arxiv: v1 [astro-ph.he] 8 Dec 2017

Size: px
Start display at page:

Download "arxiv: v1 [astro-ph.he] 8 Dec 2017"

Transcription

1 DRAFT VRSIO DCMBR 12, 2017 Typeset using L A TX twocolumn style in AASTeX61 GW MOST LIKLY MAD A BLACK HOL DAVID POOLY, 1, 2 PAWA KUMAR, 3 AD J. CRAIG WHLR 3 1 Department of Physics and Astronomy, Trinity University, San Antonio, Texas arxiv: v1 [astro-ph.h] 8 Dec ureka Scientific, Inc. 3 Department of Astronomy, University of Texas at Austin, Austin, Texas (Received 2017 December 08) ABSTRACT The detection of the neutron-star merger kilonova and short hard gamma-ray burst event GW has been widely described, but one outstanding issue remains: the nature of the remnant of the event. Within the initial uncertainties, the remnant could be either a massive, rotating, magnetic neutron star or a black hole. One of the ways to distinguish these possibilities is with sensitive X-ray observations. We report here Chandra X-ray Observatory Director s Discretionary Time observations made on 2017 Dec 03 and Dec 06 and conclude that X-ray data is consistent with synchrotron radiation in the external shock, and the most likely remnant is a black hole. Keywords: radiation mechanisms: non-thermal - methods: analytical - gamma-rays: bursts, theory - gravitational radiation Corresponding author: David Pooley dpooley@trinity.edu

2 2 POOLY, KUMAR, & WHLR 1. ITRODUCTIO The discovery of gravitational waves from binary neutron star merger by LIGO (Abbott et al. 2017a) and the associated electromagnetic signal that arrived with a delay of 1.74s (Abbott et al. 2017b) has opened a new and exciting frontier that should provide answers to long-standing questions regarding the synthesis of r-process elements (eg. Tanvir et al. 2017; Kasen et al. 2017), and the generation of relativistic jets and γ-ray photons (cf. Kasliwal et al. 2017) in these events and possibly other high energy sources. The published data for has not enabled a determination as to whether the merged product is a black hole or a massive neutron star. The X-ray flux a couple of weeks after the merger event when the system has become transparent can help answer this question. The Director s Discretionary Time observations with the Chandra X-ray Observatory obtained on - is described in 2. In section 3 we discuss the interpretation of the X-ray data. The main conclusion is summarized in CHADRA OBSRVATIO AD RSULTS Chandra observed the field of starting at 01:39:54 UTC on 2017 Dec 03 for an exposure time of 74.1 ks (ObsID 20860) and again starting at 10:44:40 UTC on 2017 Dec 06 for an exposure time of 24.7 ks (ObsID 20861). Both observations were taken with the telescope aimpoint on the Advanced CCD Imaging Spectrometer (ACIS) S3 chip. Data reduction was performed with the chandra repro script, part of the Chandra Interactive Analysis of Observations (CIAO) software. We used CIAO version 4.9 and calibration database CALDB version Images of the field of are shown in Figure 1. In each observation, we extracted spectra from a 1. 0 radius region centered on and a 1 source-free background region to the northwest. In the kev band, we detect 105 counts in the extraction region in the first observation with an estimated contribution of 0.50 background counts and 33 counts in the second observation with an estimated background contribution of 0.16 counts. Combining both observations we report 137.3±12.0 net counts from the two observations combined, for a count-rate of 1.39 ± 0.12 counts / ks. We performed a simultaneous fit of the unbinned source spectra in the kev band with Sherpa using the modified Cash (1979) statistic cstat and the simplex optimization method. We fit the data with a power-law model with two absorption components. We use the Tuebingen-Boulder ISM absorption model (Wilms, Allen, & McCray 2000) and fix one absorbing column to the Galactic value of n H = cm 2 calculated from the ffelsberg-bonn HI Survey (Winkel et al. 2016) using the online tool at the Argelander-Institut für Astronomie 1. We let the column density of the other absorption component vary to allow for any absorption local to the event. 1 profiles/ In addition to the simultaneous fit of both the Dec 03 and Dec 06 spectra, we fit each spectrum separately. For consistency, we also fit this model to the spectra we extracted from publicly available Chandra observations from Aug 26 (ObsID 19294) and Sep 01 (ObsID 20728), which we reduced in the manner described above. Our fits agree with the results reported in Troja et al. (2017). We summarize the observations and fit results in Table 1. All uncertainties are the 1σ confidence intervals. The reported fluxes are integrated from the unabsorbed model. Uncertainties on those fluxes were calculated as the standard deviation of integrated, unabsorbed fluxes from Monte Carlo realizations (1000 samples) of the best-fit models, taking into account the uncertainties in the best-fit parameters. The X-ray light curve with uncertainties is shown in Figure 2. We note that, although the spectrum of Dec 03 and the joint fit do prefer a non-zero column for the additional absorption component, the 3σ confidence intervals go down to zero column density so we do not claim that any additional absorption is required by the data. This confidence intervals on the flux are relatively insensitive to this additional component. The large uncertainties on the power-law indices make it difficult to determine whether the X-ray spectrum has changed slope. To address this, we perform a Kolmogorov- Smirnov test on the detected photon energies and find marginal evidence for spectral evolution. The six pairwise KS tests of the four observations show probabilities of the detected photon energies being drawn from the same parent distribution in the 10% 50% range, which indicates consistency of the observed spectra. The smallest probability for being drawn from the same parent distribution is for the first and last observations (ObsIDs and 20861), which have a 6% probability of being drawn from the same parent distribution. To sum up the early December Chandra observations, the best fit power-law index is 2.2±0.3 (1σ), and the unabsorbed kev flux is erg cm 2 s 1, which is a factor 5 larger than the X-ray flux 10 days after the merger event. At a distance of 40 Mpc, this corresponds to a luminosity of L x = erg s 1. This luminosity is larger by a factor 20 larger than the ddington luminosity of the merged object (mass 2.7M Abbott et al. 2017a). 3. ITRPRTATIO OF CHADRA DATA The X-ray spectrum f ν ν 1.2±0.3 is consistent with the radio spectrum at a similar epoch (Mooley et al. 2017). Moreover, the 1.6 GHz flux of 1 mjy at 93 days after the merger, extrapolated to the X-ray band with the spectrum ν 0.6, consistent within the errors with both the radio and X-ray spectra, yields flux at 1 kev of 12 njy which is consistent with the Chandra flux at 108 days. The most conservative scenario, therefore, is that the radio and the X-ray photons are produced in the same source via the synchrotron radiation mechanism. The synchrotron cooling frequency in a relativistic shock wave can be shown to be

3 RMAT 3 Table 1. Power-law Fits to Available Chandra Data on Date ObsID xp. (ks) n H (10 21 cm 2 ) PL Index Unabs. F kev (erg cm 2 s 1 ) 2017 Aug Sep Dec Dec Dec 03/06 joint fit Aug ksec 2017 Sep ksec 2017 Dec ksec Figure 1. Chandra images of the field of GW ach image is and made with counts in the range kev. The left and middle images show data presented in Troja et al. (2017), and the right image shows one of the observations presented and discussed here. The colorbar indicates the number of counts in each pixel. F kev (erg cm -2 s -1 ) Days since Figure 2. Chandra light curve of the unabsorbed kev flux from the available observations of GW Uncertainties in flux take account of uncertainties in the spectral fits; see text for details. (e.g. Kumar & Zhang, 2015) hν c 4.5 kev 1/2 50 n 1 ɛ 3/2 B, 4 t 1/2 7 (1 + Y ) 2, (1) where is the energy in the shocked plasma, n is the number density of particles in the medium in the vicinity of the neutron star merger, ɛ B is the fraction of the thermal energy of the shocked plasma in magnetic fields, t is the time since the merger event, and Y is the Compton Y -parameter which is less than 1 based on radio and X-ray data; integer subscript for a variable X, i.e. X m, is a convenient short hand notation for X/10 m in cgs units. The density n is expected to be of order 0.1 cm 3 or less in the interstellar medium of the host galaxy of. We conclude that hν c > 10 kev, beyond the observed band even a year after the merger. The observed synchrotron flux at 1 kev is given by (e.g. Kumar & Zhang, 2015) f ν 70 njy ɛ 1.2 e n 1/2 ɛ 0.8 B, 4t 0.9 7, (2) where ɛ e is the fraction of shock energy given to electrons; in deriving the above expression we have taken the electron energy distribution to be dn/de e p with p = 2.2 as suggested by the X-ray and radio spectra f ν ν 0.6. Since the flux at 1 kev at 108 days (12 njy) was larger than the flux at 9 days by factor 5, we conclude from quation 2 that the energy in the shocked plasma increased by a factor 20 between 9 days and 108 days 2. There are two ways 2 The scenario where the rising X-ray light-curve is due to an off-axis relativistic outflow can be ruled out (see Mooley et al. 2017).

4 4 POOLY, KUMAR, & WHLR that the energy in the external shock could increase with time. One is that the compact remnant left over in the merger continues to pump energy into the outward moving shock front. The other is that there is more energy in the slower moving ejecta that catches up with the decelerating shock front and supplies energy to it. The first possibility is unlikely to work. This is because there is M of debris between the central object and the forward shock front. Therefore, the speed at which this energy can be supplied is less than 0.5 c (even in the extreme case of erg of rotational energy generated by the central engine). This speed is smaller than the outward velocity of the relativistic shock-front, and hence the energy produced by the central engine would not reach the external shock in the time of interest to us. Any such energy will be added to the shock on a much longer time scale when its speed has fallen below 0.5 c, and observations carried out a few years from now would be able to constrain the total energy in the outflow. We are thus left with the second possibility, i.e. that at 108 days there is a lot more energy in slower moving ejecta (d/d(βγ) [βγ] 7 ), which is roughly consistent with the conclusion of Mooley et al. (2017). The data do not provide good constraint in the total energy in the shock front because of the unknown parameters n, ɛ B and ɛ e. 4. DISCUSSIO The Chandra X-ray data for the S merger event GW obtained 108 days after the merger shows that lightcurve increase in the X-ray band is essentially the same as the radio flux increase reported by Mooley et al. (2017). The spectra at these very different frequencies (1.6 GHz and 2.4x10 8 GHz) are also consistent with each other. These results suggest that radio and X-ray photons are produced in the same source, which is most likely the shocked inter-stellar medium. The rising lightcurve between 10 and 108 days requires the energy in the shocked plasma to increase by a factor 20 during this period, and that is likely due to more energy in slower moving ejecta where the energy scales with shock-front velocity βγ as (βγ) 7, which is roughly consistent with radio data as reported by Mooley et al. (2017). The merger of two neutron stars with mass 1.48±0.12M and 1.26±0.1M where the merged object has a mass of M (Abbott et al. 2017a) could result in either a neutron star or a black hole. There might also be a debris disk that gets accreted onto the central object over a period of time, and which could be source of kev X-rays. The observed X-ray luminosity of erg s 1 at 108 days is about 20 times the ddington luminosity for a 2.7 M remnant of the binary S merger. This suggests that X-ray photons are not coming from the debris disk, or fall back disk, left over in the merger. X-rays also could not be produced in a long lived relativistic jet emanating from the compact remnant since the X-ray luminosity in that case is expected to fall off as t 5/3 and the flux at 10 2 days would be much smaller than the observed value. We show next that if the merged object were a hypermassive neutron star endowed with a strong magnetic field, then the X-ray luminosity associated with the dipole radiation would be larger than the observed luminosity 10 days after the event, but much smaller than the observed flux at t 100 days. This argues against the formation of a hypermassive neutron star in this merger. The bolometric spindown luminosity of a neutron star due to dipole radiation is L d (t) ( erg s 1 )B 2 12 P 4 3 (1 + t/t SD ) 2, (3) where t SD ( s) B 2 12 P 2 3, (4) is the spin-down time, B 12 is the dipole magnetic field in units of G, and P 3 is the rotation period in units of milliseconds. The fraction of the spin-down luminosity that appears in the 1-10 kev X-ray band is small. We can use the data for pulsars in our Galaxy to estimate the expected X-ray flux if the merger remnant of GW were a hyper-massive S. The periodic pulses from the Crab are produced relatively close to the neutron star (perhaps near the light cylinder or at a distance of 10 8 cm). The bolometric M luminosity of the pulsed radiation from the Crab is about 0.1% of the spin-down luminosity. Of this flux, only about 10% comes out as 1-10 kev photons (Buhler & Blandford, 2013; Durant et al. 2011). Thus, the fraction of spindown rate of energy loss released as X-ray photons is 10 4 (Durant et al. 2011). Moreover, the fraction of spindown energy going into X-ray photons does not seem to be dependent on pulsar age or surface magnetic field strength (see Table 8 of Durant et al. 2011). Geminga at years has an X-ray efficiency within a factor 3 of the Crab that is only 10 3 yrs of age. Therefore, a crude estimate is that 10 4 of the spin-down luminosity of the merged neutron star in GW should be expected as 1-10 kev X-rays. Thus, if the merged object is a neutron star, the X-ray flux from GW would be: erg cm 2 s 1 B12 2 P 3 4 B 12 < 22t 1/2 6 P 3 f x erg cm 2 s 1 B12 2 t 2 6 B 12 > 22t 1/2 6 P 3 (5) where we took the distance to the object to be 40 Mpc. For typical magnetar magnetic field strength larger than G the pulsed X-ray flux at 108 days after the merger is an order of magnitude smaller than the observed flux; however, at t = 10 days the X-ray flux from a putative would at least a factor a few larger than the observed flux for B G. The system becomes optically thin to X-ray photons roughly a few days after the merger. Further check of the possibility of a magnetar remnant could be provided by continued monitoring of the system in X-rays. If the remnant is really a young magnetar then we should expect to see X-ray outbursts before too long.

5 RMAT 5 The current X-ray and radio observations 100 days after the merger are best explained by continued emission of the merger-induced shock continuing to propagate into the interstellar medium surrounding GW The early X-ray data suggest that the remnant is not a hyper-massive neutron star with magnetic field between G and G. This suggests that the merged object was most likely a black hole. and. L. Robinson, U. akar and C. Froning for very useful discussions. JCW is supported in part by the Samuel T. and Fern Yanagisawa Regents Professorship. Facility: CXO Software: CIAO (Fruscione et al. 2006), Sherpa (Freeman et al. 2001) We thank Belinda Wilkes and Chandra team for carrying out the Chandra Director s Discretionary Time observations RFRCS Abbott et al, 2017a, PRL 119, Abbott et al, 2017b, ApJL 848, L12 Buhler, R. & Blandford, R., 2013, arxiv: Cash, 1979, ApJ, 228, 939 Durant, M., Kargaltsev, O., and Pavlov, G. G., 2011, ApJ 743, 38 Freeman, P., Doe, S., & Siemiginowska, A. 2001, Proc. SPI, 4477, 76 Fruscione, A., McDowell, J. C., Allen, G.., et al. 2006, Proc. SPI, 6270, 62701V Kasen, D., Metzger, B., Barnes, J., Quataert,. and Ramirez-Ruiz,., 2017, ature Kasliwal, M.M. et al. 2017, Science Kumar, P. and Zhang, B., 2015, Physics Reports 561, 1 Mooley, K.P. et al., 2017, arxiv: Mösta, P., Ott, C. D., Radice, D., et al. 2015, ature 528, 376 Tanvir et al., 2017, ApJL 848, L27 Troja,. et al., 2017, ature Wilms, Allen and McCray, 2000, ApJ, 542, 914 Winkel, B., Kerp, J., Flöer, L., et al. 2016, A&A, 585, A41

Short GRB and kilonova: did observations meet our theoretical predictions?

Short GRB and kilonova: did observations meet our theoretical predictions? Short GRB and kilonova: did observations meet our theoretical predictions? Riccardo Ciolfi INAF - Astronomical Observatory of Padova INFN - Trento Institute for Fundamental Physics and Applications GW170817

More information

Electromagne,c Counterparts of Gravita,onal Wave Events

Electromagne,c Counterparts of Gravita,onal Wave Events Electromagne,c Counterparts of Gravita,onal Wave Events Bing Zhang University of Nevada Las Vegas Jul. 21, 2014, INT Program14-2a, Binary Neutron Star Coalescence as a Fundamental Physics Laboratory Collaborators:

More information

Distribution of Gamma-ray Burst Ejecta Energy with Lorentz Factor

Distribution of Gamma-ray Burst Ejecta Energy with Lorentz Factor Distribution of Gamma-ray Burst Ejecta Energy with Lorentz Factor Jonathan Granot KIPAC, P.O. Box 20450, Mail Stop 29, Stanford, CA 94309 Pawan Kumar Department of Astronomy, University of Texas, Austin,

More information

arxiv: v1 [astro-ph.he] 24 Jan 2019

arxiv: v1 [astro-ph.he] 24 Jan 2019 Draft version January 25, 2019 Typeset using L A TEX twocolumn style in AASTeX62 Bayesian Analysis on the X-ray Spectra of the Binary Neutron Star Merger GW170817 En-Tzu Lin, 1 Hoi-Fung Yu, 2, 3, 4 and

More information

The Mystery of Fast Radio Bursts and its possible resolution. Pawan Kumar

The Mystery of Fast Radio Bursts and its possible resolution. Pawan Kumar The Mystery of Fast Radio Bursts and its possible resolution Outline Pawan Kumar FRBs: summary of relevant observations Radiation mechanism and polarization FRB cosmology Wenbin Lu Niels Bohr Institute,

More information

Extended X- ray emission from PSR B /LS 2883 and other gamma- ray binaries

Extended X- ray emission from PSR B /LS 2883 and other gamma- ray binaries Extended X- ray emission from PSR B1259-63/LS 2883 and other gamma- ray binaries George Pavlov (Pennsylvania State University) Oleg Kargaltsev (George Washington University) Martin Durant (University of

More information

Probing the Cosmos with light and gravity: multimessenger astronomy in the gravitational wave era

Probing the Cosmos with light and gravity: multimessenger astronomy in the gravitational wave era Utah State University DigitalCommons@USU Colloquia and Seminars Astrophysics 9-7-2011 Probing the Cosmos with light and gravity: multimessenger astronomy in the gravitational wave era Shane L. Larson Utah

More information

Lobster X-ray Telescope Science. Julian Osborne

Lobster X-ray Telescope Science. Julian Osborne Lobster X-ray Telescope Science Julian Osborne What we want The whole high-energy sky right now 1.00E+13 1.00E+12 1 / f_lim (100 s) 1.00E+11 1.00E+10 1.00E+09 1.00E+08 0.0000001 0.000001 0.00001 0.0001

More information

Short gamma-ray bursts from binary neutron star mergers: the time-reversal scenario

Short gamma-ray bursts from binary neutron star mergers: the time-reversal scenario Short gamma-ray bursts from binary neutron star mergers: the time-reversal scenario Riccardo Ciolfi Physics Department, University of Trento INFN-TIFPA, Trento Institute for Fundamental Physics and Applications

More information

Analysis of Off-Nuclear X-Ray Sources in Galaxy NGC Sarah M. Harrison

Analysis of Off-Nuclear X-Ray Sources in Galaxy NGC Sarah M. Harrison SLAC-TN-6-19 August 26 Analysis of Off-Nuclear X-Ray Sources in Galaxy NGC 4945 Sarah M. Harrison Office of Science, Science Undergraduate Laboratory Internship (SULI) Massachusetts Institute of Technology

More information

Time-domain astronomy with the Fermi Gamma-ray Burst Monitor

Time-domain astronomy with the Fermi Gamma-ray Burst Monitor Time-domain astronomy with the Fermi Gamma-ray Burst Monitor C. Michelle Hui (NASA/MSFC) on behalf of the Fermi GBM team TeVPA, Aug 11 2017 GBM: FOV >8sr Whole sky every ~90min Fermi Gamma-ray Space Telescope

More information

14/11/2018. L Aquila - Multi-messenger studies of NS mergers, GRBs and magnetars. Simone Dall Osso

14/11/2018. L Aquila - Multi-messenger studies of NS mergers, GRBs and magnetars. Simone Dall Osso L Aquila - 14/11/2018 Multi-messenger studies of NS mergers, GRBs and magnetars Simone Dall Osso OUTLINE 1. Overview of GW/EM discoveries since 2015 binary black hole mergers binary neutron star mergers

More information

arxiv: v1 [astro-ph.he] 1 Nov 2018

arxiv: v1 [astro-ph.he] 1 Nov 2018 Draft version November 6, 2018 Typeset using LATEX default style in AASTeX62 Estimates of Reverse Shock Emission from Short Gamma-ray Bursts Nicole M. Lloyd-Ronning 1, 2 1 Center for Theoretical Astrophysics

More information

Shallow Decay of X-ray Afterglows in Short GRBs: Energy Injection from a Millisecond Magnetar?

Shallow Decay of X-ray Afterglows in Short GRBs: Energy Injection from a Millisecond Magnetar? Chin. J. Astron. Astrophys. Vol. 7 2007), No. 5, 669 674 http://www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Shallow Decay of X-ray Afterglows in Short GRBs: Energy Injection from a Millisecond

More information

Gamma Ray Bursts. Progress & Prospects. Resmi Lekshmi. Indian Institute of Space Science & Technology Trivandrum

Gamma Ray Bursts. Progress & Prospects. Resmi Lekshmi. Indian Institute of Space Science & Technology Trivandrum Gamma Ray Bursts Progress & Prospects Resmi Lekshmi Indian Institute of Space Science & Technology Trivandrum Why study GRBs? to study GRBs end stages of massive star evolution jet launching, collimation

More information

Sources of GeV Photons and the Fermi Results

Sources of GeV Photons and the Fermi Results Sources of GeV Photons and the Fermi Results 1. GeV instrumentation and the GeV sky with the Fermi Gamma-ray Space Telescope 2. First Fermi Catalog of Gamma Ray Sources and the Fermi Pulsar Catalog 3.

More information

XMM observations of three middle-aged pulsars

XMM observations of three middle-aged pulsars Mem. S.A.It. Vol. 75, 458 c SAIt 2004 Memorie della MM observations of three middle-aged pulsars V. E. Zavlin 1 and G. G. Pavlov 2 1 Max-Planck Institut für extraterrestrische Physik, 85748 Garching, Germany

More information

A RADIO SEARCH FOR BLACK HOLES IN THE MILKY WAY GLOBULAR CLUSTER M10

A RADIO SEARCH FOR BLACK HOLES IN THE MILKY WAY GLOBULAR CLUSTER M10 (nrao/aui) LAURA SHISHKOVSKY, J. STRADER, L. CHOMIUK, L. TREMOU (MSU), J. MILLER-JONES, V. TUDOR (CURTIN), T. MACCARONE (TEXAS TECH), G. SIVAKOFF, C. HEINKE (U. ALBERTA) A RADIO SEARCH FOR BLACK HOLES

More information

Gamma-ray binaries as pulsars spectral & variability behaviour Guillaume Dubus. Laboratoire d Astrophysique de Grenoble UMR 5571 UJF / CNRS

Gamma-ray binaries as pulsars spectral & variability behaviour Guillaume Dubus. Laboratoire d Astrophysique de Grenoble UMR 5571 UJF / CNRS Gamma-ray binaries as pulsars spectral & variability behaviour Guillaume Dubus Laboratoire d Astrophysique de Grenoble UMR 5571 UJF / CNRS Image: Mirabel 2006 1 Pulsars & massive stars Young pulsars, magnetic

More information

Electromagnetic counterparts to binary neutron star mergers. Koutarou Kyutoku (KEK) Collaborators: Kunihito Ioka (KEK), Masaru Shibata (YITP)

Electromagnetic counterparts to binary neutron star mergers. Koutarou Kyutoku (KEK) Collaborators: Kunihito Ioka (KEK), Masaru Shibata (YITP) Electromagnetic counterparts to binary neutron star mergers Koutarou Kyutoku (KEK) Collaborators: Kunihito Ioka (KEK), Masaru Shibata (YITP) Summary Electromagnetic counterparts to gravitational waves

More information

GR SIMULATIONS OF BINARY NEUTRON STARS AND BINARY BLACK HOLES WITH WHISKY. Bruno Giacomazzo University of Trento, Italy

GR SIMULATIONS OF BINARY NEUTRON STARS AND BINARY BLACK HOLES WITH WHISKY. Bruno Giacomazzo University of Trento, Italy GR SIMULATIONS OF BINARY NEUTRON STARS AND BINARY BLACK HOLES WITH WHISKY Bruno Giacomazzo University of Trento, Italy PART I: BINARY NEUTRON STAR MERGERS WHY SO INTERESTING? Due to their duration and

More information

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006 PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY Paolo Lipari Vulcano 27 may 2006 High Energy Neutrino Astrophysics will CERTAINLY become an essential field in a New Multi-Messenger Astrophysics What is

More information

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT Julian H. Krolik ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT PRINCETON UNIVERSITY PRESS Princeton, New Jersey Preface Guide for Readers xv xix 1. What Are Active Galactic

More information

Cooling Limits for the

Cooling Limits for the Cooling Limits for the Page et al. 2004 Youngest Neutron Stars Cooling from the Youngest NSs SNR Zone NSs younger than ~50 kyr offer strong constraints on rapid cooling - the associated physical processes

More information

How do disks transfer angular momentum to deliver gas onto compact objects? How do accretion disks launch winds and jets?

How do disks transfer angular momentum to deliver gas onto compact objects? How do accretion disks launch winds and jets? Astro2010 Science White Paper (GCT) Fundamental Accretion and Ejection Astrophysics J. Miller, M. Nowak, P. Nandra, N. Brandt, G. Matt, M. Cappi, G. Risaliti, S. Kitamoto, F. Paerels. M. Watson, R. Smith,

More information

Extreme optical outbursts from a magnetar-like transient source: SWIFT J

Extreme optical outbursts from a magnetar-like transient source: SWIFT J Extreme optical outbursts from a magnetar-like transient source: SWIFT J1955+26 Gottfried Kanbach 1 Alexander Stefanescu 1,2 Agnieszka Słowikowska 3 Jochen Greiner 1 Sheila McBreen 4 Glòria Sala 5 1 Max-Planck-Institut

More information

Brian Metzger Princeton University NASA Einstein Fellow

Brian Metzger Princeton University NASA Einstein Fellow EM Counterparts of Neutron Star Binary Mergers and their Detection in the Era of Advanced LIGO Brian Metzger Princeton University NASA Einstein Fellow In Collaboration with: Edo Berger (Harvard CfA) Eliot

More information

Gravitational Waves and Electromagnetic Signals from a Neutron Star Merger

Gravitational Waves and Electromagnetic Signals from a Neutron Star Merger Gravitational Waves and Electromagnetic Signals from a Neutron Star Merger end-to-end physics of NS mergers GRB + afterflow binary stellar evolution (10 6-10 9 years) Final inspiral (minutes) gravitational

More information

Extended X-ray object ejected from the PSR B /LS 2883 binary

Extended X-ray object ejected from the PSR B /LS 2883 binary Extended X-ray object ejected from the PSR B1259-63/LS 2883 binary Oleg Kargaltsev (George Washington University) George Pavlov (Pennsylvania State University) Jeremy Hare (George Washington University)

More information

Synchrotron Radiation II

Synchrotron Radiation II Synchrotron Radiation II Cyclotron v

More information

The Discovery of Gamma-Ray Bursts

The Discovery of Gamma-Ray Bursts The Discovery of Gamma-Ray Bursts The serendipitous discovery of Gamma-Ray Bursts (GRBs) in the late sixties puzzled astronomers for several decades: GRBs are pulses of gamma-ray radiation (typically lasting

More information

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide Show mode (presentation mode). Chapter 14 Neutron

More information

Black Holes and Active Galactic Nuclei

Black Holes and Active Galactic Nuclei Black Holes and Active Galactic Nuclei A black hole is a region of spacetime from which gravity prevents anything, including light, from escaping. The theory of general relativity predicts that a sufficiently

More information

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts! Discovered 1967 Vela satellites classified! Published 1973! GRB history Ruderman 1974 Texas: More theories than bursts! Burst diversity E peak ~ 300 kev Non-thermal spectrum In some thermal contrib. Short

More information

Quasars and AGN. What are quasars and how do they differ from galaxies? What powers AGN s. Jets and outflows from QSOs and AGNs

Quasars and AGN. What are quasars and how do they differ from galaxies? What powers AGN s. Jets and outflows from QSOs and AGNs Goals: Quasars and AGN What are quasars and how do they differ from galaxies? What powers AGN s. Jets and outflows from QSOs and AGNs Discovery of Quasars Radio Observations of the Sky Reber (an amateur

More information

Identifying the Remnants of Neutron Star Mergers. Wen-fai Fong University of Arizona

Identifying the Remnants of Neutron Star Mergers. Wen-fai Fong University of Arizona Identifying the Remnants of Neutron Star Mergers Wen-fai Fong University of Arizona Einstein Fellows Symposium, Harvard-Smithsonian Center for Astrophysics, 10.27.2015 What s left after two neutron stars

More information

Observations of. Pulsar Wind Nebulae

Observations of. Pulsar Wind Nebulae Observations of Pulsar Wind Nebulae I. Injection Spectrum I. Late-Phase Evolution II. PWNe and Magnetars PWNe and Their SNRs PWN Shock Reverse Shock Forward Shock Pulsar Wind Pulsar Termination Shock PWN

More information

Gamma-Ray Bursts and their Afterglows

Gamma-Ray Bursts and their Afterglows Seminar Ib Gamma-Ray Bursts and their Afterglows Mentor: Izr. prof. dr. Andreja Gomboc Author: Katja Bricman Ljubljana, May 2015 Abstract Gamma ray bursts (GRBs) are short flashes of gamma rays, that can

More information

Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/

Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/ Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/0608311 Introduction 11 Rotating RAdio Transients (RRATs) (Mclaughlin et al 2006) Repeated, irregular radio bursts

More information

Radio and X-rays from GRS Close correlations of the third kind

Radio and X-rays from GRS Close correlations of the third kind Mem. S.A.It. Vol. 82, 41 c SAIt 211 Memorie della Radio and -rays from GRS 1915+15 - Close correlations of the third kind Ralph Spencer 1 and Anthony Rushton 1,2,3 1 Jodrell Bank Centre for Astrophysics

More information

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars Distribution of X-ray binary stars in the Galaxy (RXTE) Robert Laing Primary Compact accreting binary systems Compact star WD NS BH

More information

Neutron Stars. Neutron Stars Mass ~ 2.0 M sun! Radius ~ R sun! isolated neutron stars first seen only recently (1997)

Neutron Stars. Neutron Stars Mass ~ 2.0 M sun! Radius ~ R sun! isolated neutron stars first seen only recently (1997) Neutron Stars 1 2 M core > 1.4 M - collapse past WD! sun nuclei packed tightly together! protons absorb electrons; only neutrons left! collapse halted by neutron degeneracy pressure How do you find something

More information

X-ray emission properties vary with spin-down age. Crab-like pulsars (< 10 4 yrs)

X-ray emission properties vary with spin-down age. Crab-like pulsars (< 10 4 yrs) X-ray emission properties vary with spin-down age Crab-like pulsars (< 10 4 yrs) X-ray emission properties vary with spin-down age Crab-like pulsars (< 10 4 yrs) Cooling neutron stars ( ~10 5-10 6 yrs)

More information

Multi-wavelength Astronomy

Multi-wavelength Astronomy astronomy Multi-wavelength Astronomy Content What do we measure Multi-wavelength approach Data Data Mining Virtual Observatory Hands on session Larmor's formula Maxwell's equations imply that all classical

More information

Probing the Creation of the Heavy Elements in Neutron Star Mergers

Probing the Creation of the Heavy Elements in Neutron Star Mergers Probing the Creation of the Heavy Elements in Neutron Star Mergers Daniel Kasen UC Berkeley/LBNL r. fernandez, j. barnes, s. richers, f. foucart, d. desai, b. metzger, n. badnell, j. lippuner, l. roberts

More information

Relativistic jets from XRBs with LOFAR. Stéphane Corbel (University Paris 7 & CEA Saclay)

Relativistic jets from XRBs with LOFAR. Stéphane Corbel (University Paris 7 & CEA Saclay) Relativistic jets from XRBs with LOFAR. Stéphane Corbel (University Paris 7 & CEA Saclay) Outline Introduction: X-ray binaries and flavors of relativistic jets LOFAR Contributions Conclusions Introduction:

More information

arxiv:astro-ph/ v1 17 Dec 2003

arxiv:astro-ph/ v1 17 Dec 2003 Electromagnetic Signals from Planetary Collisions Bing Zhang and Steinn Sigurdsson arxiv:astro-ph/0312439 v1 17 Dec 2003 Department of Astronomy & Astrophysics, Penn State University, University Park,

More information

Particle acceleration and pulsars

Particle acceleration and pulsars Meudon, nov. 2013 p. 1/17 Particle acceleration and pulsars Fabrice Mottez LUTH - Obs. Paris-Meudon - CNRS - Univ. Paris Diderot Meudon, nov. 2013 p. 2/17 Pulsars (PSR) and pulsar wind nebulae (PWNe) Mostly

More information

Chandra Analysis of a Possible Cooling Core Galaxy Cluster at z = 1.03

Chandra Analysis of a Possible Cooling Core Galaxy Cluster at z = 1.03 Chandra Analysis of a Possible Cooling Core Galaxy Cluster at z = 1.03 Kyle Dolan Institute for Astronomy, University of Hawaii at Manoa (Dated: 12 August 2005) We present an analysis of Chandra observations

More information

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes Astronomy Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes are hot, compact stars whose mass is comparable to the Sun's and size to the Earth's. A. White dwarfs B. Neutron stars

More information

NuSTAR observation of the Arches cluster: X-ray spectrum extraction from a 2D image

NuSTAR observation of the Arches cluster: X-ray spectrum extraction from a 2D image NuSTAR observation of the Arches cluster: X-ray spectrum extraction from a 2D image Space Research Institute (IKI), Moscow, Russia E-mail: krivonos@iki.rssi.ru The NuSTAR mission performed a long (200

More information

Effect of Rapid Evolution of Magnetic Tilt Angle of a Newborn Magnetar on Light Curve of Gamma-ray Burst

Effect of Rapid Evolution of Magnetic Tilt Angle of a Newborn Magnetar on Light Curve of Gamma-ray Burst Effect of Rapid Evolution of Magnetic Tilt Angle of a Newborn Magnetar on Light Curve of Gamma-ray Burst Department of Physics, Jiangxi Science & Technology Normal University, Nanchang 330013, China E-mail:

More information

Monday, October 21, 2013 Third exam this Friday, October 25. Third Sky Watch watch the weather! Review sheet posted today. Review Thursday, 5 6 PM,

Monday, October 21, 2013 Third exam this Friday, October 25. Third Sky Watch watch the weather! Review sheet posted today. Review Thursday, 5 6 PM, Monday, October 21, 2013 Third exam this Friday, October 25. Third Sky Watch watch the weather! Review sheet posted today. Review Thursday, 5 6 PM, Room WEL 2.256 Lecture 19 posted today Reading: Chapter

More information

High Energy Emission. Brenda Dingus, LANL HAWC

High Energy Emission. Brenda Dingus, LANL HAWC High Energy Emission from GRBs Brenda Dingus, LANL HAWC What are GRBs? Cosmological distance Typical observed z>1 Energy released is up to few times the rest mass of Sun (if isotropic) in a few seconds

More information

Gamma-Ray Burst Afterglow

Gamma-Ray Burst Afterglow Gamma-Ray Burst Afterglow Bing Zhang Department of Physics and Astronomy University of Nevada Las Vegas May 29, 2009, KIAA-PKU Lecture series GRB overview Very general overview of the GRB field to general

More information

Fermi: Highlights of GeV Gamma-ray Astronomy

Fermi: Highlights of GeV Gamma-ray Astronomy Fermi: Highlights of GeV Gamma-ray Astronomy Dave Thompson NASA GSFC On behalf of the Fermi Gamma-ray Space Telescope Large Area Telescope Collaboration Neutrino Oscillation Workshop Otranto, Lecce, Italy

More information

Citation for published version (APA): Wang, Y. (2018). Disc reflection in low-mass X-ray binaries. [Groningen]: Rijksuniversiteit Groningen.

Citation for published version (APA): Wang, Y. (2018). Disc reflection in low-mass X-ray binaries. [Groningen]: Rijksuniversiteit Groningen. University of Groningen Disc reflection in low-mass X-ray binaries Wang, Yanan IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check

More information

The Case of the 300 kpc Long X-ray Jet in PKS at z=1.18

The Case of the 300 kpc Long X-ray Jet in PKS at z=1.18 SLAC-PUB-12762 astro-ph/78.1312 Extragalactic Jets: Theory and Observation from Radio to Gamma Ray ASP Conference Series, Vol. **VOLUME**, **YEAR OF PUBLICATION** T. A. Rector and D. S. De Young (eds.)

More information

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs) This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)!1 Cas$A$ All$Image$&$video$credits:$Chandra$X7ray$ Observatory$

More information

Pulsars and Radio Transients. Scott Ransom National Radio Astronomy Observatory / University of Virginia

Pulsars and Radio Transients. Scott Ransom National Radio Astronomy Observatory / University of Virginia Pulsars and Radio Transients Scott Ransom National Radio Astronomy Observatory / University of Virginia TIARA Summer School on Radio Astronomy 2016 Radio Transients Non-thermal emission Emission types

More information

Simultaneous X-ray and Radio Observations of Seyferts, and Disk-Jet Connections

Simultaneous X-ray and Radio Observations of Seyferts, and Disk-Jet Connections Simultaneous X-ray and Radio Observations of Seyferts, and Disk-Jet Connections Ashley Lianne King, University of Michigan Advisor: Jon M. Miller Collaborators: John Raymond, Michael Rupen, Kayhan Gültekin,

More information

Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars

Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars Marie-Hélène Grondin CENBG, Bordeaux (France) on behalf of the Fermi-LAT Collaboration and the Pulsar Timing

More information

Cosmic Explosions. Greg Taylor (UNM ) Astro 421

Cosmic Explosions. Greg Taylor (UNM ) Astro 421 Cosmic Explosions Greg Taylor (UNM ) Astro 421 1 Cassiopeia A: Supernova Remnant E total ~ 10 46 J 2 An early gamma ray-burst Vela satellite 3 A Gamma Ray Burst Sampler 4 Burst Alert 5 The BeppoSAX Satellite

More information

X-ray Observations of Rotation Powered Pulsars

X-ray Observations of Rotation Powered Pulsars X-ray Observations of Rotation Powered Pulsars George Pavlov (Penn State) Oleg Kargaltsev (George Washington Univ.) Martin Durant (Univ. of Toronto) Bettina Posselt (Penn State) Isolated neutron stars

More information

High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation. Timetable. Reading. Overview. What is high-energy astrophysics?

High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation. Timetable. Reading. Overview. What is high-energy astrophysics? High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation Robert Laing Lectures: Week 1: M 10, T 9 Timetable Week 2: M 10, T 9, W 10 Week 3: M 10, T 9, W 10 Week 4: M 10, T 9,

More information

Gamma-ray Astrophysics with VERITAS: Exploring the violent Universe

Gamma-ray Astrophysics with VERITAS: Exploring the violent Universe Gamma-ray Astrophysics with VERITAS: Exploring the violent Universe K. Ragan McGill University Soup & Science 11-Jan-2008 Soup & Science Jan. '08 1 How do we know about the Universe? Historically, all

More information

VLBI structure of PSR B /LS2883 during the 2007 and 2010 periastron passages

VLBI structure of PSR B /LS2883 during the 2007 and 2010 periastron passages VLBI structure of PSR B1259-63/LS2883 during the 2007 and 2010 periastron passages Javier Moldón Marc Ribó Josep M. Paredes Simon Johnston, Ryan Shannon (ATNF -CSIRO) Adam Deller (NRAO/Berkeley) High Energy

More information

Neutron Stars. Properties of Neutron Stars. Formation of Neutron Stars. Chapter 14. Neutron Stars and Black Holes. Topics for Today s Class

Neutron Stars. Properties of Neutron Stars. Formation of Neutron Stars. Chapter 14. Neutron Stars and Black Holes. Topics for Today s Class Foundations of Astronomy 13e Seeds Phys1403 Introductory Astronomy Instructor: Dr. Goderya Chapter 14 Neutron Stars and Black Holes Cengage Learning 2016 Topics for Today s Class Neutron Stars What is

More information

Lecture 3 Pulsars and pulsar wind nebulae

Lecture 3 Pulsars and pulsar wind nebulae Lecture 3 Pulsars and pulsar wind nebulae Pulsars Characteristic parameters Pulsar wind nebulae Properties Evolution Exotic central compact objects - Magnetars The Crab Pulsar http://www.jb.man.ac.uk/~pulsar/education/sounds/sounds.html

More information

H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J

H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J1303-631 Matthew Dalton Humboldt University at Berlin For the H.E.S.S. Collaboration TeV Particle Astrophysics, Paris.

More information

Multimessenger Probes of Neutron Star Physics. David Tsang (U. Southampton)

Multimessenger Probes of Neutron Star Physics. David Tsang (U. Southampton) Resonant Shattering Flares: Multimessenger Probes of Neutron Star Physics David Tsang (U. Southampton) GW/EM170817 - A Golden Binary Kasliwal+ 2017 Flux density (mjy) 10 1 10 2 10 3 10 4 10 5 10 6 10 7

More information

Gamma-Ray Astronomy. Astro 129: Chapter 1a

Gamma-Ray Astronomy. Astro 129: Chapter 1a Gamma-Ray Bursts Gamma-Ray Astronomy Gamma rays are photons with energies > 100 kev and are produced by sub-atomic particle interactions. They are absorbed by our atmosphere making observations from satellites

More information

Chapter 0 Introduction X-RAY BINARIES

Chapter 0 Introduction X-RAY BINARIES X-RAY BINARIES 1 Structure of this course 0. Introduction 1. Compact stars: formation and observational appearance. Mass transfer in binaries 3. Observational properties of XRBs 4. Formation and evolution

More information

Pulsar Wind Nebulae. Pennsylvania State University. General outlook Chandra results Polarization in radio and optical X-ray polarization

Pulsar Wind Nebulae. Pennsylvania State University. General outlook Chandra results Polarization in radio and optical X-ray polarization Pulsar Wind Nebulae George Pavlov & Oleg Kargaltsev Pennsylvania State University General outlook Chandra results Polarization in radio and optical X-ray polarization Pulsar Wind Nebulae: extended objects

More information

Active Galactic Nuclei

Active Galactic Nuclei Active Galactic Nuclei Optical spectra, distance, line width Varieties of AGN and unified scheme Variability and lifetime Black hole mass and growth Geometry: disk, BLR, NLR Reverberation mapping Jets

More information

Synergy with Gravitational Waves

Synergy with Gravitational Waves Synergy with Gravitational Waves Alexandre Le Tiec and Jérôme Novak Laboratoire Univers et Théories Observatoire de Paris / CNRS LIGO, Virgo, ( elisa, ET,... ( What is a gravitational wave? A gravitational

More information

Pulsar Wind Nebulae: A Multiwavelength Perspective

Pulsar Wind Nebulae: A Multiwavelength Perspective Pulsar Wind Nebulae: Collaborators: J. D. Gelfand T. Temim D. Castro S. M. LaMassa B. M. Gaensler J. P. Hughes S. Park D. J. Helfand O. C. de Jager A. Lemiere S. P. Reynolds S. Funk Y. Uchiyama A Multiwavelength

More information

The Neutron Star Zoo. Stephen C.-Y. Ng ( 吳志勇 ) HKU

The Neutron Star Zoo. Stephen C.-Y. Ng ( 吳志勇 ) HKU The Neutron Star Zoo Stephen C.-Y. Ng ( 吳志勇 ) HKU Overview Introduction to neutron stars Different classes of neutron stars: Radio Pulsars MSPs Magnetars DINS CCOs Unification 6/12/2017 NAOC Stephen Ng

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Bernard F. Burke Massachusetts Institute of Technology and Francis Graham-Smith Jodrell Bank, University of Manchester CAMBRIDGE UNIVERSITY PRESS Contents Preface Acknowledgements

More information

The Dynamic Radio Sky: On the path to the SKA. A/Prof Tara Murphy ARC Future Fellow

The Dynamic Radio Sky: On the path to the SKA. A/Prof Tara Murphy ARC Future Fellow The Dynamic Radio Sky: On the path to the SKA A/Prof Tara Murphy ARC Future Fellow What causes radio variability? 1. Explosions - e.g. supernovae, gamma-ray bursts, orphan afterglows 2. Propagation - e.g.

More information

Neutron Stars. We now know that SN 1054 was a Type II supernova that ended the life of a massive star and left behind a neutron star.

Neutron Stars. We now know that SN 1054 was a Type II supernova that ended the life of a massive star and left behind a neutron star. Neutron Stars Neutron Stars The emission from the supernova that produced the crab nebula was observed in 1054 AD by Chinese, Japanese, Native Americans, and Persian/Arab astronomers as being bright enough

More information

X-ray Radiation, Absorption, and Scattering

X-ray Radiation, Absorption, and Scattering X-ray Radiation, Absorption, and Scattering What we can learn from data depend on our understanding of various X-ray emission, scattering, and absorption processes. We will discuss some basic processes:

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Second edition Bernard F. Burke and Francis Graham-Smith CAMBRIDGE UNIVERSITY PRESS Contents Preface to the second edition page x 1 Introduction 1 1.1 The role of radio

More information

arxiv: v1 [astro-ph.he] 2 Mar 2019

arxiv: v1 [astro-ph.he] 2 Mar 2019 Draft version March 5, 2019 Typeset using LATEX twocolumn style in AASTeX61 HIGH-SPEED EJECTA FROM THE GAMMA-RAY BINARY PSR B1259 63/LS 2883 George G. Pavlov, 1 Jeremy Hare, 2 and Oleg Kargaltsev 2 1 Pennsylvania

More information

(Anomalous) X-Ray Pulsars. Vicky Kaspi. Montreal, Canada. Stanford December 16, 2004

(Anomalous) X-Ray Pulsars. Vicky Kaspi. Montreal, Canada. Stanford December 16, 2004 (Anomalous) X-Ray Pulsars Vicky Kaspi Montreal, Canada Texas @ Stanford December 16, 2004 Summary Introduction to AXPs Evidence that AXPs are magnetars Open Issues and Recent Results: IR emission Transient

More information

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric Lecture 20 High-Energy Astronomy HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric Tut 5 remarks Generally much better. However: Beam area. T inst

More information

High Energy Astrophysics

High Energy Astrophysics High Energy Astrophysics Introduction Giampaolo Pisano Jodrell Bank Centre for Astrophysics - University of Manchester giampaolo.pisano@manchester.ac.uk January 2012 Today s introduction - The sky at different

More information

3D Dynamical Modeling of the Gamma-ray Binary LS CTA Japan WS 2013 (September 3-4)

3D Dynamical Modeling of the Gamma-ray Binary LS CTA Japan WS 2013 (September 3-4) 3D Dynamical Modeling of the Gamma-ray Binary LS 5039 1 Outline Introduction to the VHE gamma-ray binaries LS 5039: Previous results LS 5039: 3D SPH simulations Concluding remarks 2 Introduction to the

More information

Chandra Observation of Point Sources in the X-Ray Elliptical Galaxy NGC 1407

Chandra Observation of Point Sources in the X-Ray Elliptical Galaxy NGC 1407 Chin. J. Astron. Astrophys. Vol. 4 (2004), No. 3, 221 230 ( http: /www.chjaa.org or http: /chjaa.bao.ac.cn ) Chinese Journal of Astronomy and Astrophysics Chandra Observation of Point Sources in the X-Ray

More information

Astronomy 110: SURVEY OF ASTRONOMY. 11. Dead Stars. 1. White Dwarfs and Supernovae. 2. Neutron Stars & Black Holes

Astronomy 110: SURVEY OF ASTRONOMY. 11. Dead Stars. 1. White Dwarfs and Supernovae. 2. Neutron Stars & Black Holes Astronomy 110: SURVEY OF ASTRONOMY 11. Dead Stars 1. White Dwarfs and Supernovae 2. Neutron Stars & Black Holes Low-mass stars fight gravity to a standstill by becoming white dwarfs degenerate spheres

More information

Anomalous X-ray Pulsars

Anomalous X-ray Pulsars Anomalous X-ray Pulsars GRBs: The Brightest Explosions in the Universe Harvard University, May 23, 2002 Vicky Kaspi Montreal, Canada What are Anomalous X-ray Pulsars? exotic class of objects 1st discovered

More information

Evolution of High Mass stars

Evolution of High Mass stars Evolution of High Mass stars Neutron Stars A supernova explosion of a M > 8 M Sun star blows away its outer layers. The central core will collapse into a compact object of ~ a few M Sun. Pressure becomes

More information

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope Marie-Hélène Grondin Centre d'etudes Nucléaires de Bordeaux- Gradignan SNR/PWN Workshop Montpellier, 2010 June 1 th M.-H. Grondin, SNR/PWN Wokshop,

More information

Focussing on X-ray binaries and microquasars

Focussing on X-ray binaries and microquasars Focussing on X-ray binaries and microquasars Didier BARRET Centre d Etude Spatiale des Rayonnements Toulouse, France Thank you Peter and Dolorès and the organizing committee I will start with the conclusions

More information

arxiv:astro-ph/ v1 6 May 2004

arxiv:astro-ph/ v1 6 May 2004 XMM-NEWTON OBSERVATIONS OF THREE HIGH REDSHIFT RADIO GALAXIES arxiv:astro-ph/0405116 v1 6 May 2004 Abstract E. Belsole, D.M. Worrall, M. J. Hardcastle Department of Physics - University of Bristol Tyndall

More information

Lecture Outlines. Chapter 22. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 22. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 22 Astronomy Today 8th Edition Chaisson/McMillan Chapter 22 Neutron Stars and Black Holes Units of Chapter 22 22.1 Neutron Stars 22.2 Pulsars 22.3 Neutron-Star Binaries 22.4 Gamma-Ray

More information

The Stellar Graveyard Neutron Stars & White Dwarfs

The Stellar Graveyard Neutron Stars & White Dwarfs The Stellar Graveyard Neutron Stars & White Dwarfs White Dwarfs White dwarfs are the remaining cores of low-mass (M < 8M sun ) stars Electron degeneracy pressure supports them against gravity Density ~

More information

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral Lazzaro Claudia for the LIGO Scientific Collaboration and the Virgo Collaboration 25 October 2017 GW170817 PhysRevLett.119.161101

More information

Discovery of TeV Gamma-ray Emission Towards Supernova Remnant SNR G Last Updated Tuesday, 30 July :01

Discovery of TeV Gamma-ray Emission Towards Supernova Remnant SNR G Last Updated Tuesday, 30 July :01 Background-subtracted gamma-ray count map of SNR G78.2+2.1 showing the VERITAS detection (VER2019+407). For details, see Figure 1 below. Reference: E. Aliu et al. (The VERITAS Collaboration), Astrophysical

More information

arxiv:astro-ph/ v3 27 Jul 2000

arxiv:astro-ph/ v3 27 Jul 2000 Draft version February 1, 2008 Preprint typeset using L A TEX style emulateapj v. 04/03/99 PRECURSORS OF GAMMA-RAY BURSTS: A CLUE TO THE BURSTER S NATURE Maxim Lyutikov Canadian Institute for Theoretical

More information