRZĂ, Slvu Faculty of Mathematcs-Informatcs Spru Haret Unversty barza_slvu@yahoo.com Abstract Ths paper wants to contnue

More information

Finding Primitive Roots Pseudo-Deterministically

Finding Primitive Roots Pseudo-Deterministically Electronc Colloquum on Computatonal Complexty, Report No 207 (205) Fndng Prmtve Roots Pseudo-Determnstcally Ofer Grossman December 22, 205 Abstract Pseudo-determnstc algorthms are randomzed search algorthms

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

18.1 Introduction and Recap

18.1 Introduction and Recap CS787: Advanced Algorthms Scrbe: Pryananda Shenoy and Shjn Kong Lecturer: Shuch Chawla Topc: Streamng Algorthmscontnued) Date: 0/26/2007 We contnue talng about streamng algorthms n ths lecture, ncludng

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

STAT 3008 Applied Regression Analysis

STAT 3008 Applied Regression Analysis STAT 3008 Appled Regresson Analyss Tutoral : Smple Lnear Regresson LAI Chun He Department of Statstcs, The Chnese Unversty of Hong Kong 1 Model Assumpton To quantfy the relatonshp between two factors,

More information

SELECTED PROOFS. DeMorgan s formulas: The first one is clear from Venn diagram, or the following truth table:

SELECTED PROOFS. DeMorgan s formulas: The first one is clear from Venn diagram, or the following truth table: SELECTED PROOFS DeMorgan s formulas: The frst one s clear from Venn dagram, or the followng truth table: A B A B A B Ā B Ā B T T T F F F F T F T F F T F F T T F T F F F F F T T T T The second one can be

More information

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

Hidden Markov Models & The Multivariate Gaussian (10/26/04) CS281A/Stat241A: Statstcal Learnng Theory Hdden Markov Models & The Multvarate Gaussan (10/26/04) Lecturer: Mchael I. Jordan Scrbes: Jonathan W. Hu 1 Hdden Markov Models As a bref revew, hdden Markov models

More information

Restricted divisor sums

Restricted divisor sums ACTA ARITHMETICA 02 2002) Restrcted dvsor sums by Kevn A Broughan Hamlton) Introducton There s a body of work n the lterature on varous restrcted sums of the number of dvsors of an nteger functon ncludng

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

On the size of quotient of two subsets of positive integers.

On the size of quotient of two subsets of positive integers. arxv:1706.04101v1 [math.nt] 13 Jun 2017 On the sze of quotent of two subsets of postve ntegers. Yur Shtenkov Abstract We obtan non-trval lower bound for the set A/A, where A s a subset of the nterval [1,

More information

Randomness and Computation

Randomness and Computation Randomness and Computaton or, Randomzed Algorthms Mary Cryan School of Informatcs Unversty of Ednburgh RC 208/9) Lecture 0 slde Balls n Bns m balls, n bns, and balls thrown unformly at random nto bns usually

More information

Notes on Frequency Estimation in Data Streams

Notes on Frequency Estimation in Data Streams Notes on Frequency Estmaton n Data Streams In (one of) the data streamng model(s), the data s a sequence of arrvals a 1, a 2,..., a m of the form a j = (, v) where s the dentty of the tem and belongs to

More information

A note on almost sure behavior of randomly weighted sums of φ-mixing random variables with φ-mixing weights

A note on almost sure behavior of randomly weighted sums of φ-mixing random variables with φ-mixing weights ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 7, Number 2, December 203 Avalable onlne at http://acutm.math.ut.ee A note on almost sure behavor of randomly weghted sums of φ-mxng

More information

Vapnik-Chervonenkis theory

Vapnik-Chervonenkis theory Vapnk-Chervonenks theory Rs Kondor June 13, 2008 For the purposes of ths lecture, we restrct ourselves to the bnary supervsed batch learnng settng. We assume that we have an nput space X, and an unknown

More information

On mutual information estimation for mixed-pair random variables

On mutual information estimation for mixed-pair random variables On mutual nformaton estmaton for mxed-par random varables November 3, 218 Aleksandr Beknazaryan, Xn Dang and Haln Sang 1 Department of Mathematcs, The Unversty of Msssspp, Unversty, MS 38677, USA. E-mal:

More information

Lecture Space-Bounded Derandomization

Lecture Space-Bounded Derandomization Notes on Complexty Theory Last updated: October, 2008 Jonathan Katz Lecture Space-Bounded Derandomzaton 1 Space-Bounded Derandomzaton We now dscuss derandomzaton of space-bounded algorthms. Here non-trval

More information

CSCE 790S Background Results

CSCE 790S Background Results CSCE 790S Background Results Stephen A. Fenner September 8, 011 Abstract These results are background to the course CSCE 790S/CSCE 790B, Quantum Computaton and Informaton (Sprng 007 and Fall 011). Each

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

A Note on Bound for Jensen-Shannon Divergence by Jeffreys

A Note on Bound for Jensen-Shannon Divergence by Jeffreys OPEN ACCESS Conference Proceedngs Paper Entropy www.scforum.net/conference/ecea- A Note on Bound for Jensen-Shannon Dvergence by Jeffreys Takuya Yamano, * Department of Mathematcs and Physcs, Faculty of

More information

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014)

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014) 0-80: Advanced Optmzaton and Randomzed Methods Lecture : Convex functons (Jan 5, 04) Lecturer: Suvrt Sra Addr: Carnege Mellon Unversty, Sprng 04 Scrbes: Avnava Dubey, Ahmed Hefny Dsclamer: These notes

More information

Convergence of random processes

Convergence of random processes DS-GA 12 Lecture notes 6 Fall 216 Convergence of random processes 1 Introducton In these notes we study convergence of dscrete random processes. Ths allows to characterze phenomena such as the law of large

More information

The internal structure of natural numbers and one method for the definition of large prime numbers

The internal structure of natural numbers and one method for the definition of large prime numbers The nternal structure of natural numbers and one method for the defnton of large prme numbers Emmanul Manousos APM Insttute for the Advancement of Physcs and Mathematcs 3 Poulou str. 53 Athens Greece Abstract

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) M(B) := # ( B Z N)

SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) M(B) := # ( B Z N) SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) S.BOUCKSOM Abstract. The goal of ths note s to present a remarably smple proof, due to Hen, of a result prevously obtaned by Gllet-Soulé,

More information

Course 395: Machine Learning - Lectures

Course 395: Machine Learning - Lectures Course 395: Machne Learnng - Lectures Lecture 1-2: Concept Learnng (M. Pantc Lecture 3-4: Decson Trees & CC Intro (M. Pantc Lecture 5-6: Artfcal Neural Networks (S.Zaferou Lecture 7-8: Instance ased Learnng

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution.

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution. Solutons HW #2 Dual of general LP. Fnd the dual functon of the LP mnmze subject to c T x Gx h Ax = b. Gve the dual problem, and make the mplct equalty constrants explct. Soluton. 1. The Lagrangan s L(x,

More information

Modelli Clamfim Equazione del Calore Lezione ottobre 2014

Modelli Clamfim Equazione del Calore Lezione ottobre 2014 CLAMFIM Bologna Modell 1 @ Clamfm Equazone del Calore Lezone 17 15 ottobre 2014 professor Danele Rtell danele.rtell@unbo.t 1/24? Convoluton The convoluton of two functons g(t) and f(t) s the functon (g

More information

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction ECONOMICS 35* -- NOTE 7 ECON 35* -- NOTE 7 Interval Estmaton n the Classcal Normal Lnear Regresson Model Ths note outlnes the basc elements of nterval estmaton n the Classcal Normal Lnear Regresson Model

More information

11 Tail Inequalities Markov s Inequality. Lecture 11: Tail Inequalities [Fa 13]

11 Tail Inequalities Markov s Inequality. Lecture 11: Tail Inequalities [Fa 13] Algorthms Lecture 11: Tal Inequaltes [Fa 13] If you hold a cat by the tal you learn thngs you cannot learn any other way. Mark Twan 11 Tal Inequaltes The smple recursve structure of skp lsts made t relatvely

More information

Convergence of option rewards for multivariate price processes

Convergence of option rewards for multivariate price processes Mathematcal Statstcs Stockholm Unversty Convergence of opton rewards for multvarate prce processes Robn Lundgren Dmtr Slvestrov Research Report 2009:10 ISSN 1650-0377 Postal address: Mathematcal Statstcs

More information

Bernoulli Numbers and Polynomials

Bernoulli Numbers and Polynomials Bernoull Numbers and Polynomals T. Muthukumar tmk@tk.ac.n 17 Jun 2014 The sum of frst n natural numbers 1, 2, 3,..., n s n n(n + 1 S 1 (n := m = = n2 2 2 + n 2. Ths formula can be derved by notng that

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980 MT07: Multvarate Statstcal Methods Mke Tso: emal mke.tso@manchester.ac.uk Webpage for notes: http://www.maths.manchester.ac.uk/~mkt/new_teachng.htm. Introducton to multvarate data. Books Chat eld, C. and

More information

Google PageRank with Stochastic Matrix

Google PageRank with Stochastic Matrix Google PageRank wth Stochastc Matrx Md. Sharq, Puranjt Sanyal, Samk Mtra (M.Sc. Applcatons of Mathematcs) Dscrete Tme Markov Chan Let S be a countable set (usually S s a subset of Z or Z d or R or R d

More information

Credit Card Pricing and Impact of Adverse Selection

Credit Card Pricing and Impact of Adverse Selection Credt Card Prcng and Impact of Adverse Selecton Bo Huang and Lyn C. Thomas Unversty of Southampton Contents Background Aucton model of credt card solctaton - Errors n probablty of beng Good - Errors n

More information

Appendix B. Criterion of Riemann-Stieltjes Integrability

Appendix B. Criterion of Riemann-Stieltjes Integrability Appendx B. Crteron of Remann-Steltes Integrablty Ths note s complementary to [R, Ch. 6] and [T, Sec. 3.5]. The man result of ths note s Theorem B.3, whch provdes the necessary and suffcent condtons for

More information

Exercises of Chapter 2

Exercises of Chapter 2 Exercses of Chapter Chuang-Cheh Ln Department of Computer Scence and Informaton Engneerng, Natonal Chung Cheng Unversty, Mng-Hsung, Chay 61, Tawan. Exercse.6. Suppose that we ndependently roll two standard

More information

Large Deviations and Multinomial Probit Choice

Large Deviations and Multinomial Probit Choice Large Devatons and Multnomal Probt Choce Emn Dokumacı and Wllam H. Sandholm July 4, 2011 Abstract We consder a dscrete choce model n whch the payoffs to each of an agent s n actons are subjected to the

More information

arxiv: v3 [math.nt] 28 Apr 2011

arxiv: v3 [math.nt] 28 Apr 2011 THE ADDITIVE COMPLEMENTS OF PRIMES AND GOLDBACH S PROBLEM LI-XIA DAI AND HAO PAN arxv:0.653v3 [math.nt] 28 Apr 20. Introducton Frst,wentroducethenotonofaddtvecomplements. ForasetA N = {0,,2,3,...}, we

More information

Lecture 4. Instructor: Haipeng Luo

Lecture 4. Instructor: Haipeng Luo Lecture 4 Instructor: Hapeng Luo In the followng lectures, we focus on the expert problem and study more adaptve algorthms. Although Hedge s proven to be worst-case optmal, one may wonder how well t would

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

STEINHAUS PROPERTY IN BANACH LATTICES

STEINHAUS PROPERTY IN BANACH LATTICES DEPARTMENT OF MATHEMATICS TECHNICAL REPORT STEINHAUS PROPERTY IN BANACH LATTICES DAMIAN KUBIAK AND DAVID TIDWELL SPRING 2015 No. 2015-1 TENNESSEE TECHNOLOGICAL UNIVERSITY Cookevlle, TN 38505 STEINHAUS

More information