Gaussian Process Vine Copulas for Multivariate Dependence

Size: px
Start display at page:

Download "Gaussian Process Vine Copulas for Multivariate Dependence"

Transcription

1 Gaussian Process Vine Copulas for Multivariate Dependence José Miguel Hernández Lobato 1,2, David López Paz 3,2 and Zoubin Ghahramani 1 June 27, University of Cambridge 2 Equal Contributor 3 Ma-Planck-Institute for Intelligent Systems 1 / 23

2 Copulas and Multivariate Probabilistic Models Copulas link univariate marginal distributions into joint multivariate probabilistic models. Marginal Densities Copula Joint Density y Copulas specify dependencies between the random variables. 2 / 23

3 Separating Marginals and Dependencies Using Copulas p( 1,..., d ) = c(u 1,..., u d ) }{{} unique copula d p i ( i ), where u i := P i ( i ) and P i denotes the cumulative distribution function (cdf) for the variable i. We can model each of the d marginal distributions and the copula function independently. There eists a broad catalog of two-dimensional copula models i=1... However, for the high-dimensional regime, the number of copula models available and their epressiveness is more limited. 3 / 23

4 More than Two Dimensions: Vine Factorizations G G 1 /T 2 /T 2 1 e 4 = 1, , 3 2, 3 e1 = 1, 3 e 2 = 2, 3 e5 = 1, 4 3 G 3 /T 3 e 6 = 2, 4 1, e 3 = 3, 4 3, 4 1, 2 3 1, 4 3 c 1234 = c 13 c 12 3 }{{}}{{}}{{}}{{}}{{} c 23 c 34 e 1 e 2 e 3 } {{ } T 1 c 14 3 c e 4 e 5 } {{ } T 2 }{{} e 6 }{{} T 3 Parameters: bivariate copula families, tree construction method. 4 / 23

5 Eample of Vine Factorizations: Three Variables We can factorize c(u 1, u 2, u 3 ) using the product rule of probability as c(u 1, u 2, u 3 ) = p(u 3 u 1, u 2 )p(u 2 u 1 ) and we can epress each factor in terms of bivariate copula functions p(u 3 u 1, u 2 ) = p(u 3, u 1 u 2 )[p(u 1 u 2 )] 1 = c 31 2 (u 3 {u 2 }, u 1 {u 2 })p(u 3 u 2 ), p(u 3 u 2 ) = p(u 3, u 2 ) = c 32 (u 3, u 2 ), p(u 2 u 1 ) = p(u 2, u 1 ) = c 21 (u 2, u 1 ), where u i {u j } is the conditional cdf of u i given u j. Finally, we obtain c(u 1, u 2, u 3 ) = c 31 2 (u 3 {u 2 }, u 1 {u 2 })c 32 (u 3, u 2 )c 21 (u 2, u 1 ). 5 / 23

6 Eample of Vine Factorizations: Four Variables Using vines, we can factorize p( 1, 2, 3, 4 ) as p( 1, 2, 3, 4 ) = p 1 ( 1 )p 2 ( 2 )p 3 ( 3 )p 4 ( 4 ) c 13 (u 1, u 3 )c 23 (u 2, u 3 )c 34 (u 3, u 4 ) c 12 3 (u 1 {u 3 }, u 2 {u 3 })c 14 3 (u 1 {u 3 }, u 4 {u 3 }) c (u 2 {u 1, u 3 }, u 4 {u 1, u 3 }), We need to use conditional copulas and conditional cdfs! The conditional cdfs can be recursively computed using u i v = C ij v j (u i v j, u j v j ) u j v j. The Vine Simplifying Assumption: conditional copulas are independent from their conditioning variables. Can we do better? 6 / 23

7 A Semi-parametric Model for Conditional Copulas Assumption: the conditional copula is parametric and the conditioning variables have a direct effect on the copula parameter, specified in terms of Kendall s tau 4 τ [ 1, 1]: Eample: The Gaussian copula. c(u 1, u 2 τ) = φ 2[Φ 1 (u 1 ), Φ 1 (u 2 ) ρ = sin(τπ0.5)] φ(φ 1 (u 1 ))φ(φ 1 (u 2 )) φ and Φ are the standard Gaussian pdf and cdf. φ 2 is a 2D Gaussian pdf with zero mean, correlation ρ and variances 1. Let z be a vector of conditioning variables. Then we assume the conditional dependence τ = σ[f(z)], where f is a real function and σ() = 2Φ() 1 is a sigmoid function., 4 Many one-parameter copulas can be specified in terms of Kendall s τ rank correlation coefficient. 7 / 23

8 Estimation of Conditional Copulas with GP+EP Given the data D u,v = {(u i, v i )} n i=1 and D z = {z i } n i=1, we place a Gaussian process prior on f and do Bayesian inference. The posterior for f = (f 1,..., f n ) T, where f i = f(z i ), is prior likelihood p(f D u,v, D z ) = p(f D z )p(d u,v f), }{{} evidence posterior where p(f D z ) = N (f m, K) }{{} GP prior and p(d u,v f) = n c(u i, v i τ = σ(f i )). i=1 } {{ } copula likelihood model 8 / 23

9 Ingredient 1: The Gaussian Process Prior n p(f D u,v, D z ) N (f m, K) c(u i, v i τ = σ(f i )). The prior distribution of any set of values of f is jointly Gaussian. A covariance function specifies the value of K R n n : K ij = k(z i, z j ) = s ep( (z i z j ) T diag(λ)(z i z j )) + s 0. (1) This imposes smoothness properties on the possible prior values of f. i=1 In the GP prior m is given by a constant mean function. 9 / 23

10 Ingredient 2: The Copula Likelihood n p(f D u,v, D z ) N (f 0, K) c(u i, v i τ = σ(f i )). If several copula families are available as candidates, build one posterior for each one and perform Bayesian model selection. i=1 10 / 23

11 Ingredient 3: Bayesian Inference To make predictions at z n+1 for u n+1 and v n+1 average over all possible functions f, weighting each one by its posterior probability: p(u n+1, v n+1 z n+1, D UV, D z ) = c(u n+1, v n+1 τ = σ[f n+1 ]) p(f n+1 f, z n+1, D z ) p(f D UV, D z ) dfdf n+1. }{{}}{{}}{{} new likelihood conditional prior old posterior }{{} new posterior for f n+1 Problem 1: The likelihood is not Gaussian. We cannot perform eact inference (solve the integral analytically). Problem 2: Working with GPs is epensive. It often requires O(n 3 ) operations (compute Cholesky decompositions of n n matrices). 11 / 23

12 Ingredient 4: Epectation Propagation Solution for 1: Approimate likelihood factors with Gaussians. EP tunes ˆm i and ˆv i by minimizing KL[q i (f i )Q(f)[ˆq i (f i )] 1 Q(f)]. After convergence, the new (approimate) posterior is Gaussian. An approimation of the evidence and its gradient is returned. 12 / 23

13 Ingredient 5: FITC Approimation for GPs Solution for 2: Use a covariance matri K with a simple form: K K = Q + diag(k Q), Q = K nn0 K 1 n 0 n 0 K n0 n, where a subset of n 0 n pseudo-inputs is used. Q = K nn0 K 1 n0n0 K n0n The n 0 pseudo-inputs are tuned by maimizing the evidence returned by EP. New cost of O(nn 2 0 ). 13 / 23

14 All Together: The GPCC Method Input: Data {(u i, v i, z i )} n i=1. Parametric copula density function c(u, v τ). Number of pseudo-inputs n 0. Algorithm: Until Convergence: Use EP to get approimate Gaussian posterior, evidence and evidence gradient. Follow evidence gradient to tune pseudo-inputs and the parameters of the covariance function. Prediction of (u, v ) at z : sample f = f(z ) from the EP-posterior and average over copulas with τ = σ(f ). Output: Conditional copula model. 14 / 23

15 Eperimental Results: Synthetic Test Z is uniform in [ 6, 6] (U, V ) are Gaussian with correlation 3/4 sin(z) We sample the data {( ˆP U (u i ), ˆP V (v i ), ˆP Z (z i ))} 50 i=1. τ U,V Z GPVINE MLLVINE TRUE P Z (Z) MLLVINE is a nearest-neighbor algorithm proposed by Acar (2011). 15 / 23

16 Eperimental Results: Real-World Data Real-world data: UCI datasets, meteorological data, mineral concentrations and financial data Average test log likelihood when limited to two trees in the vine: Results are averages on 50 random train/test splits. SVINE are Vines that use the simplifying assumption. 16 / 23

17 Eperimental Results: Using More Trees GPVINE SVINE 17 / 23

18 Eperimental Results: Weather in Barcelona τ(atmospheric pressure, cloud percentage {latitude, longitude}). 18 / 23

19 GP Conditional Copulas and Financial Time Series We learn time-changing dependencies in financial returns. Three parametric copulas: Gaussian Copula Student's t Copula Symmetrized Joe Clayton Copula The marginals are described using AR-GARCH processes: t = φ 0 + φ 1 t 1 + σ t ɛ t, σ t = ω + ασ t 1 ( ɛ t 1 γɛ t 1 ) + βσ t / 23

20 Eperimental Results: Conditioning on time: NASDAQ HD AXP CNW ED HPQ BARC RBS RBS Method HON BA CSX EIX IBM HSBC BARC HSBC GPCC-G GPCC-T GPCC-SJC HMM TVC DSJCC CONST-G CONST-T CONST-SJC Data is preprocessed using AR(1)-GARCH(1,1) models. GPCC-G: GPs on τ(t) for Gaussian Copula. GPCC-T: GPs on ν(t) and τ(t) for tcopula. GPCC-SJC: GPs on τ L (t) and τ U (t) for Sym. Joe Clayton. HMM: High/Low Correlated tcopula (Jondeau 2006). TVC: Dynamic tcopula (Tse 2002). DSJCC: Dynamic SJC Copula (Patton 2006). 20 / 23

21 Eperimental Results: Conditioning on time: FOREX EUR CHF GPCC-T, EUR CHF GPCC-T, EUR CHF GPCC-SJC, Mean GPCC T Mean GPCC T Mean GPCC-SJC Mean GPCC-SJC Oct 06 Mar 07 Aug 07 Jan 08 Jun 08 Nov 08 Apr 09 Oct 09 Mar 10 Aug 10 Oct 06 Mar 07 Aug 07 Jan 08 Jun 08 Nov 08 Apr 09 Oct 09 Mar 10 Aug 10 Oct 06 Mar 07 Aug 07 Jan 08 Jun 08 Nov 08 Apr 09 Oct 09 Mar 10 Aug 10 Method AUD CAD JPY NOK SEK EUR GBP NZD GPCC-G GPCC-T GPCC-SJC HMM TVC DSJCC CONST-G CONST-T CONST-SJC Data against USD from 02/01/1990 to 15/01/2013 (6011 points). Decorrelations at Fall 2008 (onset of global recession) and Summer 2010 (worsening European sovereign debt crisis) 21 / 23

22 Summary and Conclusions Vines are fleible dependence models. They factorize a copula density into a product of conditional bivariate copulas. In practical implementations of vines, some of the conditional dependencies in the bivariate copulas are usually ignored. To avoid this, we have proposed a method for the estimation of fully conditional vines using Gaussian processes (GPVINE). GPVINE outperforms a baseline that ignores conditional dependencies (SVINE) and other alternatives (MLLVINE). The building block of GPVINE are GP Conditional Copulas (GPCC). GPCC obtain state-of-the-art performance in the task of predicting time-changing dependencies in financial data. 22 / 23

23 Thanks! Lopez-Paz D., Hernandez-Lobato J. M. and Ghahramani Z. Gaussian Process Vine Copulas for Multivariate Dependence International Conference on Machine Learning (ICML 2013). Acar, E. F., Craiu, R. V., and Yao, F. Dependence calibration in conditional copulas: A nonparametric approach. Biometrics, 67(2): , Bedford, T. and Cooke, R. M. Vines-a new graphical model for dependent random variables. The Annals of Statistics, 30(4): , 2002 Minka, T. P. Epectation Propagation for approimate Bayesian inference. Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, pp , Naish-Guzman, A. and Holden, S. B. The generalized FITC approimation. In Advances in Neural Information Processing Systems 20, Patton, A. J. Modelling asymmetric echange rate dependence. International Economic Review, 47(2): , / 23

Gaussian Process Vine Copulas for Multivariate Dependence

Gaussian Process Vine Copulas for Multivariate Dependence Gaussian Process Vine Copulas for Multivariate Dependence José Miguel Hernández-Lobato 1,2 joint work with David López-Paz 2,3 and Zoubin Ghahramani 1 1 Department of Engineering, Cambridge University,

More information

arxiv: v1 [stat.me] 16 Feb 2013

arxiv: v1 [stat.me] 16 Feb 2013 arxiv:1302.3979v1 [stat.me] 16 Feb 2013 David Lopez-Paz Max Planck Institute for Intelligent Systems Jose Miguel Hernández-Lobato Zoubin Ghahramani University of Cambridge Abstract Copulas allow to learn

More information

How to select a good vine

How to select a good vine Universitetet i Oslo ingrihaf@math.uio.no International FocuStat Workshop on Focused Information Criteria and Related Themes, May 9-11, 2016 Copulae Regular vines Model selection and reduction Limitations

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Assessing the VaR of a portfolio using D-vine copula based multivariate GARCH models

Assessing the VaR of a portfolio using D-vine copula based multivariate GARCH models Assessing the VaR of a portfolio using D-vine copula based multivariate GARCH models Mathias Hofmann a,, Claudia Czado b a Technische Universität München Zentrum Mathematik Lehrstuhl für Mathematische

More information

Predictive Entropy Search for Efficient Global Optimization of Black-box Functions

Predictive Entropy Search for Efficient Global Optimization of Black-box Functions Predictive Entropy Search for Efficient Global Optimization of Black-bo Functions José Miguel Hernández-Lobato jmh233@cam.ac.uk University of Cambridge Matthew W. Hoffman mwh3@cam.ac.uk University of Cambridge

More information

Nonparameteric Regression:

Nonparameteric Regression: Nonparameteric Regression: Nadaraya-Watson Kernel Regression & Gaussian Process Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

Examples of vines and vine copulas Harry Joe July 24/31, 2015; Graphical models reading group

Examples of vines and vine copulas Harry Joe July 24/31, 2015; Graphical models reading group Examples of vines and vine copulas Harry Joe July 4/31, 015; Graphical models reading group Outline Examples with correlation matrices Example showing continuous variables and non-gaussian dependence Example

More information

Variational Inference with Copula Augmentation

Variational Inference with Copula Augmentation Variational Inference with Copula Augmentation Dustin Tran 1 David M. Blei 2 Edoardo M. Airoldi 1 1 Department of Statistics, Harvard University 2 Department of Statistics & Computer Science, Columbia

More information

Gaussian Process Regression Networks

Gaussian Process Regression Networks Gaussian Process Regression Networks Andrew Gordon Wilson agw38@camacuk mlgengcamacuk/andrew University of Cambridge Joint work with David A Knowles and Zoubin Ghahramani June 27, 2012 ICML, Edinburgh

More information

arxiv: v1 [stat.ml] 10 Jun 2014

arxiv: v1 [stat.ml] 10 Jun 2014 Predictive Entropy Search for Efficient Global Optimization of Black-bo Functions arxiv:46.254v [stat.ml] Jun 24 José Miguel Hernández-Lobato jmh233@cam.ac.uk University of Cambridge Matthew W. Hoffman

More information

Bayesian Quadrature: Model-based Approximate Integration. David Duvenaud University of Cambridge

Bayesian Quadrature: Model-based Approximate Integration. David Duvenaud University of Cambridge Bayesian Quadrature: Model-based Approimate Integration David Duvenaud University of Cambridge The Quadrature Problem ˆ We want to estimate an integral Z = f ()p()d ˆ Most computational problems in inference

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Expectation Propagation for Approximate Bayesian Inference

Expectation Propagation for Approximate Bayesian Inference Expectation Propagation for Approximate Bayesian Inference José Miguel Hernández Lobato Universidad Autónoma de Madrid, Computer Science Department February 5, 2007 1/ 24 Bayesian Inference Inference Given

More information

State Space and Hidden Markov Models

State Space and Hidden Markov Models State Space and Hidden Markov Models Kunsch H.R. State Space and Hidden Markov Models. ETH- Zurich Zurich; Aliaksandr Hubin Oslo 2014 Contents 1. Introduction 2. Markov Chains 3. Hidden Markov and State

More information

Bayesian Inference for Pair-copula Constructions of Multiple Dependence

Bayesian Inference for Pair-copula Constructions of Multiple Dependence Bayesian Inference for Pair-copula Constructions of Multiple Dependence Claudia Czado and Aleksey Min Technische Universität München cczado@ma.tum.de, aleksmin@ma.tum.de December 7, 2007 Overview 1 Introduction

More information

Markov Switching Regular Vine Copulas

Markov Switching Regular Vine Copulas Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS057) p.5304 Markov Switching Regular Vine Copulas Stöber, Jakob and Czado, Claudia Lehrstuhl für Mathematische Statistik,

More information

Quantifying mismatch in Bayesian optimization

Quantifying mismatch in Bayesian optimization Quantifying mismatch in Bayesian optimization Eric Schulz University College London e.schulz@cs.ucl.ac.uk Maarten Speekenbrink University College London m.speekenbrink@ucl.ac.uk José Miguel Hernández-Lobato

More information

Bayesian Semi-supervised Learning with Deep Generative Models

Bayesian Semi-supervised Learning with Deep Generative Models Bayesian Semi-supervised Learning with Deep Generative Models Jonathan Gordon Department of Engineering Cambridge University jg801@cam.ac.uk José Miguel Hernández-Lobato Department of Engineering Cambridge

More information

Bayesian Inference for Conditional Copula models

Bayesian Inference for Conditional Copula models Bayesian Inference for Conditional Copula models Radu Craiu Department of Statistical Sciences University of Toronto Joint with Evgeny Levi (Toronto), Avideh Sabeti (Toronto) and Mian Wei (Toronto) CRM,

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Neil D. Lawrence GPSS 10th June 2013 Book Rasmussen and Williams (2006) Outline The Gaussian Density Covariance from Basis Functions Basis Function Representations Constructing

More information

The Instability of Correlations: Measurement and the Implications for Market Risk

The Instability of Correlations: Measurement and the Implications for Market Risk The Instability of Correlations: Measurement and the Implications for Market Risk Prof. Massimo Guidolin 20254 Advanced Quantitative Methods for Asset Pricing and Structuring Winter/Spring 2018 Threshold

More information

Active and Semi-supervised Kernel Classification

Active and Semi-supervised Kernel Classification Active and Semi-supervised Kernel Classification Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London Work done in collaboration with Xiaojin Zhu (CMU), John Lafferty (CMU),

More information

Vine Copulas. Spatial Copula Workshop 2014 September 22, Institute for Geoinformatics University of Münster.

Vine Copulas. Spatial Copula Workshop 2014 September 22, Institute for Geoinformatics University of Münster. Spatial Workshop 2014 September 22, 2014 Institute for Geoinformatics University of Münster http://ifgi.uni-muenster.de/graeler 1 spatio-temporal data Typically, spatio-temporal data is given at a set

More information

Variable sigma Gaussian processes: An expectation propagation perspective

Variable sigma Gaussian processes: An expectation propagation perspective Variable sigma Gaussian processes: An expectation propagation perspective Yuan (Alan) Qi Ahmed H. Abdel-Gawad CS & Statistics Departments, Purdue University ECE Department, Purdue University alanqi@cs.purdue.edu

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture Notes Fall 2009 November, 2009 Byoung-Ta Zhang School of Computer Science and Engineering & Cognitive Science, Brain Science, and Bioinformatics Seoul National University

More information

Tree-structured Gaussian Process Approximations

Tree-structured Gaussian Process Approximations Tree-structured Gaussian Process Approximations Thang Bui joint work with Richard Turner MLG, Cambridge July 1st, 2014 1 / 27 Outline 1 Introduction 2 Tree-structured GP approximation 3 Experiments 4 Summary

More information

Black-box α-divergence Minimization

Black-box α-divergence Minimization Black-box α-divergence Minimization José Miguel Hernández-Lobato, Yingzhen Li, Daniel Hernández-Lobato, Thang Bui, Richard Turner, Harvard University, University of Cambridge, Universidad Autónoma de Madrid.

More information

Efficient estimation of a semiparametric dynamic copula model

Efficient estimation of a semiparametric dynamic copula model Efficient estimation of a semiparametric dynamic copula model Christian Hafner Olga Reznikova Institute of Statistics Université catholique de Louvain Louvain-la-Neuve, Blgium 30 January 2009 Young Researchers

More information

arxiv: v3 [stat.me] 25 May 2017

arxiv: v3 [stat.me] 25 May 2017 Bayesian Inference for Conditional Copulas using Gaussian Process Single Index Models Evgeny Levi Radu V. Craiu arxiv:1603.0308v3 [stat.me] 5 May 017 Department of Statistical Sciences, University of Toronto

More information

A parametric approach to Bayesian optimization with pairwise comparisons

A parametric approach to Bayesian optimization with pairwise comparisons A parametric approach to Bayesian optimization with pairwise comparisons Marco Co Eindhoven University of Technology m.g.h.co@tue.nl Bert de Vries Eindhoven University of Technology and GN Hearing bdevries@ieee.org

More information

Marginal Specifications and a Gaussian Copula Estimation

Marginal Specifications and a Gaussian Copula Estimation Marginal Specifications and a Gaussian Copula Estimation Kazim Azam Abstract Multivariate analysis involving random variables of different type like count, continuous or mixture of both is frequently required

More information

Chapter 1. Bayesian Inference for D-vines: Estimation and Model Selection

Chapter 1. Bayesian Inference for D-vines: Estimation and Model Selection Chapter 1 Bayesian Inference for D-vines: Estimation and Model Selection Claudia Czado and Aleksey Min Technische Universität München, Zentrum Mathematik, Boltzmannstr. 3, 85747 Garching, Germany cczado@ma.tum.de

More information

Climate Change Impact Analysis

Climate Change Impact Analysis Climate Change Impact Analysis Patrick Breach M.E.Sc Candidate pbreach@uwo.ca Outline July 2, 2014 Global Climate Models (GCMs) Selecting GCMs Downscaling GCM Data KNN-CAD Weather Generator KNN-CADV4 Example

More information

MACHINE LEARNING ADVANCED MACHINE LEARNING

MACHINE LEARNING ADVANCED MACHINE LEARNING MACHINE LEARNING ADVANCED MACHINE LEARNING Recap of Important Notions on Estimation of Probability Density Functions 22 MACHINE LEARNING Discrete Probabilities Consider two variables and y taking discrete

More information

When is a copula constant? A test for changing relationships

When is a copula constant? A test for changing relationships When is a copula constant? A test for changing relationships Fabio Busetti and Andrew Harvey Bank of Italy and University of Cambridge November 2007 usetti and Harvey (Bank of Italy and University of Cambridge)

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Introduction to Probabilistic Graphical Models: Exercises

Introduction to Probabilistic Graphical Models: Exercises Introduction to Probabilistic Graphical Models: Exercises Cédric Archambeau Xerox Research Centre Europe cedric.archambeau@xrce.xerox.com Pascal Bootcamp Marseille, France, July 2010 Exercise 1: basics

More information

Short course A vademecum of statistical pattern recognition techniques with applications to image and video analysis. Agenda

Short course A vademecum of statistical pattern recognition techniques with applications to image and video analysis. Agenda Short course A vademecum of statistical pattern recognition techniques with applications to image and video analysis Lecture Recalls of probability theory Massimo Piccardi University of Technology, Sydney,

More information

Bayesian optimization for automatic machine learning

Bayesian optimization for automatic machine learning Bayesian optimization for automatic machine learning Matthew W. Ho man based o work with J. M. Hernández-Lobato, M. Gelbart, B. Shahriari, and others! University of Cambridge July 11, 2015 Black-bo optimization

More information

The Automatic Statistician

The Automatic Statistician The Automatic Statistician Zoubin Ghahramani Department of Engineering University of Cambridge, UK zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ James Lloyd, David Duvenaud (Cambridge) and

More information

Machine Learning Summer School

Machine Learning Summer School Machine Learning Summer School Lecture 3: Learning parameters and structure Zoubin Ghahramani zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ Department of Engineering University of Cambridge,

More information

Lecture 3: Pattern Classification. Pattern classification

Lecture 3: Pattern Classification. Pattern classification EE E68: Speech & Audio Processing & Recognition Lecture 3: Pattern Classification 3 4 5 The problem of classification Linear and nonlinear classifiers Probabilistic classification Gaussians, mitures and

More information

Computation fundamentals of discrete GMRF representations of continuous domain spatial models

Computation fundamentals of discrete GMRF representations of continuous domain spatial models Computation fundamentals of discrete GMRF representations of continuous domain spatial models Finn Lindgren September 23 2015 v0.2.2 Abstract The fundamental formulas and algorithms for Bayesian spatial

More information

MTTTS16 Learning from Multiple Sources

MTTTS16 Learning from Multiple Sources MTTTS16 Learning from Multiple Sources 5 ECTS credits Autumn 2018, University of Tampere Lecturer: Jaakko Peltonen Lecture 6: Multitask learning with kernel methods and nonparametric models On this lecture:

More information

A Goodness-of-fit Test for Copulas

A Goodness-of-fit Test for Copulas A Goodness-of-fit Test for Copulas Artem Prokhorov August 2008 Abstract A new goodness-of-fit test for copulas is proposed. It is based on restrictions on certain elements of the information matrix and

More information

Gaussian Process priors with Uncertain Inputs: Multiple-Step-Ahead Prediction

Gaussian Process priors with Uncertain Inputs: Multiple-Step-Ahead Prediction Gaussian Process priors with Uncertain Inputs: Multiple-Step-Ahead Prediction Agathe Girard Dept. of Computing Science University of Glasgow Glasgow, UK agathe@dcs.gla.ac.uk Carl Edward Rasmussen Gatsby

More information

Analytic Long-Term Forecasting with Periodic Gaussian Processes

Analytic Long-Term Forecasting with Periodic Gaussian Processes Nooshin Haji Ghassemi School of Computing Blekinge Institute of Technology Sweden Marc Peter Deisenroth Department of Computing Imperial College London United Kingdom Department of Computer Science TU

More information

Power EP. Thomas Minka Microsoft Research Ltd., Cambridge, UK MSR-TR , October 4, Abstract

Power EP. Thomas Minka Microsoft Research Ltd., Cambridge, UK MSR-TR , October 4, Abstract Power EP Thomas Minka Microsoft Research Ltd., Cambridge, UK MSR-TR-2004-149, October 4, 2004 Abstract This note describes power EP, an etension of Epectation Propagation (EP) that makes the computations

More information

MACHINE LEARNING ADVANCED MACHINE LEARNING

MACHINE LEARNING ADVANCED MACHINE LEARNING MACHINE LEARNING ADVANCED MACHINE LEARNING Recap of Important Notions on Estimation of Probability Density Functions 2 2 MACHINE LEARNING Overview Definition pdf Definition joint, condition, marginal,

More information

Financial Econometrics and Volatility Models Copulas

Financial Econometrics and Volatility Models Copulas Financial Econometrics and Volatility Models Copulas Eric Zivot Updated: May 10, 2010 Reading MFTS, chapter 19 FMUND, chapters 6 and 7 Introduction Capturing co-movement between financial asset returns

More information

Where now? Machine Learning and Bayesian Inference

Where now? Machine Learning and Bayesian Inference Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone etension 67 Email: sbh@clcamacuk wwwclcamacuk/ sbh/ Where now? There are some simple take-home messages from

More information

Lecture 6: Graphical Models: Learning

Lecture 6: Graphical Models: Learning Lecture 6: Graphical Models: Learning 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering, University of Cambridge February 3rd, 2010 Ghahramani & Rasmussen (CUED)

More information

Time Varying Hierarchical Archimedean Copulae (HALOC)

Time Varying Hierarchical Archimedean Copulae (HALOC) Time Varying Hierarchical Archimedean Copulae () Wolfgang Härdle Ostap Okhrin Yarema Okhrin Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. Center for Applied Statistics and Economics Humboldt-Universität

More information

Hierarchical Modelling for Multivariate Spatial Data

Hierarchical Modelling for Multivariate Spatial Data Hierarchical Modelling for Multivariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Point-referenced spatial data often come as

More information

STA 414/2104, Spring 2014, Practice Problem Set #1

STA 414/2104, Spring 2014, Practice Problem Set #1 STA 44/4, Spring 4, Practice Problem Set # Note: these problems are not for credit, and not to be handed in Question : Consider a classification problem in which there are two real-valued inputs, and,

More information

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression Group Prof. Daniel Cremers 9. Gaussian Processes - Regression Repetition: Regularized Regression Before, we solved for w using the pseudoinverse. But: we can kernelize this problem as well! First step:

More information

Bayesian Inference for Conditional Copula models with Continuous and Binary Responses

Bayesian Inference for Conditional Copula models with Continuous and Binary Responses Bayesian Inference for Conditional Copula models with Continuous and Binary Responses Radu Craiu Department of Statistics University of Toronto Joint with Avideh Sabeti (Toronto) and Mian Wei (Toronto)

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Estimation of Copula Models with Discrete Margins (via Bayesian Data Augmentation) Michael S. Smith

Estimation of Copula Models with Discrete Margins (via Bayesian Data Augmentation) Michael S. Smith Estimation of Copula Models with Discrete Margins (via Bayesian Data Augmentation) Michael S. Smith Melbourne Business School, University of Melbourne (Joint with Mohamad Khaled, University of Queensland)

More information

An Introduction to Bayesian Machine Learning

An Introduction to Bayesian Machine Learning 1 An Introduction to Bayesian Machine Learning José Miguel Hernández-Lobato Department of Engineering, Cambridge University April 8, 2013 2 What is Machine Learning? The design of computational systems

More information

How to build an automatic statistician

How to build an automatic statistician How to build an automatic statistician James Robert Lloyd 1, David Duvenaud 1, Roger Grosse 2, Joshua Tenenbaum 2, Zoubin Ghahramani 1 1: Department of Engineering, University of Cambridge, UK 2: Massachusetts

More information

ebay/google short course: Problem set 2

ebay/google short course: Problem set 2 18 Jan 013 ebay/google short course: Problem set 1. (the Echange Parado) You are playing the following game against an opponent, with a referee also taking part. The referee has two envelopes (numbered

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Dependence. MFM Practitioner Module: Risk & Asset Allocation. John Dodson. September 11, Dependence. John Dodson. Outline.

Dependence. MFM Practitioner Module: Risk & Asset Allocation. John Dodson. September 11, Dependence. John Dodson. Outline. MFM Practitioner Module: Risk & Asset Allocation September 11, 2013 Before we define dependence, it is useful to define Random variables X and Y are independent iff For all x, y. In particular, F (X,Y

More information

Deep Neural Networks as Gaussian Processes

Deep Neural Networks as Gaussian Processes Deep Neural Networks as Gaussian Processes Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, Jascha Sohl-Dickstein Google Brain {jaehlee, yasamanb, romann, schsam, jpennin,

More information

An Econometric Study of Vine Copulas

An Econometric Study of Vine Copulas An Econometric Study of Vine Copulas Pierre-André Maugis (Corresponding author) PSE, Université Paris 1 Panthéon-Sorbonne, 106 boulevard de l Hopital 75647 Paris Cedex 13, France E-mail: pierre-andre.maugis@malix.univ-paris1.fr.

More information

GWAS IV: Bayesian linear (variance component) models

GWAS IV: Bayesian linear (variance component) models GWAS IV: Bayesian linear (variance component) models Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS IV: Bayesian

More information

Probabilistic & Bayesian deep learning. Andreas Damianou

Probabilistic & Bayesian deep learning. Andreas Damianou Probabilistic & Bayesian deep learning Andreas Damianou Amazon Research Cambridge, UK Talk at University of Sheffield, 19 March 2019 In this talk Not in this talk: CRFs, Boltzmann machines,... In this

More information

Construction and estimation of high dimensional copulas

Construction and estimation of high dimensional copulas Construction and estimation of high dimensional copulas Gildas Mazo PhD work supervised by S. Girard and F. Forbes Mistis, Inria and laboratoire Jean Kuntzmann, Grenoble, France Séminaire Statistiques,

More information

Probabilistic Reasoning in Deep Learning

Probabilistic Reasoning in Deep Learning Probabilistic Reasoning in Deep Learning Dr Konstantina Palla, PhD palla@stats.ox.ac.uk September 2017 Deep Learning Indaba, Johannesburgh Konstantina Palla 1 / 39 OVERVIEW OF THE TALK Basics of Bayesian

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

Approximate Message Passing with Built-in Parameter Estimation for Sparse Signal Recovery

Approximate Message Passing with Built-in Parameter Estimation for Sparse Signal Recovery Approimate Message Passing with Built-in Parameter Estimation for Sparse Signal Recovery arxiv:1606.00901v1 [cs.it] Jun 016 Shuai Huang, Trac D. Tran Department of Electrical and Computer Engineering Johns

More information

Spatial Statistics 2013, S2.2 6 th June Institute for Geoinformatics University of Münster.

Spatial Statistics 2013, S2.2 6 th June Institute for Geoinformatics University of Münster. Spatial Statistics 2013, S2.2 6 th June 2013 Institute for Geoinformatics University of Münster http://ifgi.uni-muenster.de/graeler Vine Vine 1 Spatial/spatio-temporal data Typically, spatial/spatio-temporal

More information

Copulas. MOU Lili. December, 2014

Copulas. MOU Lili. December, 2014 Copulas MOU Lili December, 2014 Outline Preliminary Introduction Formal Definition Copula Functions Estimating the Parameters Example Conclusion and Discussion Preliminary MOU Lili SEKE Team 3/30 Probability

More information

Chapter 2. Discrete Distributions

Chapter 2. Discrete Distributions Chapter. Discrete Distributions Objectives ˆ Basic Concepts & Epectations ˆ Binomial, Poisson, Geometric, Negative Binomial, and Hypergeometric Distributions ˆ Introduction to the Maimum Likelihood Estimation

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Spatial omain Hierarchical Modelling for Univariate Spatial ata Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

More information

Dependence Calibration in Conditional Copulas: A Nonparametric Approach

Dependence Calibration in Conditional Copulas: A Nonparametric Approach Biometrics DOI: 10.1111/j.1541-0420.2010.01472. Dependence Calibration in Conditional Copulas: A Nonparametric Approach Elif F. Acar, Radu V. Craiu, and Fang Yao Department of Statistics, University of

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables This Version: July 30, 2015 Multiple Random Variables 2 Now we consider models with more than one r.v. These are called multivariate models For instance: height and weight An

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Announcements Machine Learning Lecture 3 Eam dates We re in the process of fiing the first eam date Probability Density Estimation II 9.0.207 Eercises The first eercise sheet is available on L2P now First

More information

Approximate Inference in Practice Microsoft s Xbox TrueSkill TM

Approximate Inference in Practice Microsoft s Xbox TrueSkill TM 1 Approximate Inference in Practice Microsoft s Xbox TrueSkill TM Daniel Hernández-Lobato Universidad Autónoma de Madrid 2014 2 Outline 1 Introduction 2 The Probabilistic Model 3 Approximate Inference

More information

IGD-TP Exchange Forum n 5 WG1 Safety Case: Handling of uncertainties October th 2014, Kalmar, Sweden

IGD-TP Exchange Forum n 5 WG1 Safety Case: Handling of uncertainties October th 2014, Kalmar, Sweden IGD-TP Exchange Forum n 5 WG1 Safety Case: Handling of uncertainties October 28-30 th 2014, Kalmar, Sweden Comparison of probabilistic and alternative evidence theoretical methods for the handling of parameter

More information

Building an Automatic Statistician

Building an Automatic Statistician Building an Automatic Statistician Zoubin Ghahramani Department of Engineering University of Cambridge zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ ALT-Discovery Science Conference, October

More information

Deep learning with differential Gaussian process flows

Deep learning with differential Gaussian process flows Deep learning with differential Gaussian process flows Pashupati Hegde Markus Heinonen Harri Lähdesmäki Samuel Kaski Helsinki Institute for Information Technology HIIT Department of Computer Science, Aalto

More information

Gaussian Processes (10/16/13)

Gaussian Processes (10/16/13) STA561: Probabilistic machine learning Gaussian Processes (10/16/13) Lecturer: Barbara Engelhardt Scribes: Changwei Hu, Di Jin, Mengdi Wang 1 Introduction In supervised learning, we observe some inputs

More information

Forecasting time series with multivariate copulas

Forecasting time series with multivariate copulas Depend. Model. 2015; 3:59 82 Research Article Open Access Clarence Simard* and Bruno Rémillard Forecasting time series with multivariate copulas DOI 10.1515/demo-2015-0005 5 Received august 17, 2014; accepted

More information

Sub-kilometer-scale space-time stochastic rainfall simulation

Sub-kilometer-scale space-time stochastic rainfall simulation Picture: Huw Alexander Ogilvie Sub-kilometer-scale space-time stochastic rainfall simulation Lionel Benoit (University of Lausanne) Gregoire Mariethoz (University of Lausanne) Denis Allard (INRA Avignon)

More information

Bayesian Inference of Noise Levels in Regression

Bayesian Inference of Noise Levels in Regression Bayesian Inference of Noise Levels in Regression Christopher M. Bishop Microsoft Research, 7 J. J. Thomson Avenue, Cambridge, CB FB, U.K. cmbishop@microsoft.com http://research.microsoft.com/ cmbishop

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Gaussian Processes Barnabás Póczos http://www.gaussianprocess.org/ 2 Some of these slides in the intro are taken from D. Lizotte, R. Parr, C. Guesterin

More information

Expectation Propagation Algorithm

Expectation Propagation Algorithm Expectation Propagation Algorithm 1 Shuang Wang School of Electrical and Computer Engineering University of Oklahoma, Tulsa, OK, 74135 Email: {shuangwang}@ou.edu This note contains three parts. First,

More information

Doubly Stochastic Inference for Deep Gaussian Processes. Hugh Salimbeni Department of Computing Imperial College London

Doubly Stochastic Inference for Deep Gaussian Processes. Hugh Salimbeni Department of Computing Imperial College London Doubly Stochastic Inference for Deep Gaussian Processes Hugh Salimbeni Department of Computing Imperial College London 29/5/2017 Motivation DGPs promise much, but are difficult to train Doubly Stochastic

More information

NetBox: A Probabilistic Method for Analyzing Market Basket Data

NetBox: A Probabilistic Method for Analyzing Market Basket Data NetBox: A Probabilistic Method for Analyzing Market Basket Data José Miguel Hernández-Lobato joint work with Zoubin Gharhamani Department of Engineering, Cambridge University October 22, 2012 J. M. Hernández-Lobato

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 4 Occam s Razor, Model Construction, and Directed Graphical Models https://people.orie.cornell.edu/andrew/orie6741 Cornell University September

More information

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu Lecture: Gaussian Process Regression STAT 6474 Instructor: Hongxiao Zhu Motivation Reference: Marc Deisenroth s tutorial on Robot Learning. 2 Fast Learning for Autonomous Robots with Gaussian Processes

More information

Variational Model Selection for Sparse Gaussian Process Regression

Variational Model Selection for Sparse Gaussian Process Regression Variational Model Selection for Sparse Gaussian Process Regression Michalis K. Titsias School of Computer Science University of Manchester 7 September 2008 Outline Gaussian process regression and sparse

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

Perturbation Theory for Variational Inference

Perturbation Theory for Variational Inference Perturbation heor for Variational Inference Manfred Opper U Berlin Marco Fraccaro echnical Universit of Denmark Ulrich Paquet Apple Ale Susemihl U Berlin Ole Winther echnical Universit of Denmark Abstract

More information

Recovering Copulae from Conditional Quantiles

Recovering Copulae from Conditional Quantiles Wolfgang K. Härdle Chen Huang Alexander Ristig Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. Center for Applied Statistics and Economics HumboldtUniversität zu Berlin http://lvb.wiwi.hu-berlin.de

More information

Talk on Bayesian Optimization

Talk on Bayesian Optimization Talk on Bayesian Optimization Jungtaek Kim (jtkim@postech.ac.kr) Machine Learning Group, Department of Computer Science and Engineering, POSTECH, 77-Cheongam-ro, Nam-gu, Pohang-si 37673, Gyungsangbuk-do,

More information