B03 progress report (2) Kilonova models for GW Masaomi Tanaka (Na$onal Astronomical Observatory of Japan)

Size: px
Start display at page:

Download "B03 progress report (2) Kilonova models for GW Masaomi Tanaka (Na$onal Astronomical Observatory of Japan)"

Transcription

1 B03 progress report (2) Kilonova models for GW Masaomi Tanaka (Na$onal Astronomical Observatory of Japan)

2 B03 progress report (2) Kilonova models for GW Kilonova models Lessons learned from GW170817

3 L Kilonova/Macronova" IniGal works: Li & Paczynski 98, Kulkarni 05, Metzger+10, Goriely+11, High opacity: Kasen+13, Barnes & Kasen 13, MT & Hotokezaka 13, See Kenta s talk L peak t peak t Timescale t peak = 3 M ej 4 cv 1/2 bound-bound transigons of heavy elements 8.4 days M ej 0.01M 1/2 v 0.1c 1/2 10 cm 2 g 1 1/2 Luminosity L peak = L dep (t peak ) *assuming 50% thermalizagon erg s 1 M ej 0.01M 0.35 v 0.1c cm 2 g

4 open s shell (l=1) open p-shell (l=2) 5 4 open d-shell (l=3) E (ev) Fe II 3 E (ev) 2 1 Nd II 0 open f shell (l=4)

5 open s shell (l=1) Kasen+13: Sn II, Ce II-III, Nd I-IV, Os II Fontes+17: Ce I-IV, Nd I-IV, Sm I-IV, U I-IV Wollaeger+17: Se, Br, Zr, Pd, Te MT+17: Se I-III, Ru I-III, Te I-III, Nd I-III, Er I-III open p-shell (l=2) open d-shell (l=3) 1st peak 2nd peak 3rd peak open f shell (l=4)

6 Atomic structure calculagons HULLAC code (Bar-Shalom+99) GRASP2K code (Jonsson+13) H DC = N i=1 ( cαi p i +(β i 1)c 2 + V N i ) + N i>j 1 r ij, Ion Configurations Number of levels Number of lines Se I-III (Z=34, p) Ru I-III (Z=44, d) Te I-III (Z=52, p) Nd I-III (Z=60, f) Er I-III (Z=68, f) HULLAC Se i 4s 2 4p 4,4s 2 4p 3 (4d, 4f, 5 8l), 4s4p 5,4s4p 4 (4d, 4f), ,168 4s 2 4p 2 (4d 2, 4d4f, 4f 2 ), 4s4p 3 (4d 2, 4d4f, 4f 2 ) Se ii 4s 2 4p 3,4s 2 4p 2 (4d, 4f, 5 8l), 4s4p 4,4s4p 3 (4d, 4f), ,911 4s 2 4p(4d 2, 4d4f, 4f 2 ), 4s4p 2 (4d 2, 4d4f, 4f 2 ) Se iii 4s 2 4p 2,4s 2 4p(4d, 4f, 5 8l), 4s4p 3,4s4p 2 (4d, 4f), ,132 4s 2 (4d 2, 4d4f, 4f 2 ), 4s4p(4d 2, 4d4f, 4f 2 ) Ru i 4d 7 5s, 4d 6 5s 6, 4d 8,4d 7 (5p, 5d, 6s, 6p), 1, ,476 4d 6 5s(5p, 5d, 6s) Ru ii 4d 7,4d 6 (5s 5d, 6s, 6p) ,592 Ru iii 4d 6,4d 5 (5s 5d, 6s) ,066 Te i 5s 2 5p 4, 5s 2 5p 3 (4f, 5d, 5f, 6s 6f, 7s 7d, 8s), ,482 5s5p 5 Te ii 5s 2 5p 3, 5s 2 5p 2 (4f, 5d, 5f, 6s 6f, 7s 7d, 8s), 253 9,167 5s5p 4 Te iii 5s 2 5p 2, 5s 2 5p(5d, 6s 6d, 7s), 5s5p Nd i 4f 4 6s 2, 4f 4 6s(5d, 6p, 7s), 4f 4 5d 2, 4f 4 5d6p, 31,358 70,366, f 3 5d6s 2,4f 3 5d 2 (6s, 6p), 4f 3 5d6s6p Nd ii 4f 4 6s, 4f 4 5d, 4f 4 6p, 4f 3 6s(5d, 6p), 6,888 3,951,882 4f 3 5d 2,4f 3 5d6p Nd iii 4f 4,4f 3 (5d, 6s, 6p), 4f 2 5d 2,4f 2 5d(6s, 6p), ,161 4f 2 6s6p Er i 4f 12 6s 2, 4f 12 6s(5d, 6p, 6d, 7s, 8s), 10,535 9,247,777 4f 11 6s 2 (5d, 6p), 4f 11 5d 2 6s, 4f 11 5d6s(6p, 7s) Er ii 4f 12 6s, 4f 12 (5d, 6p), 4f 11 6s 2,4f 11 6s(5d, 6p), 5,333 2,432,665 4f 11 5d 2,4f 11 5d6p Er iii 4f 12,4f 11 (5d, 6s, 6p) ,671 GRASP

7 Bound-bound opaciges of lanthanide elements Fe (d shell) Nd (f shell) Er (f shell) Fe (Kurucz) Nd (HULLAC) Er (HULLAC) Opacity (cm 2 g -1 ) Wavelength (angstroms) MT+17 κ (p shell) << κ (d shell) << κ (f shell)

8 Expected light curves of kilonova L ~ erg s -1 t ~ weeks NIR > OpGcal Smooth spectra Absolute magnitude OpGcal NIR g r i z J H K (high velocity) -10 Kasen+13, Barnes & Kasen 13 MT & Hotokezaka 13, MT+14, Days after the merger

9 Y e = n e n p + n n = n p n p + n n - Low Ye => stronger r-process - Neutrino absorpgon increases Ye higher T higher Ye ν e + n -> p + e - n + e + -> ν e + p ν d p s f Se Ru Te Nd Er Ye = 0.30 Ye = 0.25 Ye = Mass fraction Atomic number

10 Nucleosynthesis are imprinted in the spectra Blue kilonova High Ye (Ye = 0.30) (Lanthanide-free) Medium Ye (Ye = 0.25) Low Ye (Ye = 0.1) Luminosity (erg s 1 Å 1 ) days days days days Red kilonova days MT Wavelength (Å)

11 B03 progress report (2) Kilonova models for GW Kilonova models Lessons learned from GW170817

12 GW170817: light curves NIR g ri Single component model - Mej = 0.03 Msun - <v> = 0.1c - Ye = 0.25 Model: MT+17b Observed magnitude z J H K Absolute magnitude Data: Utsumi, MT+17, Drout+17, Pian+17, Arcavi+17, Evans+17, Smarc+17, Diaz+17, Valen$+17, Cowperthwaite+17, Tanvir+17, Troja+17, Kasliwal OpGcal Days after GW Ejecta mass (La-rich) ~0.03 Msun => post-merger ejecta?

13 GW170817: Spectra Smooth spectra Smoking gun for v >~ 0.1c Spectra taken w/ VLT/X-shooter Data: Pian+ (MT), 2017 Model: MT+2017

14 Presence of blue kilonova Cowperthwaite et al. 2017; Drout et al. 2017; Nicholl et al. 2017; Villar et al Ye = 0.25 Ye = 0.1 MT+2017 Mej (blue) ~ 0.02 Msun too much for dynamical ejecta? => wind? But v ~ 0.2c (difficult with wind ejecta)

15 Origin of r-process elements GW Kilonova Rosswog+17 Hotokezaka+15, 18 SN rate Total amount seems to be OK but we do not now relagve fracgons of A > 80 or A > 130

16 Open quesgons Origin of high ejecta mass? Origin of high-velocity component in the early phase? Origin of blue and red component? Rela$ve frac$on? Similar to solar abundances?? 3rd peak?? (Au and Pt!) See Shinya s talk High Mej High v in early phase Blue Red Dynamical ejecta?? Disk wind?

17 X(Lan) ~ 0.01 or Ye ~ 0.25 MT+17b, Drout+17, Pian+17, Arcavi+17, Evans+17, Smarc+17, Cowperthwaite+17, Troja+17, Kasliwal X(La + Ac) at 1 day Y e

18 Summary RadiaGve transfer simulagons Construc$on of atomic data Predic$ons for kilonova GW Red and blue components => Ye ~ 0.25 or X(Lan) ~ if single component ~0.03 Msun ejec$on with Lanthanide => Enough to explain the origin of r-process elements Open quesgons/on-going works Abundance partners (frac$on of blue/red components) Mul$-D models and predic$on for future events

Opaci-es of and light curves of kilonovae. Masaomi Tanaka (Na-onal Astronomical Observatory of Japan)

Opaci-es of and light curves of kilonovae. Masaomi Tanaka (Na-onal Astronomical Observatory of Japan) Opaci-es of and light curves of kilonovae Masaomi Tanaka (Na-onal Astronomical Observatory of Japan) r-band magnitude @ 100 Mpc Mej = 0.01 Msun -16 19 r-band Absolute magnitude -15-14 -13-12 -11 NS-NS

More information

Kilonova Emission from Compact Binary Mergers: Opaci-es of Lanthanide-rich and Lanthanide-free Ejecta

Kilonova Emission from Compact Binary Mergers: Opaci-es of Lanthanide-rich and Lanthanide-free Ejecta Kilonova Emission from Compact Binary Mergers: Opaci-es of Lanthanide-rich and Lanthanide-free Ejecta Masaomi Tanaka (Na-onal Astronomical Observatory of Japan) Daiji Kato, Gediminas Gaigalas, Pavel Rynkun,

More information

Gravitational Waves and Electromagnetic Signals from a Neutron Star Merger

Gravitational Waves and Electromagnetic Signals from a Neutron Star Merger Gravitational Waves and Electromagnetic Signals from a Neutron Star Merger end-to-end physics of NS mergers GRB + afterflow binary stellar evolution (10 6-10 9 years) Final inspiral (minutes) gravitational

More information

Nuclear physics impact on kilonova light curves

Nuclear physics impact on kilonova light curves Nuclear physics impact on kilonova light curves Gabriel Martínez Pinedo INT-JINA symposium: First multi-messenger observations of a neutron star merger and its implications for nuclear physics, INT, Seattle,

More information

Probing the Creation of the Heavy Elements in Neutron Star Mergers

Probing the Creation of the Heavy Elements in Neutron Star Mergers Probing the Creation of the Heavy Elements in Neutron Star Mergers Daniel Kasen UC Berkeley/LBNL r. fernandez, j. barnes, s. richers, f. foucart, d. desai, b. metzger, n. badnell, j. lippuner, l. roberts

More information

Light curves and spectra of kilonovae

Light curves and spectra of kilonovae Light curves and spectra of kilonovae Current expectations and possibilities Tanaka 2016 Anders Jerkstrand, MPA Ingredients to predict observables 1. Mass, velocity and Ye of ejecta 2. Radioactivity and

More information

r-process nucleosynthesis in neutron star mergers and associated macronovae events

r-process nucleosynthesis in neutron star mergers and associated macronovae events r-process nucleosynthesis in neutron star mergers and associated macronovae events Oleg Korobkin Stockholm University, Oskar Klein Centre, Sweden March 14, 2014 O. Korobkin () r-process in neutron star

More information

Explosive nucleosynthesis of heavy elements:

Explosive nucleosynthesis of heavy elements: Explosive nucleosynthesis of heavy elements: an astrophysical and nuclear physics challenge Gabriel Martínez Pinedo NUSPIN 2017 GSI, Darmstadt, June 26-29, 2017 32 30 28 34 36 38 40 42 46 44 48 26 28 60

More information

Short GRB and kilonova: did observations meet our theoretical predictions?

Short GRB and kilonova: did observations meet our theoretical predictions? Short GRB and kilonova: did observations meet our theoretical predictions? Riccardo Ciolfi INAF - Astronomical Observatory of Padova INFN - Trento Institute for Fundamental Physics and Applications GW170817

More information

Astro2020 Science White Paper Kilonovae: nuv/optical/ir Counterparts of Neutron Star Binary Mergers with TSO

Astro2020 Science White Paper Kilonovae: nuv/optical/ir Counterparts of Neutron Star Binary Mergers with TSO Astro2020 Science White Paper Kilonovae: nuv/optical/ir Counterparts of Neutron Star Binary Mergers with TSO 1 Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact

More information

Mass ejection from neutron-star mergers in numerical relativity

Mass ejection from neutron-star mergers in numerical relativity Mass ejection from neutron-star mergers in numerical relativity Masaru Shibata Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University I. Brief introduction Outline

More information

The r-process of nucleosynthesis: overview of current status. Gail McLaughlin North Carolina State University

The r-process of nucleosynthesis: overview of current status. Gail McLaughlin North Carolina State University The r-process of nucleosynthesis: overview of current status Gail McLaughlin North Carolina State University The popular press says that the gold and platinum in wedding bands is made in neutron star mergers

More information

Delayed Outflows from BH Accretion Tori Following Neutron Star Binary Coalescence. Brian Metzger

Delayed Outflows from BH Accretion Tori Following Neutron Star Binary Coalescence. Brian Metzger Delayed Outflows from BH Accretion Tori Following Neutron Star Binary Coalescence Brian Metzger (Columbia University) In Collaboration with Rodrigo Fernandez (IAS) Almudena Arcones, Gabriel Martinez-Pinedo

More information

Synergy of GWs and EM signals

Synergy of GWs and EM signals Leiden, Feb 04 2015 Synergy of GWs and EM signals Gravitational wave facilities (LIGO, VIRGO ) Transient facilities (PTF, ZTF ) Stephan Rosswog I. Gravitational wave detection LIGO & VIRGO detectors currently

More information

arxiv: v1 [astro-ph.he] 16 Oct 2017

arxiv: v1 [astro-ph.he] 16 Oct 2017 Publ. Astron. Soc. Japan (2014) 00(0), 1 7 doi: 10.1093/pasj/xxx000 1 arxiv:1710.05850v1 [astro-ph.he] 16 Oct 2017 Kilonova from post-merger ejecta as an optical and near-infrared counterpart of GW170817

More information

Short Gamma-ray Bursts: Lessons Learned, Open Questions, and Constraints for the GW Era

Short Gamma-ray Bursts: Lessons Learned, Open Questions, and Constraints for the GW Era Wen-fai Fong Einstein Fellow University of Arizona Short Gamma-ray Bursts: Lessons Learned, Open Questions, and Constraints for the GW Era (observational complement to Enrico s talk) Northwestern University

More information

SPITZER SPACE TELESCOPE INFRARED OBSERVATIONS OF THE BINARY NEUTRON STAR MERGER GW170817

SPITZER SPACE TELESCOPE INFRARED OBSERVATIONS OF THE BINARY NEUTRON STAR MERGER GW170817 DRAFT VRSIO MAY 22, 2018 Preprint typeset using L A TX style AASTeX6 v. 1.0 SPITZR SPAC TLSCOP IFRARD OBSRVATIOS OF TH BIARY UTRO STAR MRGR GW170817 V. A. VILLAR 1, P. S. COWPRTHWAIT 1,. BRGR 1, P. K.

More information

Nuclear robustness of the r process in neutron-star mergers

Nuclear robustness of the r process in neutron-star mergers Nuclear robustness of the r process in neutron-star mergers Gabriel Martínez Pinedo International Nuclear Physics Conference Adelaide, Australia, September 11-16, 2016 Nuclear Astrophysics Virtual Institute

More information

Brian Metzger Princeton University NASA Einstein Fellow

Brian Metzger Princeton University NASA Einstein Fellow EM Counterparts of Neutron Star Binary Mergers and their Detection in the Era of Advanced LIGO Brian Metzger Princeton University NASA Einstein Fellow In Collaboration with: Edo Berger (Harvard CfA) Eliot

More information

Neutrinos in supernova evolution and nucleosynthesis

Neutrinos in supernova evolution and nucleosynthesis Neutrinos in supernova evolution and nucleosynthesis Gabriel Martínez Pinedo International School of Nuclear Physics 39th Course Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics Erice,

More information

Short GRBs: Progenitors, r-process Nucleosynthesis, and Gravitational Waves. Edo Berger Harvard University

Short GRBs: Progenitors, r-process Nucleosynthesis, and Gravitational Waves. Edo Berger Harvard University Short GRBs: Progenitors, r-process Nucleosynthesis, and Gravitational Waves Edo Berger Harvard University GWPAW 2015 Osaka, Japan June 2015 Objectives Berger 2014 Annual Reviews of Astronomy & Astrophysics,

More information

Nobuya Nishimura Keele University, UK

Nobuya Nishimura Keele University, UK 7. Aug. 2014 @INT Studies of r-process nucleosynthesis based on recent hydrodynamical models of NS-NS mergers Nobuya Nishimura Keele University, UK The r-process: observational request - many r-rich Galactic

More information

ν-driven wind in the Aftermath of Neutron Star Merger

ν-driven wind in the Aftermath of Neutron Star Merger ν-driven wind in the Aftermath of Neutron Star Merger Albino Perego in collaboration with A. Arcones, R. Cabezon, R. Käppeli, O. Korobkin, M. Liebendörfer, D. Martin, S. Rosswog albino.perego@physik.tu-darmstadt.de

More information

Merger of binary neutron stars: Gravitational waves and electromagnetic counterparts Numerical-relativity study

Merger of binary neutron stars: Gravitational waves and electromagnetic counterparts Numerical-relativity study Merger of binary neutron stars: Gravitational waves and electromagnetic counterparts Numerical-relativity study Masaru Shibata Yukawa Institute for Theoretical Physics, Kyoto University In collaboration

More information

Theory for nuclear processes in stars and nucleosynthesis

Theory for nuclear processes in stars and nucleosynthesis Theory for nuclear processes in stars and nucleosynthesis Gabriel Martínez Pinedo Nuclear Astrophysics in Germany November 15-16, 2016 Nuclear Astrophysics Virtual Institute Outline 1 Ab-initio description

More information

arxiv: v2 [astro-ph.he] 19 May 2014

arxiv: v2 [astro-ph.he] 19 May 2014 DRAFT VERSION MAY 20, 2014 Preprint typeset using LATEX style emulateapj v. 04/17/13 DUST FORMATION IN MACRONOVAE HAJIME TAKAMI 1,4, TAKAYA NOZAWA 2, KUNIHITO IOKA 1,3 Draft version May 20, 2014 arxiv:1403.5872v2

More information

The role of neutrinos in the formation of heavy elements. Gail McLaughlin North Carolina State University

The role of neutrinos in the formation of heavy elements. Gail McLaughlin North Carolina State University The role of neutrinos in the formation of heavy elements Gail McLaughlin North Carolina State University 1 Neutrino Astrophysics What are the fundamental properties of neutrinos? What do they do in astrophysical

More information

Nuclear physics input for the r-process

Nuclear physics input for the r-process Nuclear physics input for the r-process Gabriel Martínez Pinedo INT Workshop The r-process: status and challenges July 28 - August 1, 2014 Nuclear Astrophysics Virtual Institute Outline 1 Introduction

More information

Multi-Messenger Signatures of the R-Process

Multi-Messenger Signatures of the R-Process Multi-Messenger Signatures of the R-Process Brian Metzger Columbia University In Collaboration with Rodrigo Fernandez, Eliot Quataert, Geoff Bower, Dan Kasen (UC Berkeley) Andrey Vlasov (Columbia), Almudena

More information

r-process nucleosynthesis: conditions, sites, and heating rates

r-process nucleosynthesis: conditions, sites, and heating rates r-process nucleosynthesis: conditions, sites, and heating rates Technische Universität Darmstadt August 14, 17 The (solar) r-process abundance pattern abundance proton number 1-1 -3 1-4 1-5 1-6 8 7 6 5

More information

ISDT Report Time-domain Science

ISDT Report Time-domain Science ISDT Report Time-domain Science Masaomi Tanaka (National Astronomical Observatory of Japan) G.C. Anupama (IIA) (Convener) ISDT time-domain group (15 members) * at this form Warren Skidmore (TMT) (Chapter

More information

Neutron-star mergers:

Neutron-star mergers: Neutron-star mergers: Predictions by numerical relativity Masaru Shibata Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University Many people are exploring NS binaries

More information

The r-process and the νp-process

The r-process and the νp-process The r-process and the νp-process Carla Fröhlich Enrico Fermi Fellow The Enrico Fermi Institute University of Chicago GCE April 30 / 2010 Solar System Abundances?? 2 s-process peak r-process peak s-process

More information

Neutrinos and explosive nucleosynthesis

Neutrinos and explosive nucleosynthesis Neutrinos and explosive nucleosynthesis Gabriel Martínez-Pinedo Microphysics in computational relativistic astrophysics June 22, 2011 Outline 1 Introduction 2 Neutrino-matter interactions 3 Nucleosynthesis

More information

Nucleosynthesis of heavy elements. Almudena Arcones Helmholtz Young Investigator Group

Nucleosynthesis of heavy elements. Almudena Arcones Helmholtz Young Investigator Group Nucleosynthesis of heavy elements Almudena Arcones Helmholtz Young Investigator Group The nuclear chart uranium masses measured at the ESR 82 silver gold r-proce path 126 stable nuclei 50 82 will be measured

More information

arxiv: v1 [astro-ph.he] 5 Feb 2018

arxiv: v1 [astro-ph.he] 5 Feb 2018 Mem. S.A.It. Vol., 1 c SAIt 2008 Memorie della A multi-messenger analysis of neutron star mergers arxiv:1802.01696v1 [astro-ph.he] 5 Feb 2018 Alessandro Drago 1, Giuseppe Pagliara 1, Silvia Traversi 1

More information

Electromagne,c Counterparts of Gravita,onal Wave Events

Electromagne,c Counterparts of Gravita,onal Wave Events Electromagne,c Counterparts of Gravita,onal Wave Events Bing Zhang University of Nevada Las Vegas Jul. 21, 2014, INT Program14-2a, Binary Neutron Star Coalescence as a Fundamental Physics Laboratory Collaborators:

More information

Type Ia Supernova. White dwarf accumulates mass from (Giant) companion Exceeds Chandrasekar limit Goes supernova Ia simul

Type Ia Supernova. White dwarf accumulates mass from (Giant) companion Exceeds Chandrasekar limit Goes supernova Ia simul Type Ia Supernova White dwarf accumulates mass from (Giant) companion Exceeds Chandrasekar limit Goes supernova Ia simul Last stage of superheavy (>10 M ) stars after completing Main Sequence existence

More information

Gravitational waves and dynamical mass ejection from binary neutron-star mergers

Gravitational waves and dynamical mass ejection from binary neutron-star mergers Gravitational waves and dynamical mass ejection from binary neutron-star mergers Masaru Shibata Yukawa Institute for Theoretical Physics, Kyoto University In collaboration with Hotokezaka, Kiuchi, Kyutoku,

More information

Review Article Kilonova/Macronova Emission from Compact Binary Mergers

Review Article Kilonova/Macronova Emission from Compact Binary Mergers Advances in Astronomy Volume 6, Article ID 634974, 2 pages http://dx.doi.org/0.55/6/634974 Review Article Kilonova/Macronova Emission from Compact Binary Mergers Masaomi Tanaka National Astronomical Observatory

More information

Origin of the heavy elements in binary neutron-star mergers from a gravitational wave event

Origin of the heavy elements in binary neutron-star mergers from a gravitational wave event Publisher: NPG; Journal: Nature: Nature; Article Type: Physics letter DOI: 10.1038/nature24453 Origin of the heavy elements in binary neutron-star mergers from a gravitational wave event Daniel Kasen 1,2,

More information

STELLAR HEAVY ELEMENT ABUNDANCES AND THE NATURE OF THE R-PROCESSR. JOHN COWAN University of Oklahoma

STELLAR HEAVY ELEMENT ABUNDANCES AND THE NATURE OF THE R-PROCESSR. JOHN COWAN University of Oklahoma STELLAR HEAVY ELEMENT ABUNDANCES AND THE NATURE OF THE R-PROCESSR JOHN COWAN University of Oklahoma First Stars & Evolution of the Early Universe (INT) - June 19, 2006 Top 11 Greatest Unanswered Questions

More information

The Central Engines of Short Duration Gamma-Ray Bursts

The Central Engines of Short Duration Gamma-Ray Bursts The Central Engines of Short Duration Gamma-Ray Bursts NS NS NS BH Brian Metzger Columbia University In Collaboration with Edo Berger, Wen-Fai Fong (Harvard), Tony Piro, Dan Perley (Caltech) Almudena Arcones,

More information

arxiv: v2 [astro-ph.he] 4 Apr 2018

arxiv: v2 [astro-ph.he] 4 Apr 2018 Astronomy & Astrophysics manuscript no. aanda c ESO 218 November 11, 218 The first direct double neutron star merger detection: implications for cosmic nucleosynthesis. S. Rosswog 1, J. Sollerman 1, U.

More information

Radio Flares from Neutron Star merges + More Tsvi Piran

Radio Flares from Neutron Star merges + More Tsvi Piran Radio Flares from Neutron Star merges + More Tsvi Piran Kenta Hotokezaka, Ehud Nakar, Ben Margalit Paz Beniamini, Stephan Rosswog Outline A 2nd Macronova (Yang + 15, Nature comm in press.) Remarks about

More information

The Periodic Table of Elements

The Periodic Table of Elements The Periodic Table of Elements 8 Uuo Uus Uuh (9) Uup (88) Uuq (89) Uut (8) Uub (8) Rg () 0 Ds (9) 09 Mt (8) 08 Hs (9) 0 h () 0 Sg () 0 Db () 0 Rf () 0 Lr () 88 Ra () 8 Fr () 8 Rn () 8 At (0) 8 Po (09)

More information

PERIODIC TABLE OF THE ELEMENTS

PERIODIC TABLE OF THE ELEMENTS Useful Constants and equations: K = o C + 273 Avogadro's number = 6.022 x 10 23 d = density = mass/volume R H = 2.178 x 10-18 J c = E = h = hc/ h = 6.626 x 10-34 J s c = 2.998 x 10 8 m/s E n = -R H Z 2

More information

Ultra-stripped Type Ic supernovae generating double neutron stars

Ultra-stripped Type Ic supernovae generating double neutron stars Ultra-stripped Type Ic supernovae generating double neutron stars Yudai Suwa Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto U. Collaboration with: T. Yoshida (U. Tokyo),

More information

Neutron skin measurements and its constraints for neutron matter. C. J. Horowitz, Indiana University INT, Seattle, 2016

Neutron skin measurements and its constraints for neutron matter. C. J. Horowitz, Indiana University INT, Seattle, 2016 Neutron skin measurements and its constraints for neutron matter C. J. Horowitz, Indiana University INT, Seattle, 2016 1 Neutron Rich Matter Compress almost anything to 10 11 + g/cm 3 and electrons react

More information

Supernovae and possible NS-NS EM signatures. Keiichi Maeda

Supernovae and possible NS-NS EM signatures. Keiichi Maeda ? Supernovae and possible NS-NS EM signatures Keiichi Maeda Outline SN (mostly) optical obs. vs. radiation models. @max. Early, before max. Late-phase. w/ radio and/or X-ray. How to connect these to Progenitor,

More information

Important (!) Effects of Nucleosynthesis on the EM Signatures of Neutron Star Mergers. Brian Metzger

Important (!) Effects of Nucleosynthesis on the EM Signatures of Neutron Star Mergers. Brian Metzger Important (!) Effects of Nucleosynthesis on the EM Signatures of Neutron Star Mergers Brian Metzger Princeton University NASA Einstein Fellow In Collaboration with Almudena Arcones (U Basel) & Gabriel

More information

9/20/2017. Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom)

9/20/2017. Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom) CAPTER 6: TE PERIODIC TABLE Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom) The Periodic Table (Mendeleev) In 1872, Dmitri

More information

Explosive transients in the next decade

Explosive transients in the next decade Explosive transients in the next decade S.J. Smartt Queen s University Belfast Public ESO Spectroscopic Survey of Transient Objects 90N per yr on NTT, visitor mode, flexible time domain science All of

More information

Collapsar scenario and NS-NS mergers. Yuichiro Sekiguchi (YITP)

Collapsar scenario and NS-NS mergers. Yuichiro Sekiguchi (YITP) Collapsar scenario and NS-NS mergers Yuichiro Sekiguchi (YITP) A personal view on Collapsar scenario Yuichiro Sekiguchi (YITP) On the one hand, rapid rotation is necessary Collapsar scenario (BH + Disk)

More information

DRAFT VERSION OCTOBER 12, 2017 Preprint typeset using L A TEX style AASTeX6 v. 1.0

DRAFT VERSION OCTOBER 12, 2017 Preprint typeset using L A TEX style AASTeX6 v. 1.0 DRAFT VERSION OCTOBER 12, 2017 Preprint typeset using L A TEX style AASTeX6 v. 1.0 THE ELECTROMAGNETIC COUNTERPART OF THE BINARY NEUTRON STAR MERGER LIGO/VIRGO GW170817. III. OPTICAL AND UV SPECTRA OF

More information

arxiv: v1 [astro-ph.he] 23 May 2016

arxiv: v1 [astro-ph.he] 23 May 2016 Kilonova/Macronova Emission from Compact Binary Mergers Masaomi Tanaka National Astronomical Observatory of Japan, Mitaka, Tokyo 8-888, Japan masaomi.tanaka@nao.ac.jp arxiv:60.0723v [astro-ph.he] 23 May

More information

arxiv: v1 [astro-ph.he] 8 Jan 2015

arxiv: v1 [astro-ph.he] 8 Jan 2015 Mon. Not. R. Astron. Soc. 000,?? (205) Printed 26 September 208 (MN LaT E X style file v2.2) Mass ejection from neutron star mergers: different components and expected radio signals arxiv:50.0986v [astro-ph.he]

More information

arxiv: v1 [astro-ph.he] 17 Jan 2019

arxiv: v1 [astro-ph.he] 17 Jan 2019 Preprint 18 January 2019 Compiled using MNRAS LATEX style file v3.0 arxiv:1901.05792v1 [astro-ph.he] 17 Jan 2019 A comparison between short GRB afterglows and KN170817: shedding light on kilonovae properties

More information

Lecture 15. Explosive Nucleosynthesis and the r-process

Lecture 15. Explosive Nucleosynthesis and the r-process Lecture 15 Explosive Nucleosynthesis and the r-process As the shock wave passes through the star, matter is briefly heated to temperatures far above what it would have experienced in hydrostatic equilibrium.

More information

1 Stellar Abundances: The r-process and Supernovae

1 Stellar Abundances: The r-process and Supernovae 1 Stellar Abundances: The r-process and Supernovae JOHN J. COWAN Department of Physics and Astronomy, University of Oklahoma Norman, OK 73019, USA CHRISTOPHER SNEDEN Department of Astronomy and McDonald

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

Enrichment of r-process elements in nearby dsph galaxies, the Milky way, and globular cluster(s)

Enrichment of r-process elements in nearby dsph galaxies, the Milky way, and globular cluster(s) Enrichment of r-process elements in nearby dsph galaxies, the Milky way, and globular cluster(s) Toshikazu Shigeyama (U. Tokyo) Based on Tsujimoto & TS 2014 Kilonova Afterglow of GRB130603B at day 9! Berger+

More information

High energy neutrino signals from NS-NS mergers

High energy neutrino signals from NS-NS mergers High energy neutrino signals from NS-NS mergers He Gao 高鹤 University of Nevada Las Vegas Collaborators: Bing Zhang, Xue-Feng Wu & Zi-Gao Dai 2013-05-08 Multi-Messenger Workshop @ KIAA EM signals for a

More information

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism Periodic Properties Atomic & Ionic Radius Energy Electron Affinity We want to understand the variations in these properties in terms of electron configurations. The Periodic Table Elements in a column

More information

1 Searching for Optical counterparts of Gravitational

1 Searching for Optical counterparts of Gravitational M.C. Diaz, and M. Benacquista K. Belczyński Warsaw University Observatory, Poland M. Branchesi Università di Urbino/INFN Sezione di Firenze, Italy E. Brocato Osservatorio Astronomico di Roma - INAF, Italy

More information

Secondary Support Pack. be introduced to some of the different elements within the periodic table;

Secondary Support Pack. be introduced to some of the different elements within the periodic table; Secondary Support Pack INTRODUCTION The periodic table of the elements is central to chemistry as we know it today and the study of it is a key part of every student s chemical education. By playing the

More information

Nucleosynthesis Process. Ba: s-process Ag, Eu: r-process

Nucleosynthesis Process. Ba: s-process Ag, Eu: r-process Nucleosynthesis Process Ba: s-process Ag, Eu: r-process Ba Ag Eu Nucleosynthesis Process Ba: s-process Ag, Eu: r-process Ba Ag Eu Nucleosynthesis Process Ba: s-process Ag, Eu: r-process Ba Ag Eu 0 Metal-poor

More information

lectures accompanying the book: Solid State Physics: An Introduction, by Philip ofmann (2nd edition 2015, ISBN-10: 3527412824, ISBN-13: 978-3527412822, Wiley-VC Berlin. www.philiphofmann.net 1 Bonds between

More information

arxiv: v2 [astro-ph.he] 1 Jan 2018

arxiv: v2 [astro-ph.he] 1 Jan 2018 Preprint typeset using L A TEX style AASTeX6 v. 1.0 DOUBLE NEUTRON STAR MERGERS AND SHORT GAMMA-RAY BURSTS: LONG-LASTING HIGH-ENERGY SIGNATURES AND REMNANT DICHOTOMY Kohta Murase 1,2,3,4, Michael W. Toomey

More information

What is the periodic table?

What is the periodic table? The periodic table of the elements represents one of the greatest discoveries in the history of science that certain elements, the basic chemical substances from which all matter is made, resemble each

More information

The Periodic Table of the Elements

The Periodic Table of the Elements The Periodic Table of the Elements All matter is composed of elements. All of the elements are composed of atoms. An atom is the smallest part of an element which still retains the properties of that element.

More information

Ref. PRL 107, (2011)

Ref. PRL 107, (2011) Kenta Kiuchi, Y. Sekiguchi, K. Kyutoku, M. Shibata Ref. PRL 107, 051102 (2011) Y TP YUKAWA INSTITUTE FOR THEORETICAL PHYSICS Introduction Coalescence of binary neutron stars Promising source of GWs Verification

More information

Neutron star post-merger simulations: origin of kilonovae and the heavy elements

Neutron star post-merger simulations: origin of kilonovae and the heavy elements 4-color Process 100% Cyan 72% Magenta logo can also be rendered in black, grey (60% black), Pantone 280, or Pantone 286; on a darker color background, the logo can be rendered in Pantone 290, 291, or 284,

More information

Core-collapse supernova simulations in three dimensions

Core-collapse supernova simulations in three dimensions Core-collapse supernova simulations in three dimensions Eric J Lentz University of Tennessee, Knoxville S. Bruenn (FAU), W. R. Hix (ORNL/UTK), O. E. B. Messer (ORNL), A. Mezzacappa (UTK), J. Blondin (NCSU),

More information

8. Relax and do well.

8. Relax and do well. CHEM 1314 3;30 pm Theory Exam III John III. Gelder November 13, 2002 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 8 different pages. The last page include a periodic

More information

Plasma EUV source has been studied to achieve 180W of power at λ=13.5nm, which is required for the next generation microlithography

Plasma EUV source has been studied to achieve 180W of power at λ=13.5nm, which is required for the next generation microlithography Acknowledgement K. Nishihara, H. Nishimura, S. Fujioka Institute for Laser Engineering, Osaka University A. Sunahara, H. Furukawa Institute for Laser Technology T. Nishikawa, Okayama University F. Koike,

More information

(C) Pavel Sedach and Prep101 1

(C) Pavel Sedach and Prep101 1 (C) Pavel Sedach and Prep101 1 (C) Pavel Sedach and Prep101 1 (C) Pavel Sedach and Prep101 2 (C) Pavel Sedach and Prep101 2 (C) Pavel Sedach and Prep101 3 (C) Pavel Sedach and Prep101 3 (C) Pavel Sedach

More information

Red or blue? A potential kilonova imprint of the delay until black hole formation following a neutron star merger

Red or blue? A potential kilonova imprint of the delay until black hole formation following a neutron star merger doi:10.1093/mnras/stu802 Red or blue? A potential kilonova imprint of the delay until black hole formation following a neutron star merger Brian D. Metzger 1 and Rodrigo Fernández 2,3 1 Columbia Astrophysics

More information

arxiv: v3 [astro-ph.he] 16 Oct 2018

arxiv: v3 [astro-ph.he] 16 Oct 2018 1 How Li and Paczyński Model of Kilonova Fits GW170817 Optical Counterpart A. K r u s z e w s k i 1 Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa, Poland arxiv:1805.09043v3 [astro-ph.he]

More information

Advanced Placement. Chemistry. Integrated Rates

Advanced Placement. Chemistry. Integrated Rates Advanced Placement Chemistry Integrated Rates 204 47.90 9.22 78.49 (26) 50.94 92.9 80.95 (262) 52.00 93.94 83.85 (263) 54.938 (98) 86.2 (262) 55.85 0. 90.2 (265) 58.93 02.9 92.2 (266) H Li Na K Rb Cs Fr

More information

B. X : in phase; Y: out of phase C. X : out of phase; Y: in phase D. X : out of phase; Y: out of phase

B. X : in phase; Y: out of phase C. X : out of phase; Y: in phase D. X : out of phase; Y: out of phase 2015 April 24 Exam 3 Physics 106 Circle the letter of the single best answer. Each question is worth 1 point Physical Constants: proton charge = e = 1.60 10 19 C proton mass = m p = 1.67 10 27 kg electron

More information

A kilonova associated with short-duration gamma-ray burst B.

A kilonova associated with short-duration gamma-ray burst B. A kilonova associated with short-duration gamma-ray burst 130603B. N. R. Tanvir 1, A. J. Levan 2, A. S. Fruchter 3, J. Hjorth 4, R. A. Hounsell 3, K. Wiersema 1 & R. L. Tunnicliffe 2 1 Department of Physics

More information

נושא מס' 8: המבנה האלקטרוני של אטומים. Electronic Structure of Atoms. 1 Prof. Zvi C. Koren

נושא מס' 8: המבנה האלקטרוני של אטומים. Electronic Structure of Atoms. 1 Prof. Zvi C. Koren נושא מס' 8: המבנה האלקטרוני של אטומים Electronic Structure of Atoms 1 Prof. Zvi C. Koren 19.07.10 The Electron Spin From further experiments, it was evident that the e had additional magnetic properties

More information

SHORT-LIVED 244 PU POINTS TO COMPACT BINARY MERGERS AS SITES FOR HEAVY R-PROCESS NUCLEOSYNTHESIS

SHORT-LIVED 244 PU POINTS TO COMPACT BINARY MERGERS AS SITES FOR HEAVY R-PROCESS NUCLEOSYNTHESIS Draft version July 26, 208 Preprint typeset using L A TEX style emulateapj v. 08/22/09 SHORT-LIVED 244 PU POINTS TO COMPACT BINARY MERGERS AS SITES FOR HEAVY R-PROCESS NUCLEOSYNTHESIS Kenta Hotokezaka,

More information

STARS. J. J. COWAN University of Oklahoma

STARS. J. J. COWAN University of Oklahoma THE R-PROCESS R IN HALO STARS J. J. COWAN University of Oklahoma Matter & Energy in the Universe: from Nucleosynthesis to Cosmology (Recontres de Blois) - May 25, 2007 Abundance Clues and Constraints New

More information

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1 Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1 The development of the periodic table brought a system of order to what was otherwise an collection of thousands of pieces of information.

More information

Nucleosynthesis in core-collapse supernovae. Almudena Arcones

Nucleosynthesis in core-collapse supernovae. Almudena Arcones Nucleosynthesis in core-collapse supernovae Almudena Arcones Solar system abundances Solar photosphere and meteorites: chemical signature of the gas cloud where the Sun formed. Contribution of all nucleosynthesis

More information

Atoms and the Periodic Table

Atoms and the Periodic Table Atoms and the Periodic Table Parts of the Atom Proton Found in the nucleus Number of protons defines the element Charge +1, mass 1 Parts of the Atom Neutron Found in the nucleus Stabilizes the nucleus

More information

Nucleosynthesis in core-collapse supernovae. Almudena Arcones

Nucleosynthesis in core-collapse supernovae. Almudena Arcones Nucleosynthesis in core-collapse supernovae Almudena Arcones Nucleosynthesis in core-collapse supernovae Explosive nucleosynthesis: O, Mg, Si, S, Ca, Ti, Fe, p-process shock wave heats falling matter shock

More information

The long-term evolution of neutron star merger remnants I. The impact of r-process nucleosynthesis

The long-term evolution of neutron star merger remnants I. The impact of r-process nucleosynthesis Advance Access publication 2014 January 31 doi:10.1093/mnras/stt2502 The long-term evolution of neutron star merger remnants I. The impact of r-process nucleosynthesis S. Rosswog, 1 O. Korobkin, 1 A. Arcones,

More information

WHAT DO X-RAY OBSERVATIONS

WHAT DO X-RAY OBSERVATIONS WHAT DO X-RAY OBSERVATIONS OF SNRS TELL US ABOUT THE SN AND ITS PROGENITOR DAN PATNAUDE (SAO) ANATOMY OF A SUPERNOVA REMNANT Forward Shock Cas A viewed in X-rays (Patnaude & Fesen 2009). Red corresponds

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

arxiv: v1 [astro-ph.he] 8 Dec 2017

arxiv: v1 [astro-ph.he] 8 Dec 2017 DRAFT VRSIO DCMBR 12, 2017 Typeset using L A TX twocolumn style in AASTeX61 GW170817 MOST LIKLY MAD A BLACK HOL DAVID POOLY, 1, 2 PAWA KUMAR, 3 AD J. CRAIG WHLR 3 1 Department of Physics and Astronomy,

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics III: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt Tokyo, November 18, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics Tokyo, November 18, 2008

More information

arxiv: v2 [astro-ph.he] 3 Mar 2015

arxiv: v2 [astro-ph.he] 3 Mar 2015 The dynamical mass ejection from binary neutron star mergers: Radiation-hydrodynamics study in general relativity Yuichiro Sekiguchi 1, Kenta Kiuchi 1, Koutarou Kyutoku 2, and Masaru Shibata 1 1 Yukawa

More information

Extreme Transients in the Multimessenger Era

Extreme Transients in the Multimessenger Era Extreme Transients in the Multimessenger Era Philipp Mösta Einstein fellow @ UC Berkeley pmoesta@berkeley.edu BlueWBlueWaters Symposium 2018 Sunriver Resort Core-collapse supernovae neutrinos turbulence

More information

Chapter 12 The Atom & Periodic Table- part 2

Chapter 12 The Atom & Periodic Table- part 2 Chapter 12 The Atom & Periodic Table- part 2 Electrons found outside the nucleus; negatively charged Protons found in the nucleus; positive charge equal in magnitude to the electron s negative charge Neutrons

More information

HANDOUT SET GENERAL CHEMISTRY II

HANDOUT SET GENERAL CHEMISTRY II HANDOUT SET GENERAL CHEMISTRY II Periodic Table of the Elements 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 IA VIIIA 1 2 H He 1.00794 IIA IIIA IVA VA VIA VIIA 4.00262 3 Li 6.941 11 Na 22.9898

More information

The Detailed Abundance Patterns of Light Neutron-Capture Elements in Very Metal-Poor Stars

The Detailed Abundance Patterns of Light Neutron-Capture Elements in Very Metal-Poor Stars The Detailed Abundance Patterns of Light Neutron-Capture Elements in Very Metal-Poor Stars 1, Wako Aoki 1, Yuhri Ishimaru 2, Shinya Wanajo 3, Sean G. Ryan 4, Toshitaka Kajino 1, Hiroyasu Ando 1, and Timothy

More information

arxiv: v1 [astro-ph.he] 28 Dec 2018

arxiv: v1 [astro-ph.he] 28 Dec 2018 Draft version January 1, 2019 Preprint typeset using L A TEX style emulateapj v. 12/16/11 RELATIVISTIC ENVELOPES AND GAMMA-RAYS FROM NEUTRON STAR MERGERS Andrei M. Beloborodov, 1,2 Christoffer Lundman,

More information