Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Size: px
Start display at page:

Download "Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )"

Transcription

1 Kangweon-Kyungk Math. Jour ), No. 1, pp AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often appear n varous felds such as network flows and computer tomography. In ths paper, we propose an algorthm for solvng those problems and prove the convergence of the proposed algorthm. 1. Introducton Consder the multcommodty transportaton problem wth convex quadratc cost functon 1.1) mnmze subject to 1 2 x x0 ) T Qx x 0 ) γ Ax δ where A = a j ) s a gven m n matrx whose th row s a T, x0 R n, r, δ R m are gven vectors, Q s a gven n n symmetrc postvedefnte matrx and the superscrpt T denotes transposton. We assume that matrx A does not contan any row of whch elements are all zero. The pars of nequalty constrants n problem 1.1) are referred to as nterval constrants. Interval constrants often appear n optmzaton problems that arse n varous felds such as network flows and computer tomography. Recently, varous row-acton methods [1,2,8], whch orgnate from the classcal Hldreth s method[4], have drawn much attenton. Those Receved October 13, Mathematcs Subject Classfcaton: 49M37. Key words and phrases: multcommodty transportaton problem, quadratc programmng problem, network flows. Ths paper was supported by research fund of Inha unversty, 1993.

2 8 Yong Joon Ryang methods are partcularly useful for large and sparse problems, because they act upon rows of the orgnal coeffcent matrx one at a tme. They are adaptatons of coordnate descent methods such as Gauss- Sedel method or ts varants, for solvng the dual of a gven quadratc programmng problem. To obtan the soluton of problem 1.1), t wll be helpful to consder the dual of problem 1.1). 1.2) mnmze φz) subject to z 0 where φ : R 2m R s a convex quadratc functon defned by 1.3) φz) = 1 2 zt ÂQ 1 Â T z + z T b Âx0 ), Â s the 2m n matrx 1.4) Â = a 1, a 1, a 2, a 2,, a m, a m ) T, b s the 2m-vector 1.5) b = δ 1, γ 1, δ 2, γ 2,, δ m, γ m ) T, and z s the 2m-vector 1.6) z = z + 1, z 1, z+ 2, z 2,, z+ m, z m) T. Note that z +, z ) s a par of dual varables assocated wth the th par of the nterval constrants of 1.1),.e., z + and z correspond to the constrants a T x δ and a T x γ, respectvely. By takng nto account the specal structure of problem 1.1), Herman and Lent[3] extended Hldreth s algorthm to deal wth nterval constrants drectly, thereby economzng the number of dual varables by half [2]. Ryang[7] have recently proposed a method that deal wth the nterval constrants n a drect manner. In ths paper we propose a method for solvng those problems, whch may be regard as the applcaton of the Jacob method to the dual of the orgnal problems. We prove the convergence of the proposed algorthm. In secton 2, a row-acton method s presented. In secton 3, the proposed algorthm s shown to converge to the soluton of 1.1).

3 An teratve row-acton method 9 2. Row-Acton Method In ths secton, we state an algorthm for solvng the nterval constrant problem 1.1). Algorthm 2.1. Intalzaton : Let x 0), x 0) ) := x 0, 0), k := 0 and choose a relaxaton parameter ω > 0. Iteraton k : ) For = 1,, m, where f z +k) else endf z k) c +k) c k) c k) c +k) z +k+1) z k+1) then := mn{z +k), ω k) }, := mn{z k), ωγ k) + c +k) } := mn{z k), ωγ k) }, := mn{z +k), ω k) + c k) } := z +k) := z k) c +k), c k), k) Γ k) := δ a T xk) α, := γ a T xk) α. ) Let where x k+1) := x k) + Q 1 m =1 c +k) c k) )a. 2.1) α = a T Q 1 a, = 1,, m.

4 10 Yong Joon Ryang Note that α are all postve, snce Q s postve defnte and a 0. Note also that, snce γ δ, the followng nequaltes are always satsfed : 2.2) Γ k) k), = 1,, m. Lemma 2.1. Let {x k) } and {z k) } be generated by Algorthm 2.1. Then for all k, we have 2.3) x k) = x 0 Q 1 Â T z k), 2.4) z k) 0, 2.5) z +k) z k) = 0, = 1,, m. Proof. 2.3) and 2.4) drectly follow from the manner n whch {x k) } and {z k) } are updated n the algorthm. We prove 2.5) by nducton. For k = 0, t trvally holds. For each, we assume z +k) z k) = 0 and show that t s also true for k + 1. Wthout loss of generalty, we may only consder the case where x +k) x k), because a parallel argument s vald for the opposte case. Frst note that, when z +k) Moreover, f z +k) c k) z k) = mn{0, ω k) ω k) Γ k) from 2.2). Therefore we must have z k+1) z +k) < ω k), 2.4) mples z +k) 0 and z k) = 0. holds, then we have c +k) = ω k) and )} = 0, where the last equalty follows = 0. On the other hand, f = z +k), whch n turn mples holds, then we have c +k) z +k+1) = 0. Thus 2.5) s satsfed for k + 1. For each, ether z +k) Moreover, we can deduce the followng relatons : If z +k) z k) 2.6) c +k), c k) ) =,.e., z +k) = 0 or z k) = 0 must always hold by 2.5). 0, z k) = 0, then ω k), 0), f z +k) ω k), z +k), 0), f ω k) z +k) ωγ k), + z +k) ), f ωγ k) z +k). z +k), ωγ k)

5 If z +k) 2.7) An teratve row-acton method 11 z k),.e., z +k) = 0, z k) 0, then c +k), c k) ) = 0, ωγ k) ), f z k) ωγ k), 0, z k) ), f ωγ k) z k) ω k), ω k) + z k) 3. Convergence of Algorthm 2.1, z k) ), f ω k) z k). In ths secton, we prove convergence of Algorthm 2.1. Frst, we consder an algorthm for solvng general lnear complementarty problems. Then we show that Algorthm 2.1 can be reduced to ths algorthm. Let us consder symmetrc lnear complementarty problem, whch s to fnd y R l such that 3.1) Mu + q 0, y 0, y T My + q) = 0, where M s an l l symmetrc matrx and q s a vector n R l. If M s postve semdefnte, then ths problem s equvalent to the problem 3.2) mnmze 1 2 yt My + q T y subject to y 0. Mangasaran [5] proposes the followng algorthm for problem 3.1). Algorthm 3.1. Intalzaton : Let y 0) := 0 and k := 0. Iteraton k : Choose an l l dagonal matrx E k) and an l l matrx K k), and let 3.3) y k+1) := y k) ωe k) My k) + q + K k) y k+1) y k) ))) +, where, for any vector y, y + denotes the vector wth elements y + ) = max{0, y }. Varous choces for {E k) } and {K k) } are possble and each partcular choce yelds a dfferent algorthm [5]. In the followng, we show that Algorthm 2.1 s a partcular realzaton of Algorthm 3.1.

6 12 Yong Joon Ryang Frst observe that problem 1.2) can be wrtten as problem 3.2) wth l = 2m by settng 3.4) M = ÂQ 1 Â T, 3.5) q = b Âz0, 3.6) y = z. Note that the postve defnteness of Q mples that the matrx M defned by 3.4) s postve semdefnte. We wll show that Algorthm 2.1 can be reduced to Algorthm 3.1 by choosng matrces E k) and K k) approprately. Specfcally, let E k) and K k) be 2m 2m matrces such that 3.7) E k) = 3.8) K k) = D D 1 m K k) K k) m where 3.9) D 1 = 1 ) 1 0, α ) K k) =,, ) 0 0 α, f z +k) 0 ω α ) 0 ω, otherwse, 0 0 z k), and α are defned by 2.1) for all = 1,, m. Snce matrx K k) gven by 3.8) are block dagonal, the par y k+1) 2 1, yk+1) 2 ) of varables n problem 3.1), whch corresponds to z +k+1), z k+1) ) n problem 1.2) by 1.6) and 3.6), can be updated separately from each other, that s, n parallel for = 1,, m [6].

7 An teratve row-acton method 13 Theorem 3.1. Let M, q and y n problem 3.1) be defned by 3.4)- 3.6). Then the sequence {z k) } generated by Algorthm 3.1 wth E k) and K k) gven by 3.7)-3.10) s dentcal wth the sequence {z k) } generated by Algorthm 3.1 for problem 1.2). Proof. The formula 3.3) may be wrtten componentwse as follows : For = 1,, m, f z +k) z k) then 3.11) z +k+1) := z +k) ω ) a T Q 1 Â T z k) + δ a T x 0 ), α ) otherwse z k+1) := 3.13) z k+1) := z k) ω α a T Q 1 Â T z k) γ + a T x 0 α ω z+k+1) z +k) ) )) z k) ω ) a T Q 1 Â T z k) γ + a T x 0 ), α ) z +k+1) := For smplcty, let z +k) ω α a T Q 1 Â T z k) +δ a T x 0 α )) ω z k+1) z k) ) 3.15) x k) := x 0 Q 1 Â T z k), ) k) := δ a T xk) α, 3.17) Γk) := γ a T xk) α.

8 14 Yong Joon Ryang Then 3.11)-3.14) are rewrtten as follows : z +k) z k) then For = 1,, m, f 3.18) z +k+1) = 3.19) z k+1) = otherwse 3.20) z k+1) = 3.21) z +k+1) = z +k) ω ) δ a T x k) ) α + = max{0, z +k) = z +k) mn{z +k) k) ω } ω k) }, z k) ω γ + a T x k) α z +k+1) α ω = max{0, z k) = z k) + ω Γ k) + z +k+1) z +k) )} )) ) z +k) + mn{z k), ω Γ k) z +k+1) z +k) )} z k) ω ) γ a T x k) ) α + = max{0, z k) = z k) ω Γ k) } mn{z k) ω Γ k) }, z +k) ω δ a T x k) α z k+1) α ω = max{0, z +k) = z +k) k) ω + z k+1) z k) )} mn{z +k), ω k) z k+1) )) ) z k) + z k) )}. Besdes, defne c +k) then z k) and c k) as follows : For = 1,, m, f z +k) 3.22) c +k) := mn{z +k) k), ω },

9 3.23) c k) otherwse 3.24) c k) An teratve row-acton method 15 := mn{z k), ω Γ k) + c +k) } := mn{z k), ω Γ k) }, 3.25) c +k) := mn{z +k) k), ω + c k) }. It then follows from 3.18), 3.19), 3.22) and 3.23) that, f z +k) z k), we have 3.26) z +k+1) = z +k) z +k), 3.27) z k+1) = z k) z k). On the other hand, f z +k) < z k), then 3.20), 3.21), 3.24) and 3.25) mply that the same relatons 3.26) and 3.27) also hold. Moreover note that x k+1) = x 0 Q 1 m =1 = x 0 Q 1 m z +k+1) z +k) =1 = x k) + Q 1 m c +k) =1 z k+1) )a z k) )a + Q 1 c k) )a, m c +k) j=1 c k) )a where the frst and the thrd equaltes follow from 3.24), whle the second follows from 3.26) and 3.27). Snce both Algorthms 2.1 and 3.1 start wth z 0) = 0, we can nductvely show that 3.28) x k) = x k), 3.29) k) 3.30) c +k) for all k, where {x k) }, { k) = k), Γk) = Γ k), = 1,, m, = c +k), c k) = c k), = 1,, m, }, {Γ k) }, {c +k) } and {c k) } are the sequences generated by Algorthm 2.1. Thus the sequence {z k) } generated by Algorthms 2.1 and 3.1 are dentcal.

10 16 Yong Joon Ryang References [1] Y. Censor, Row-Acton Methods for Huge and Sparse Systems and Ther Applcatons, SIAM Revew ), [2] Y. Censor and A. Lent, An Iteratve Row-Acton Method for Interval Convex Programmng, Journal of Optmzaton Theory and Applcatons ), [3] G.T. Herman and A. Lent, A Famly of Iteratve Quadratc Optmzaton Algorthms for Pars of Inequaltes wth Applcaton n Dagnostc Radology, Mathematcal Programmng Study ), [4] C. Hldreth, A Quadratc Programmng Procedure, Naval Research Logstc Quarterly ), [5] O.L. Mangasaran, Soluton of Symmetrc Lnear Complementarty Problems by Iteratve Methods, Journal of Optmzaton Theory and Applcatons ), [6] O.L. Mangasaran and R. De Leone, Parallel Successve Overrelaxaton Methods for Symmetrc Lnear Complementarty Problems and Lnear Programs, Journal of Optmzaton Theory and Applcatons ), [7] Y.J. Ryang, A Method for Solvng Nonlnear Programmng Problems, Inha Unversty R.I.S.T ), [8] S.A. Zenos and Y. Censor, Massvely Parallel Row-Acton Algorthms for Some Nonlnear Transportaton Problems, SIAM Journal on Optmzaton ), [9] S.A. Zenos, On the Fn-Gran Decomposton on Multcommodty Transportaton Problems, SIAM Journal on Optmzaton, Forth comng. Dept. of Computer Scence and Engneerng Inha Unversty Incheon, , Korea

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution.

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution. Solutons HW #2 Dual of general LP. Fnd the dual functon of the LP mnmze subject to c T x Gx h Ax = b. Gve the dual problem, and make the mplct equalty constrants explct. Soluton. 1. The Lagrangan s L(x,

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

for Linear Systems With Strictly Diagonally Dominant Matrix

for Linear Systems With Strictly Diagonally Dominant Matrix MATHEMATICS OF COMPUTATION, VOLUME 35, NUMBER 152 OCTOBER 1980, PAGES 1269-1273 On an Accelerated Overrelaxaton Iteratve Method for Lnear Systems Wth Strctly Dagonally Domnant Matrx By M. Madalena Martns*

More information

COS 521: Advanced Algorithms Game Theory and Linear Programming

COS 521: Advanced Algorithms Game Theory and Linear Programming COS 521: Advanced Algorthms Game Theory and Lnear Programmng Moses Charkar February 27, 2013 In these notes, we ntroduce some basc concepts n game theory and lnear programmng (LP). We show a connecton

More information

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence.

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence. Vector Norms Chapter 7 Iteratve Technques n Matrx Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematcs Unversty of Calforna, Berkeley Math 128B Numercal Analyss Defnton A vector norm

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Perron Vectors of an Irreducible Nonnegative Interval Matrix Perron Vectors of an Irreducble Nonnegatve Interval Matrx Jr Rohn August 4 2005 Abstract As s well known an rreducble nonnegatve matrx possesses a unquely determned Perron vector. As the man result of

More information

e - c o m p a n i o n

e - c o m p a n i o n OPERATIONS RESEARCH http://dxdoorg/0287/opre007ec e - c o m p a n o n ONLY AVAILABLE IN ELECTRONIC FORM 202 INFORMS Electronc Companon Generalzed Quantty Competton for Multple Products and Loss of Effcency

More information

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS BOUNDEDNESS OF THE IESZ TANSFOM WITH MATIX A WEIGHTS Introducton Let L = L ( n, be the functon space wth norm (ˆ f L = f(x C dx d < For a d d matrx valued functon W : wth W (x postve sem-defnte for all

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 17. a ij x (k) b i. a ij x (k+1) (D + L)x (k+1) = b Ux (k)

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 17. a ij x (k) b i. a ij x (k+1) (D + L)x (k+1) = b Ux (k) STAT 309: MATHEMATICAL COMPUTATIONS I FALL 08 LECTURE 7. sor method remnder: n coordnatewse form, Jacob method s = [ b a x (k) a and Gauss Sedel method s = [ b a = = remnder: n matrx form, Jacob method

More information

Lecture 17: Lee-Sidford Barrier

Lecture 17: Lee-Sidford Barrier CSE 599: Interplay between Convex Optmzaton and Geometry Wnter 2018 Lecturer: Yn Tat Lee Lecture 17: Lee-Sdford Barrer Dsclamer: Please tell me any mstake you notced. In ths lecture, we talk about the

More information

On a direct solver for linear least squares problems

On a direct solver for linear least squares problems ISSN 2066-6594 Ann. Acad. Rom. Sc. Ser. Math. Appl. Vol. 8, No. 2/2016 On a drect solver for lnear least squares problems Constantn Popa Abstract The Null Space (NS) algorthm s a drect solver for lnear

More information

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis A Appendx for Causal Interacton n Factoral Experments: Applcaton to Conjont Analyss Mathematcal Appendx: Proofs of Theorems A. Lemmas Below, we descrbe all the lemmas, whch are used to prove the man theorems

More information

SELECTED SOLUTIONS, SECTION (Weak duality) Prove that the primal and dual values p and d defined by equations (4.3.2) and (4.3.3) satisfy p d.

SELECTED SOLUTIONS, SECTION (Weak duality) Prove that the primal and dual values p and d defined by equations (4.3.2) and (4.3.3) satisfy p d. SELECTED SOLUTIONS, SECTION 4.3 1. Weak dualty Prove that the prmal and dual values p and d defned by equatons 4.3. and 4.3.3 satsfy p d. We consder an optmzaton problem of the form The Lagrangan for ths

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

Supplement: Proofs and Technical Details for The Solution Path of the Generalized Lasso

Supplement: Proofs and Technical Details for The Solution Path of the Generalized Lasso Supplement: Proofs and Techncal Detals for The Soluton Path of the Generalzed Lasso Ryan J. Tbshran Jonathan Taylor In ths document we gve supplementary detals to the paper The Soluton Path of the Generalzed

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

On the Global Linear Convergence of the ADMM with Multi-Block Variables

On the Global Linear Convergence of the ADMM with Multi-Block Variables On the Global Lnear Convergence of the ADMM wth Mult-Block Varables Tany Ln Shqan Ma Shuzhong Zhang May 31, 01 Abstract The alternatng drecton method of multplers ADMM has been wdely used for solvng structured

More information

General viscosity iterative method for a sequence of quasi-nonexpansive mappings

General viscosity iterative method for a sequence of quasi-nonexpansive mappings Avalable onlne at www.tjnsa.com J. Nonlnear Sc. Appl. 9 (2016), 5672 5682 Research Artcle General vscosty teratve method for a sequence of quas-nonexpansve mappngs Cuje Zhang, Ynan Wang College of Scence,

More information

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41,

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41, The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no confuson

More information

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method Soluton of Lnear System of Equatons and Matr Inverson Gauss Sedel Iteraton Method It s another well-known teratve method for solvng a system of lnear equatons of the form a + a22 + + ann = b a2 + a222

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem.

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem. prnceton u. sp 02 cos 598B: algorthms and complexty Lecture 20: Lft and Project, SDP Dualty Lecturer: Sanjeev Arora Scrbe:Yury Makarychev Today we wll study the Lft and Project method. Then we wll prove

More information

Deriving the X-Z Identity from Auxiliary Space Method

Deriving the X-Z Identity from Auxiliary Space Method Dervng the X-Z Identty from Auxlary Space Method Long Chen Department of Mathematcs, Unversty of Calforna at Irvne, Irvne, CA 92697 chenlong@math.uc.edu 1 Iteratve Methods In ths paper we dscuss teratve

More information

Randić Energy and Randić Estrada Index of a Graph

Randić Energy and Randić Estrada Index of a Graph EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 5, No., 202, 88-96 ISSN 307-5543 www.ejpam.com SPECIAL ISSUE FOR THE INTERNATIONAL CONFERENCE ON APPLIED ANALYSIS AND ALGEBRA 29 JUNE -02JULY 20, ISTANBUL

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Relaxation Methods for Iterative Solution to Linear Systems of Equations

Relaxation Methods for Iterative Solution to Linear Systems of Equations Relaxaton Methods for Iteratve Soluton to Lnear Systems of Equatons Gerald Recktenwald Portland State Unversty Mechancal Engneerng Department gerry@pdx.edu Overvew Techncal topcs Basc Concepts Statonary

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 1 10/1/013 Martngale Concentraton Inequaltes and Applcatons Content. 1. Exponental concentraton for martngales wth bounded ncrements.

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k)

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k) ISSN 1749-3889 (prnt), 1749-3897 (onlne) Internatonal Journal of Nonlnear Scence Vol.17(2014) No.2,pp.188-192 Modfed Block Jacob-Davdson Method for Solvng Large Sparse Egenproblems Hongy Mao, College of

More information

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of Chapter 7 Generalzed and Weghted Least Squares Estmaton The usual lnear regresson model assumes that all the random error components are dentcally and ndependently dstrbuted wth constant varance. When

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Integrals and Invariants of Euler-Lagrange Equations

Integrals and Invariants of Euler-Lagrange Equations Lecture 16 Integrals and Invarants of Euler-Lagrange Equatons ME 256 at the Indan Insttute of Scence, Bengaluru Varatonal Methods and Structural Optmzaton G. K. Ananthasuresh Professor, Mechancal Engneerng,

More information

Math 217 Fall 2013 Homework 2 Solutions

Math 217 Fall 2013 Homework 2 Solutions Math 17 Fall 013 Homework Solutons Due Thursday Sept. 6, 013 5pm Ths homework conssts of 6 problems of 5 ponts each. The total s 30. You need to fully justfy your answer prove that your functon ndeed has

More information

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS) Some Comments on Acceleratng Convergence of Iteratve Sequences Usng Drect Inverson of the Iteratve Subspace (DIIS) C. Davd Sherrll School of Chemstry and Bochemstry Georga Insttute of Technology May 1998

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD Matrx Approxmaton va Samplng, Subspace Embeddng Lecturer: Anup Rao Scrbe: Rashth Sharma, Peng Zhang 0/01/016 1 Solvng Lnear Systems Usng SVD Two applcatons of SVD have been covered so far. Today we loo

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Inexact Newton Methods for Inverse Eigenvalue Problems

Inexact Newton Methods for Inverse Eigenvalue Problems Inexact Newton Methods for Inverse Egenvalue Problems Zheng-jan Ba Abstract In ths paper, we survey some of the latest development n usng nexact Newton-lke methods for solvng nverse egenvalue problems.

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

1 GSW Iterative Techniques for y = Ax

1 GSW Iterative Techniques for y = Ax 1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

THE WEIGHTED WEAK TYPE INEQUALITY FOR THE STRONG MAXIMAL FUNCTION

THE WEIGHTED WEAK TYPE INEQUALITY FOR THE STRONG MAXIMAL FUNCTION THE WEIGHTED WEAK TYPE INEQUALITY FO THE STONG MAXIMAL FUNCTION THEMIS MITSIS Abstract. We prove the natural Fefferman-Sten weak type nequalty for the strong maxmal functon n the plane, under the assumpton

More information

SL n (F ) Equals its Own Derived Group

SL n (F ) Equals its Own Derived Group Internatonal Journal of Algebra, Vol. 2, 2008, no. 12, 585-594 SL n (F ) Equals ts Own Derved Group Jorge Macel BMCC-The Cty Unversty of New York, CUNY 199 Chambers street, New York, NY 10007, USA macel@cms.nyu.edu

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mt.edu 6.854J / 18.415J Advanced Algorthms Fall 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocw.mt.edu/terms. 18.415/6.854 Advanced Algorthms

More information

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014)

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014) 0-80: Advanced Optmzaton and Randomzed Methods Lecture : Convex functons (Jan 5, 04) Lecturer: Suvrt Sra Addr: Carnege Mellon Unversty, Sprng 04 Scrbes: Avnava Dubey, Ahmed Hefny Dsclamer: These notes

More information

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values Fall 007 Soluton to Mdterm Examnaton STAT 7 Dr. Goel. [0 ponts] For the general lnear model = X + ε, wth uncorrelated errors havng mean zero and varance σ, suppose that the desgn matrx X s not necessarly

More information

On the Multicriteria Integer Network Flow Problem

On the Multicriteria Integer Network Flow Problem BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 5, No 2 Sofa 2005 On the Multcrtera Integer Network Flow Problem Vassl Vasslev, Marana Nkolova, Maryana Vassleva Insttute of

More information

Projective change between two Special (α, β)- Finsler Metrics

Projective change between two Special (α, β)- Finsler Metrics Internatonal Journal of Trend n Research and Development, Volume 2(6), ISSN 2394-9333 www.jtrd.com Projectve change between two Specal (, β)- Fnsler Metrcs Gayathr.K 1 and Narasmhamurthy.S.K 2 1 Assstant

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 13 GENE H GOLUB 1 Iteratve Methods Very large problems (naturally sparse, from applcatons): teratve methods Structured matrces (even sometmes dense,

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty Addtonal Codes usng Fnte Dfference Method Benamn Moll 1 HJB Equaton for Consumpton-Savng Problem Wthout Uncertanty Before consderng the case wth stochastc ncome n http://www.prnceton.edu/~moll/ HACTproect/HACT_Numercal_Appendx.pdf,

More information

Eigenvalues of Random Graphs

Eigenvalues of Random Graphs Spectral Graph Theory Lecture 2 Egenvalues of Random Graphs Danel A. Spelman November 4, 202 2. Introducton In ths lecture, we consder a random graph on n vertces n whch each edge s chosen to be n the

More information

CSCE 790S Background Results

CSCE 790S Background Results CSCE 790S Background Results Stephen A. Fenner September 8, 011 Abstract These results are background to the course CSCE 790S/CSCE 790B, Quantum Computaton and Informaton (Sprng 007 and Fall 011). Each

More information

FIRST AND SECOND ORDER NECESSARY OPTIMALITY CONDITIONS FOR DISCRETE OPTIMAL CONTROL PROBLEMS

FIRST AND SECOND ORDER NECESSARY OPTIMALITY CONDITIONS FOR DISCRETE OPTIMAL CONTROL PROBLEMS Yugoslav Journal of Operatons Research 6 (6), umber, 53-6 FIRST D SECOD ORDER ECESSRY OPTIMLITY CODITIOS FOR DISCRETE OPTIML COTROL PROBLEMS Boban MRIKOVIĆ Faculty of Mnng and Geology, Unversty of Belgrade

More information

Lecture 3: Dual problems and Kernels

Lecture 3: Dual problems and Kernels Lecture 3: Dual problems and Kernels C4B Machne Learnng Hlary 211 A. Zsserman Prmal and dual forms Lnear separablty revsted Feature mappng Kernels for SVMs Kernel trck requrements radal bass functons SVM

More information

The lower and upper bounds on Perron root of nonnegative irreducible matrices

The lower and upper bounds on Perron root of nonnegative irreducible matrices Journal of Computatonal Appled Mathematcs 217 (2008) 259 267 wwwelsevercom/locate/cam The lower upper bounds on Perron root of nonnegatve rreducble matrces Guang-Xn Huang a,, Feng Yn b,keguo a a College

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

form, and they present results of tests comparng the new algorthms wth other methods. Recently, Olschowka & Neumaer [7] ntroduced another dea for choo

form, and they present results of tests comparng the new algorthms wth other methods. Recently, Olschowka & Neumaer [7] ntroduced another dea for choo Scalng and structural condton numbers Arnold Neumaer Insttut fur Mathematk, Unverstat Wen Strudlhofgasse 4, A-1090 Wen, Austra emal: neum@cma.unve.ac.at revsed, August 1996 Abstract. We ntroduce structural

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

A FORMULA FOR COMPUTING INTEGER POWERS FOR ONE TYPE OF TRIDIAGONAL MATRIX

A FORMULA FOR COMPUTING INTEGER POWERS FOR ONE TYPE OF TRIDIAGONAL MATRIX Hacettepe Journal of Mathematcs and Statstcs Volume 393 0 35 33 FORMUL FOR COMPUTING INTEGER POWERS FOR ONE TYPE OF TRIDIGONL MTRIX H Kıyak I Gürses F Yılmaz and D Bozkurt Receved :08 :009 : ccepted 5

More information

A property of the elementary symmetric functions

A property of the elementary symmetric functions Calcolo manuscrpt No. (wll be nserted by the edtor) A property of the elementary symmetrc functons A. Esnberg, G. Fedele Dp. Elettronca Informatca e Sstemstca, Unverstà degl Stud della Calabra, 87036,

More information

Maximizing the number of nonnegative subsets

Maximizing the number of nonnegative subsets Maxmzng the number of nonnegatve subsets Noga Alon Hao Huang December 1, 213 Abstract Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what s the maxmum

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

Systems of Equations (SUR, GMM, and 3SLS)

Systems of Equations (SUR, GMM, and 3SLS) Lecture otes on Advanced Econometrcs Takash Yamano Fall Semester 4 Lecture 4: Sstems of Equatons (SUR, MM, and 3SLS) Seemngl Unrelated Regresson (SUR) Model Consder a set of lnear equatons: $ + ɛ $ + ɛ

More information

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities Supplementary materal: Margn based PU Learnng We gve the complete proofs of Theorem and n Secton We frst ntroduce the well-known concentraton nequalty, so the covarance estmator can be bounded Then we

More information

Perfect Competition and the Nash Bargaining Solution

Perfect Competition and the Nash Bargaining Solution Perfect Competton and the Nash Barganng Soluton Renhard John Department of Economcs Unversty of Bonn Adenauerallee 24-42 53113 Bonn, Germany emal: rohn@un-bonn.de May 2005 Abstract For a lnear exchange

More information

arxiv: v1 [math.co] 12 Sep 2014

arxiv: v1 [math.co] 12 Sep 2014 arxv:1409.3707v1 [math.co] 12 Sep 2014 On the bnomal sums of Horadam sequence Nazmye Ylmaz and Necat Taskara Department of Mathematcs, Scence Faculty, Selcuk Unversty, 42075, Campus, Konya, Turkey March

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems Mathematca Aeterna, Vol. 1, 011, no. 06, 405 415 Applcaton of B-Splne to Numercal Soluton of a System of Sngularly Perturbed Problems Yogesh Gupta Department of Mathematcs Unted College of Engneerng &

More information

Convergence rates of proximal gradient methods via the convex conjugate

Convergence rates of proximal gradient methods via the convex conjugate Convergence rates of proxmal gradent methods va the convex conjugate Davd H Gutman Javer F Peña January 8, 018 Abstract We gve a novel proof of the O(1/ and O(1/ convergence rates of the proxmal gradent

More information

On the Interval Zoro Symmetric Single-step Procedure for Simultaneous Finding of Polynomial Zeros

On the Interval Zoro Symmetric Single-step Procedure for Simultaneous Finding of Polynomial Zeros Appled Mathematcal Scences, Vol. 5, 2011, no. 75, 3693-3706 On the Interval Zoro Symmetrc Sngle-step Procedure for Smultaneous Fndng of Polynomal Zeros S. F. M. Rusl, M. Mons, M. A. Hassan and W. J. Leong

More information

Interactive Bi-Level Multi-Objective Integer. Non-linear Programming Problem

Interactive Bi-Level Multi-Objective Integer. Non-linear Programming Problem Appled Mathematcal Scences Vol 5 0 no 65 3 33 Interactve B-Level Mult-Objectve Integer Non-lnear Programmng Problem O E Emam Department of Informaton Systems aculty of Computer Scence and nformaton Helwan

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

On some variants of Jensen s inequality

On some variants of Jensen s inequality On some varants of Jensen s nequalty S S DRAGOMIR School of Communcatons & Informatcs, Vctora Unversty, Vc 800, Australa EMMA HUNT Department of Mathematcs, Unversty of Adelade, SA 5005, Adelade, Australa

More information

Homework Notes Week 7

Homework Notes Week 7 Homework Notes Week 7 Math 4 Sprng 4 #4 (a Complete the proof n example 5 that s an nner product (the Frobenus nner product on M n n (F In the example propertes (a and (d have already been verfed so we

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

System in Weibull Distribution

System in Weibull Distribution Internatonal Matheatcal Foru 4 9 no. 9 94-95 Relablty Equvalence Factors of a Seres-Parallel Syste n Webull Dstrbuton M. A. El-Dacese Matheatcs Departent Faculty of Scence Tanta Unversty Tanta Egypt eldacese@yahoo.co

More information

A MODIFIED METHOD FOR SOLVING SYSTEM OF NONLINEAR EQUATIONS

A MODIFIED METHOD FOR SOLVING SYSTEM OF NONLINEAR EQUATIONS Journal of Mathematcs and Statstcs 9 (1): 4-8, 1 ISSN 1549-644 1 Scence Publcatons do:1.844/jmssp.1.4.8 Publshed Onlne 9 (1) 1 (http://www.thescpub.com/jmss.toc) A MODIFIED METHOD FOR SOLVING SYSTEM OF

More information

Uniqueness of Weak Solutions to the 3D Ginzburg- Landau Model for Superconductivity

Uniqueness of Weak Solutions to the 3D Ginzburg- Landau Model for Superconductivity Int. Journal of Math. Analyss, Vol. 6, 212, no. 22, 195-114 Unqueness of Weak Solutons to the 3D Gnzburg- Landau Model for Superconductvty Jshan Fan Department of Appled Mathematcs Nanjng Forestry Unversty

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES SVANTE JANSON Abstract. We gve explct bounds for the tal probabltes for sums of ndependent geometrc or exponental varables, possbly wth dfferent

More information