Conditions for convexity of a derivative and some applications to the Gamma function

Size: px
Start display at page:

Download "Conditions for convexity of a derivative and some applications to the Gamma function"

Transcription

1 Aequationes Math. 55 (1998) /98/ $ /0 c Birkhäuser Verlag, Basel, 1998 Aequationes Mathematicae Conditions for conveity of a derivative and some applications to the Gamma function Milan Merkle Summary. We consider necessary and sufficient conditions for the conveity of a function f () in terms of some properties of the associated function of two variables F (, y) = (f(y) f())/(y ). In particular, we prove that f is conve if and only if F is conve and if and only if F is Schur-conve. These results are applied to the theory of the Gamma function. We complement a characterization of the Gamma function due to H. Kairies and present some inequalities for the ratio of Gamma functions. Mathematics Subject Classification (1991). Primary 6A51, 33B15; Secondary 6D10. Keywords. Conveity, Schur-conveity, inequalities, Gamma function. 1. Necessary and sufficient conditions for conveity Let f be a differentiable function defined on an interval I. In this section we investigate a relationship between conveity (or concavity) of f on I and conveity (or concavity) of the divided differences F (, y) = f(y) f() y ( y), F(, ) =f () (1) on I. We shall also consider Schur-conveity of F. For convenience, recall that a symmetric function (, y) g(, y) is Schur-conve on I if and only if g(, y) g( ε, y + ε) for every, y I, ε>0 such that ε, y + ε I. A function g is Schur-concave if g is Schur-conve. For details on Schur-conveity see [11]. Let us consider the following statements: (A) f is conve on I. ( ) + y (B) f F (, y) for all, y I,

2 74 M. Merkle AEM (C) F (, y) f ()+f (y) for all, y I, (D) F is conve on I, (E) F is Schur-conve on I, and (A ) f is concave on I, ( ) + y (B ) f F (, y) for all, y I, (C ) F (, y) f ()+f (y) for all, y I, (D ) F is concave on I, (E ) F is Schur-concave on I. Our main result is the following. Theorem 1. If f () is continuous on I then the conditions (A) (E) are equivalent and the conditions (A ) (E ) are equivalent. For the proof of Theorem 1 we use the lemma below, which presents a slightly modified result from [11, 3.A]. Lemma 1. Let (, y) g(, y) be a symmetric and continuous function on I. Suppose that both partial derivatives eist and are continuous on the set {(, y) I y}. Thengis Schur-conve on I if and only if g(, y) y g(, y) 0 for (, y) I such that <y. () Proof. Since g is continuous, it is Schur-conve if and only if for every fied (, y) in the interior of I, <y, the function ε g( ε, y + ε) is increasing in ε>0. After evaluation the derivative with respect to ε, one finds that the latter condition is equivalent to (). Proof of Theorem 1. (A) (B). By [15, p. 15], a continuous function g is conve on I if and only if g(y) 1 u+h g(t) dt h u h for all u I and h>0 such that u ± h I. Letting here u h =, u + h = y and g = f, we get the desired assertion. (A) (C). By [14, p. 39] or [15, p. 15], a continuous function g is conve on I if and only if 1 y g(t)dt g()+g(y) y

3 Vol. 55 (1998) Conditions for conveity of a derivative 75 for all, y I. Letting here g = f,wegettheassertiontobeproved. (A) (D). Trivially, by f () =F(, ), we have that (D)= (A). So, we need (A)= (D) only. Now let f be continuous and conve on I. Since F is a continuous function in two variables, to show its conveity it suffices to prove that [15, p. 15] F (, y) 1 (F ( ε, y η)+f(+ε, y + η)) (3) holds for any, y I and ε, η > 0sothat±ε, y ± η I. To this end, observe that where f(y) f() = y f(y η) f( ε) = y η+ε y f(y + η) f( + ε) = y +η ε y f (t)dt, (4) y y f (a 1 t+b 1 )dt, (5) f (a t+b )dt, (6) a 1 = y η + ε, a = y y +η ε η yε, b 1 = y y, b = yε η y. Now, since (a 1 t + b 1 + a t + b )/ =tand f is conve, we have f (t) 1 (f (a 1 t + b 1 )+f (a t+b )). By integration over [, y] and using (4) (6), we obtain (3), as desired. (E) (C). By Lemma 1, (E) is equivalent to F F y for <y,,y I and it is easy to see that the latter condition is equivalent to (C). The equivalence of conditions (A ) (E ) follows from the above upon replacing f by f. Theorem 1 can serve as a tool for producing many interesting inequalities. We shall consider some applications related to the Gamma function.

4 76 M. Merkle AEM. A characterization of Gamma function The digamma function Ψ, defined by Ψ() =(logγ()) can be epressed in terms of the series [1] Ψ() = γ n=1 n(n + ) ( >0), where γ is the Euler constant. It follows that Ψ is concave on >0 and therefore, conditions (A ) (E ) hold with f =logγoni=(0,+ ). In this and the net section we investigate some consequences of this fact. In[7]itisprovedthatifgis concave on (0, + ), g( +1) g()=1/ and g(1) = γ then g() Ψ() for>0. In the light of Theorem 1, the requirement for concavity of g =(logγ) can be replaced by either of conditions (B ) (E ) with f = log Γ. Hence, in the net theorem we get a complement to the characterization in [7]. Theorem. Suppose that f is a continuously differentiable real function defined on (0, + ). If one of the conditions (A ) (E ) is satisfied for f on (0, + ) and f( +1) f()=log (>0), then f() =logγ()+c,where Cis an arbitrary real constant. Proof. By Theorem 1, it suffices to assume that f is concave. Then the statement can be proved using the mentioned result of [7], or by a result in [9]. We give an independent simple proof that relies on Bohr Mollerup theorem [3]. Firstly, let us show that f is a non-decreasing function. Indeed, suppose that f (a) >f (b)forsomea<b,a, b > 0. By the assumption, f (b +1) = f (b)+1/b > f (b) and so we have that f (b) =min{f (a),f (b),f (b+1)},which is a contradiction to the concavity of f. Therefore, f is non-decreasing and consequently, f is a conve function. Let h() =e f() f(1). Then h is positive and logarithmically conve on (0, + ), h( +1)=h() andh(1) = 1. By the Bohr Mollerup theorem, h() Γ() and the assertion follows. Note that omitting conditions (B ) (E ) from the statement of Theorem gives the result of Kairies [7]. 3. Some inequalities for a ratio of the Gamma functions Inequalities for the ratio Q(, β) =Γ(+β)/Γ() with >0 and usually β (0, 1), have been studied by many authors (see [, 1] and references therein). Bounds for

5 Vol. 55 (1998) Conditions for conveity of a derivative 77 the ratio Q that involve the function Ψ and its derivatives have been investigated in [, 4, 5, 6, 8, 13], using a variety of methods. In this section we present some new inequalities of this type, starting from (A ) (E ) with f =logγ From (B )and(c ) it follows that 1 log Γ(y) log Γ() (Ψ()+Ψ(y)) Ψ y ( + y ). (7) Letting y = + β, β>0, we get ( ep β Ψ()+Ψ(+β) ) Q(, β) ep(βψ( + β/)). (8) The upper bound in (8) was also obtained in [8] by other means. In [13] we showed that the lower bound in (8) is closer than the lower bound in [8]. 3.. Since (D ) yields (, +1+β)=(1 β)(, +1)+β(, +), F (, +1+β) (1 β)f (, +1)+βF(, +) >0,β [0, 1]. After an application of the recurrence relation Γ(z +1)=zΓ(z) weget Q(, β) (1+β)( β)/ ( +1) β(1+β)/. (9) + β Note the equality in (9) for β =0andβ=1. Weshallshowthatforβ (0, 1), the inequality (9) is sharper than Gautschi s inequality [5] Let us define a function ϕ by (1 + β)( β) ϕ() = log + Then lim ϕ() =0and + Q(, β) ( 1+β) β. (10) β(1 + β) log( +1) log( + β) β log( 1+β). ϕ ()= β(1 β)( + +( β)(1 + β)) ( +1)( 1+β)( + β) < 0 for >1 βand β (0, 1). Therefore, we conclude that ϕ() > 0for>1 βand β (0, 1), which means that (9) is sharper than (10).

6 78 M. Merkle AEM 3.3. Further, from (, + β) =(1 β)(, )+β(, +1) and applying (D )weobtain Q(, β) β ep(β(1 β)ψ()), > 0,β [0, 1]. (11) Using concavity of Ψ and inequality (14) below, it can be proved that this bound is closer than the lower bound in (8) In a similar way, starting from and applying (D ), we get ( + β, + β) =(1 β)( + β,)+β(+β, +1) ( ) Q(, β) β /(1 β) β(1 β) ep Ψ( + β), > 0,β<1/. (1) 1 β 3.5. Condition (E ) implies log Γ(y) log Γ() y log Γ(y + ε) log Γ( ε) y +ε for 0 <<yand 0 <ε<. In particular, replacing by + β and letting y = +β and ε = β, weobtain Γ( +3β) Γ() ( ) Γ( +β), > 0,β>0. (13) Γ( + β) 3.6. Let us now derive some bounds for the function Ψ. Letting y = +1in (7), we get Ψ()+ 1 ( log Ψ + 1 ), whereof it follows ( log 1 ) Ψ() log 1, > 0. (14)

7 Vol. 55 (1998) Conditions for conveity of a derivative An open question The statements (A) (E) presented in Section 1 can be reformulated as (A) F (, ) isconveoni. ( + y (B) F, + y ) F (, y) for all, y I, F (, )+F(y, y) (C) F (, y) for all, y I, (D) F is conve on I, (E) F is Schur-conve on I. where F is defined by (1). It would be interesting to investigate whether or not there eist symmetric functions F that can not be represented in the form (1) and such that all (or some) statements (A) (E) are equivalent. Ecept (D)= (A) and (D)= (E), no other implication holds generally. Note that in the case considered in the present paper, F (, y) is completely determined by its values on the diagonal: F (, y) = 1 y y F(t, t)dt. Acknowledgements. I wish to thank Prof. Ivan Lacković, who provided some references related to this work, including his unpublished monograph [10]. I am also grateful to anonymous referees for their helpful comments and suggestions that led to improvements of the first version of the paper. This research was supported by Science Fund of Serbia, grant number 04M03E, through Mathematical Institute, Belgrade. References [1] M. Abramowitz and I. A. Stegun, A Handbook of Mathematical Functions, NewYork, [] H. Alzer, Some gamma function inequalities, Math. Comp. 60 (1993), [3] Emil Artin, The Gamma Function, Holt, Rinehart and Winston, New York, 1964, translation from the German original of [4] J. Bustoz and M. E. H. Ismail, On gamma function inequalities, Math. Comp. 47 (1986), [5] W. Gautschi, Some elementary inequalities relating to the gamma and incomplete gamma function, J. Math. andphys. 38 (1959), [6] M. E. H. Ismail, L. Lorch and M. E. Muldoon, Completely monotonic functions associated with the Gamma function and its q-analogues, J. Math. Anal. Appl. 116 (1986), 1 9. [7] H. H. Kairies, Über die logarithmische Ableitung der Gammafunktion, Math. Ann. 184 (1970), [8] D. Kershaw, Some etensions of W. Gautschi s inequalities for the gamma function, Math. Comp. 41 (1983),

8 80 M. Merkle AEM [9] W. Krull, Bemerkungen zur Differenzengleichung g(+1) g()=ϕ(), Math. Nachr. 1 (1948), [10] I. B. Lacković, Conve Functions, unpublished manuscript. [11] A. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, New York, [1] M. Merkle, Logarithmic conveity and inequalities for the gamma function, J. Math. Anal. Appl. 03 (1996), [13] M. Merkle, Conveity, Schur-conveity and bounds for the Gamma function involving the Digamma function, Rocky Mountain J. Math., to appear. [14] T. Popoviciu, Les fonctions convees, Actualités Sci. Indust. 99, Paris, [15] A. W. Roberts and D. E. Varberg, Conve functions, Academic Press, New York London, M. Merkle University of Belgrade Faculty of Electrical Engineering Department of Applied Mathematics P. O. Bo Belgrade Yugoslavia Manuscript received: September 1, 1996 and, in final form, February 0, 1997.

Sharp inequalities and complete monotonicity for the Wallis ratio

Sharp inequalities and complete monotonicity for the Wallis ratio Sharp inequalities and complete monotonicity for the Wallis ratio Cristinel Mortici Abstract The aim of this paper is to prove the complete monotonicity of a class of functions arising from Kazarinoff

More information

Research Article Some Monotonicity Properties of Gamma and q-gamma Functions

Research Article Some Monotonicity Properties of Gamma and q-gamma Functions International Scholarly Research Network ISRN Mathematical Analysis Volume 11, Article ID 375715, 15 pages doi:1.54/11/375715 Research Article Some Monotonicity Properties of Gamma and q-gamma Functions

More information

ON SOME INEQUALITIES FOR THE INCOMPLETE GAMMA FUNCTION

ON SOME INEQUALITIES FOR THE INCOMPLETE GAMMA FUNCTION MATHEMATICS OF COMPUTATION Volume 66, Number 28, April 997, Pages 77 778 S 25-578(97)84-4 ON SOME INEQUALITIES FOR THE INCOMPLETE GAMMA FUNCTION HORST ALZER Abstract. Let p be a positive real number. We

More information

Horst Alzer A MEAN VALUE INEQUALITY FOR THE DIGAMMA FUNCTION

Horst Alzer A MEAN VALUE INEQUALITY FOR THE DIGAMMA FUNCTION Rendiconti Sem. Mat. Univ. Pol. Torino Vol. 75, 2 (207), 9 25 Horst Alzer A MEAN VALUE INEQUALITY FOR THE DIGAMMA FUNCTION Abstract. A recently published result states that for all ψ is greater than or

More information

COMPLETE MONOTONICITIES OF FUNCTIONS INVOLVING THE GAMMA AND DIGAMMA FUNCTIONS. 1. Introduction

COMPLETE MONOTONICITIES OF FUNCTIONS INVOLVING THE GAMMA AND DIGAMMA FUNCTIONS. 1. Introduction COMPLETE MONOTONICITIES OF FUNCTIONS INVOLVING THE GAMMA AND DIGAMMA FUNCTIONS FENG QI AND BAI-NI GUO Abstract. In the article, the completely monotonic results of the functions [Γ( + 1)] 1/, [Γ(+α+1)]1/(+α),

More information

Elementary properties of the gamma function

Elementary properties of the gamma function Appendi G Elementary properties of the gamma function G.1 Introduction The elementary definition of the gamma function is Euler s integral: 1 Γ(z) = 0 t z 1 e t. (G.1) For the sake of convergence of the

More information

Some Properties of Convex Functions

Some Properties of Convex Functions Filomat 31:10 2017), 3015 3021 https://doi.org/10.2298/fil1710015a Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Some Properties

More information

Higher monotonicity properties of q gamma and q-psi functions

Higher monotonicity properties of q gamma and q-psi functions Advances in Dynamical Systems and Applications ISSN 973-5321, Volume x, Number x, pp. 1 13 (2xx) http://campus.mst.edu/adsa Higher monotonicity properties of q gamma and q-psi functions Mourad E. H. Ismail

More information

SOME INEQUALITIES FOR THE q-digamma FUNCTION

SOME INEQUALITIES FOR THE q-digamma FUNCTION Volume 10 (009), Issue 1, Article 1, 8 pp SOME INEQUALITIES FOR THE -DIGAMMA FUNCTION TOUFIK MANSOUR AND ARMEND SH SHABANI DEPARTMENT OF MATHEMATICS UNIVERSITY OF HAIFA 31905 HAIFA, ISRAEL toufik@mathhaifaacil

More information

arxiv: v1 [math.ca] 2 Nov 2012

arxiv: v1 [math.ca] 2 Nov 2012 Completely monotone functions - a digest Milan Merkle arxiv:2.9v [math.ca] 2 Nov 22 Abstract. This work has a purpose to collect selected facts about the completely monotone CMfunctions thatcan befound

More information

Journal of Mathematical Analysis and Applications

Journal of Mathematical Analysis and Applications J. Math. Anal. Appl. 35 29) 276 282 Contents lists available at ScienceDirect Journal of Mathematical Analysis and Applications www.elsevier.com/locate/jmaa A Turán-type inequality for the gamma function

More information

An Introduction to the Gamma Function

An Introduction to the Gamma Function UNIVERSITY OF WARWICK Second Year Essay An Introduction to the Gamma Function Tutor: Dr. Stefan Adams April 4, 29 Contents 1 Introduction 2 2 Conve Functions 3 3 The Gamma Function 7 4 The Bohr-Möllerup

More information

CONVEXITY ACCORDING TO THE GEOMETRIC MEAN

CONVEXITY ACCORDING TO THE GEOMETRIC MEAN M athematical I nequalities & A pplications Volume 3, Number 2 (2000), 155 167 CONVEXITY ACCORDING TO THE GEOMETRIC MEAN CONSTANTIN P. NICULESCU (communicated by Zs. Páles) Abstract. We develop a parallel

More information

Inequalities and Monotonicity For The Ratio of Γ p Functions

Inequalities and Monotonicity For The Ratio of Γ p Functions Int. J. Open Problems Compt. Math., Vol. 3, No., March 200 ISSN 998-6262; Copyright c ICSRS Publication, 200 www.i-csrs.org Inequalities and Monotonicity For The Ratio of Γ p Functions Valmir Krasniqi

More information

arxiv: v2 [math.ca] 12 Sep 2013

arxiv: v2 [math.ca] 12 Sep 2013 COMPLETE MONOTONICITY OF FUNCTIONS INVOLVING THE q-trigamma AND q-tetragamma FUNCTIONS arxiv:1301.0155v math.ca 1 Sep 013 FENG QI Abstract. Let ψ qx) for q > 0 stand for the q-digamma function. In the

More information

Higher Monotonicity Properties of q-gamma and q-psi Functions

Higher Monotonicity Properties of q-gamma and q-psi Functions Advances in Dynamical Systems and Applications ISSN 973-5321, Volume 8, Number 2, pp. 247 259 (213) http://campus.mst.edu/adsa Higher Monotonicity Properties of q-gamma and q-psi Functions Mourad E. H.

More information

arxiv: v4 [math.ca] 9 May 2012

arxiv: v4 [math.ca] 9 May 2012 MILLS RATIO: RECIPROCAL CONVEXITY AND FUNCTIONAL INEQUALITIES Dedicated to my children Boróka Koppány arxiv:.3267v4 [math.ca] 9 May 22 Abstract. This note contains sufficient conditions for the probability

More information

On the stirling expansion into negative powers of a triangular number

On the stirling expansion into negative powers of a triangular number MATHEMATICAL COMMUNICATIONS 359 Math. Commun., Vol. 5, No. 2, pp. 359-364 200) On the stirling expansion into negative powers of a triangular number Cristinel Mortici, Department of Mathematics, Valahia

More information

A CLASS OF NEW TRIGONOMETRIC INEQUALITIES AND THEIR SHARPENINGS

A CLASS OF NEW TRIGONOMETRIC INEQUALITIES AND THEIR SHARPENINGS Journal of Mathematical Inequalities Volume, Number 3 (008), 49 436 A CLASS OF NEW TRIGONOMETRIC INEQUALITIES AND THEIR SHARPENINGS KUN ZHU, HONG ZHANG AND KAIQING WENG (communicated by V. Volenec) Abstract.

More information

A COMPLETELY MONOTONIC FUNCTION INVOLVING THE TRI- AND TETRA-GAMMA FUNCTIONS

A COMPLETELY MONOTONIC FUNCTION INVOLVING THE TRI- AND TETRA-GAMMA FUNCTIONS ao DOI:.2478/s275-3-9-2 Math. Slovaca 63 (23), No. 3, 469 478 A COMPLETELY MONOTONIC FUNCTION INVOLVING THE TRI- AND TETRA-GAMMA FUNCTIONS Bai-Ni Guo* Jiao-Lian Zhao** Feng Qi* (Communicated by Ján Borsík

More information

Fractional part integral representation for derivatives of a function related to lnγ(x+1)

Fractional part integral representation for derivatives of a function related to lnγ(x+1) arxiv:.4257v2 [math-ph] 23 Aug 2 Fractional part integral representation for derivatives of a function related to lnγ(x+) For x > let Mark W. Coffey Department of Physics Colorado School of Mines Golden,

More information

Complete monotonicity of a function involving the p-psi function and alternative proofs

Complete monotonicity of a function involving the p-psi function and alternative proofs Global Journal of Mathematical Analysis, 2 (3) (24) 24-28 c Science Publishing Corporation www.sciencepubco.com/index.php/gjma doi:.449/gjma.v2i3.396 Research Paper Complete monotonicity of a function

More information

The incomplete gamma functions. Notes by G.J.O. Jameson. These notes incorporate the Math. Gazette article [Jam1], with some extra material.

The incomplete gamma functions. Notes by G.J.O. Jameson. These notes incorporate the Math. Gazette article [Jam1], with some extra material. The incomplete gamma functions Notes by G.J.O. Jameson These notes incorporate the Math. Gazette article [Jam], with some etra material. Definitions and elementary properties functions: Recall the integral

More information

CONVOLUTIONS OF LOGARITHMICALLY. Milan Merkle. Abstract. We give a simple proof of the fact that the logarithmic concavity of real

CONVOLUTIONS OF LOGARITHMICALLY. Milan Merkle. Abstract. We give a simple proof of the fact that the logarithmic concavity of real Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 9 (998), 3{7. CONVOLUTIONS OF LOGARITHMICALLY CONCAVE FUNCTIONS Milan Merkle Abstract. We give a simple proof of the fact that the logarithmic concavity

More information

SUB- AND SUPERADDITIVE PROPERTIES OF EULER S GAMMA FUNCTION

SUB- AND SUPERADDITIVE PROPERTIES OF EULER S GAMMA FUNCTION PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 135, Number 11, November 27, Pages 3641 3648 S 2-9939(7)957- Article electronically published on August 6, 27 SUB- AND SUPERADDITIVE PROPERTIES OF

More information

On a Problem of Alsina Again

On a Problem of Alsina Again Journal of Mathematical Analysis and Applications 54, 67 635 00 doi:0.006 jmaa.000.768, available online at http: www.idealibrary.com on On a Problem of Alsina Again Janusz Matkowski Institute of Mathematics,

More information

arxiv: v1 [math.ca] 25 Jan 2011

arxiv: v1 [math.ca] 25 Jan 2011 AN INEQUALITY INVOLVING THE GAMMA AND DIGAMMA FUNCTIONS arxiv:04698v mathca] 25 Jan 20 FENG QI AND BAI-NI GUO Abstract In the paper, we establish an inequality involving the gamma and digamma functions

More information

Gap Between Consecutive Primes By Using A New Approach

Gap Between Consecutive Primes By Using A New Approach Gap Between Consecutive Primes By Using A New Approach Hassan Kamal hassanamal.edu@gmail.com Abstract It is nown from Bertrand s postulate, whose proof was first given by Chebyshev, that the interval [x,

More information

Positive Solutions of a Third-Order Three-Point Boundary-Value Problem

Positive Solutions of a Third-Order Three-Point Boundary-Value Problem Kennesaw State University DigitalCommons@Kennesaw State University Faculty Publications 7-28 Positive Solutions of a Third-Order Three-Point Boundary-Value Problem Bo Yang Kennesaw State University, byang@kennesaw.edu

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journal of Inequalities in Pure and Applied Mathematics THE EXTENSION OF MAJORIZATION INEQUALITIES WITHIN THE FRAMEWORK OF RELATIVE CONVEXITY CONSTANTIN P. NICULESCU AND FLORIN POPOVICI University of Craiova

More information

A fixed point theorem for (µ, ψ)-generalized f-weakly contractive mappings in partially ordered 2-metric spaces

A fixed point theorem for (µ, ψ)-generalized f-weakly contractive mappings in partially ordered 2-metric spaces Mathematica Moravica Vol. 21, No. 1 (2017), 37 50 A fixed point theorem for (µ, ψ)-generalized f-weakly contractive mappings in partially ordered 2-metric spaces Nguyen Trung Hieu and Huynh Ngoc Cam Abstract.

More information

A mean value theorem for systems of integrals

A mean value theorem for systems of integrals J. Math. Anal. Appl. 342 (2008) 334 339 www.elsevier.com/locate/jmaa A mean value theorem for systems of integrals Slobodanka Janković a, Milan Merkle b, a Mathematical nstitute SANU, Knez Mihailova 35,

More information

Series of Error Terms for Rational Approximations of Irrational Numbers

Series of Error Terms for Rational Approximations of Irrational Numbers 2 3 47 6 23 Journal of Integer Sequences, Vol. 4 20, Article..4 Series of Error Terms for Rational Approximations of Irrational Numbers Carsten Elsner Fachhochschule für die Wirtschaft Hannover Freundallee

More information

REFINEMENTS AND SHARPENINGS OF SOME DOUBLE INEQUALITIES FOR BOUNDING THE GAMMA FUNCTION

REFINEMENTS AND SHARPENINGS OF SOME DOUBLE INEQUALITIES FOR BOUNDING THE GAMMA FUNCTION REFINEMENTS AND SHARPENINGS OF SOME DOUBLE INEQUALITIES FOR BOUNDING THE GAMMA FUNCTION BAI-NI GUO YING-JIE ZHANG School of Mathematics and Informatics Department of Mathematics Henan Polytechnic University

More information

INEQUALITIES FOR THE GAMMA FUNCTION

INEQUALITIES FOR THE GAMMA FUNCTION INEQUALITIES FOR THE GAMMA FUNCTION Received: 16 October, 26 Accepted: 9 February, 27 Communicated by: XIN LI AND CHAO-PING CHEN College of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo

More information

On Some Mean Value Results for the Zeta-Function and a Divisor Problem

On Some Mean Value Results for the Zeta-Function and a Divisor Problem Filomat 3:8 (26), 235 2327 DOI.2298/FIL6835I Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat On Some Mean Value Results for the

More information

Sharp inequalities and asymptotic expansion associated with the Wallis sequence

Sharp inequalities and asymptotic expansion associated with the Wallis sequence Deng et al. Journal of Inequalities and Applications 0 0:86 DOI 0.86/s3660-0-0699-z R E S E A R C H Open Access Sharp inequalities and asymptotic expansion associated with the Wallis sequence Ji-En Deng,

More information

A Note on the Recursive Calculation of Incomplete Gamma Functions

A Note on the Recursive Calculation of Incomplete Gamma Functions A Note on the Recursive Calculation of Incomplete Gamma Functions WALTER GAUTSCHI Purdue University It is known that the recurrence relation for incomplete gamma functions a n, x, 0 a 1, n 0,1,2,..., when

More information

Properties of the Scattering Transform on the Real Line

Properties of the Scattering Transform on the Real Line Journal of Mathematical Analysis and Applications 58, 3 43 (001 doi:10.1006/jmaa.000.7375, available online at http://www.idealibrary.com on Properties of the Scattering Transform on the Real Line Michael

More information

Mills ratio: Monotonicity patterns and functional inequalities

Mills ratio: Monotonicity patterns and functional inequalities J. Math. Anal. Appl. 340 (008) 136 1370 www.elsevier.com/locate/jmaa Mills ratio: Monotonicity patterns and functional inequalities Árpád Baricz Babeş-Bolyai University, Faculty of Economics, RO-400591

More information

WHEN LAGRANGEAN AND QUASI-ARITHMETIC MEANS COINCIDE

WHEN LAGRANGEAN AND QUASI-ARITHMETIC MEANS COINCIDE Volume 8 (007, Issue 3, Article 71, 5 pp. WHEN LAGRANGEAN AND QUASI-ARITHMETIC MEANS COINCIDE JUSTYNA JARCZYK FACULTY OF MATHEMATICS, COMPUTER SCIENCE AND ECONOMETRICS, UNIVERSITY OF ZIELONA GÓRA SZAFRANA

More information

Unbounded solutions of an iterative-difference equation

Unbounded solutions of an iterative-difference equation Acta Univ. Sapientiae, Mathematica, 9, 1 (2017) 224 234 DOI: 10.1515/ausm-2017-0015 Unbounded solutions of an iterative-difference equation Lin Li College of Mathematics, Physics and Information Engineering

More information

Singular Value Inequalities for Real and Imaginary Parts of Matrices

Singular Value Inequalities for Real and Imaginary Parts of Matrices Filomat 3:1 16, 63 69 DOI 1.98/FIL16163C Published by Faculty of Sciences Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Singular Value Inequalities for Real Imaginary

More information

LIMITS OF COMPOSITE FUNCTIONS. Milosav M. Marjanović and Zoran Kadelburg

LIMITS OF COMPOSITE FUNCTIONS. Milosav M. Marjanović and Zoran Kadelburg THE TEACHING OF MATHEMATICS 29, Vol. XII, 1, pp. 1 6 LIMITS OF COMPOSITE FUNCTIONS Milosav M. Marjanović and Zoran Kadelburg Abstract. Finding gf)), first the following two its i) f) = y ii) gy) = α are

More information

arxiv: v1 [math.fa] 30 Sep 2007

arxiv: v1 [math.fa] 30 Sep 2007 A MAZUR ULAM THEOREM IN NON-ARCHIMEDEAN NORMED SPACES arxiv:0710.0107v1 [math.fa] 30 Sep 007 MOHAMMAD SAL MOSLEHIAN AND GHADIR SADEGHI Abstract. The classical Mazur Ulam theorem which states that every

More information

A CHARACTERIZATION OF THE HARMONIC OPERATOR MEAN AS AN EXTENSION OF ANDO S THEOREM. Jun Ichi Fujii* and Masahiro Nakamura** Received December 12, 2005

A CHARACTERIZATION OF THE HARMONIC OPERATOR MEAN AS AN EXTENSION OF ANDO S THEOREM. Jun Ichi Fujii* and Masahiro Nakamura** Received December 12, 2005 Scientiae Mathematicae Japonicae Online, e-006, 7 3 7 A CHARACTERIZATION OF THE HARMONIC OPERATOR MEAN AS AN EXTENSION OF ANDO S THEOREM Jun Ichi Fujii* and Masahiro Nakamura** Received December, 005 Abstract.

More information

HW #1 SOLUTIONS. g(x) sin 1 x

HW #1 SOLUTIONS. g(x) sin 1 x HW #1 SOLUTIONS 1. Let f : [a, b] R and let v : I R, where I is an interval containing f([a, b]). Suppose that f is continuous at [a, b]. Suppose that lim s f() v(s) = v(f()). Using the ɛ δ definition

More information

AN IMPROVED MENSHOV-RADEMACHER THEOREM

AN IMPROVED MENSHOV-RADEMACHER THEOREM PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 124, Number 3, March 1996 AN IMPROVED MENSHOV-RADEMACHER THEOREM FERENC MÓRICZ AND KÁROLY TANDORI (Communicated by J. Marshall Ash) Abstract. We

More information

arxiv: v1 [math.ca] 2 Nov 2018

arxiv: v1 [math.ca] 2 Nov 2018 arxiv.org arxiv:1811.00748v1 [math.ca] 2 Nov 2018 One method for proving some classes of eponential analytical inequalities Branko Malešević a, Tatjana Lutovac a, Bojan Banjac b a School of Electrical

More information

BLOCH FUNCTIONS ON THE UNIT BALL OF AN INFINITE DIMENSIONAL HILBERT SPACE

BLOCH FUNCTIONS ON THE UNIT BALL OF AN INFINITE DIMENSIONAL HILBERT SPACE BLOCH FUNCTIONS ON THE UNIT BALL OF AN INFINITE DIMENSIONAL HILBERT SPACE OSCAR BLASCO, PABLO GALINDO, AND ALEJANDRO MIRALLES Abstract. The Bloch space has been studied on the open unit disk of C and some

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

Extension of Summation Formulas involving Stirling series

Extension of Summation Formulas involving Stirling series Etension of Summation Formulas involving Stirling series Raphael Schumacher arxiv:6050904v [mathnt] 6 May 06 Abstract This paper presents a family of rapidly convergent summation formulas for various finite

More information

THE HYPERBOLIC METRIC OF A RECTANGLE

THE HYPERBOLIC METRIC OF A RECTANGLE Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 26, 2001, 401 407 THE HYPERBOLIC METRIC OF A RECTANGLE A. F. Beardon University of Cambridge, DPMMS, Centre for Mathematical Sciences Wilberforce

More information

The principal inverse of the gamma function

The principal inverse of the gamma function The principal inverse of the gamma function Mitsuru Uchiyama Shimane University 2013/7 Mitsuru Uchiyama (Shimane University) The principal inverse of the gamma function 2013/7 1 / 25 Introduction The gamma

More information

A Hilbert-type Integral Inequality with Parameters

A Hilbert-type Integral Inequality with Parameters Global Journal of Science Frontier Research Vol. Issue 6(Ver.) October P a g e 87 A Hilbert-type Integral Inequality with Parameters Peng Xiuying, Gao Mingzhe GJSFR- F Clasification FOR 8,6,33B,6D5 6D5

More information

Math 104: Homework 7 solutions

Math 104: Homework 7 solutions Math 04: Homework 7 solutions. (a) The derivative of f () = is f () = 2 which is unbounded as 0. Since f () is continuous on [0, ], it is uniformly continous on this interval by Theorem 9.2. Hence for

More information

On the least values of L p -norms for the Kontorovich Lebedev transform and its convolution

On the least values of L p -norms for the Kontorovich Lebedev transform and its convolution Journal of Approimation Theory 131 4 31 4 www.elsevier.com/locate/jat On the least values of L p -norms for the Kontorovich Lebedev transform and its convolution Semyon B. Yakubovich Department of Pure

More information

NON-MONOTONICITY HEIGHT OF PM FUNCTIONS ON INTERVAL. 1. Introduction

NON-MONOTONICITY HEIGHT OF PM FUNCTIONS ON INTERVAL. 1. Introduction Acta Math. Univ. Comenianae Vol. LXXXVI, 2 (2017), pp. 287 297 287 NON-MONOTONICITY HEIGHT OF PM FUNCTIONS ON INTERVAL PINGPING ZHANG Abstract. Using the piecewise monotone property, we give a full description

More information

ON THE HILBERT INEQUALITY. 1. Introduction. π 2 a m + n. is called the Hilbert inequality for double series, where n=1.

ON THE HILBERT INEQUALITY. 1. Introduction. π 2 a m + n. is called the Hilbert inequality for double series, where n=1. Acta Math. Univ. Comenianae Vol. LXXVII, 8, pp. 35 3 35 ON THE HILBERT INEQUALITY ZHOU YU and GAO MINGZHE Abstract. In this paper it is shown that the Hilbert inequality for double series can be improved

More information

A general theorem on the stability of a class of functional equations including quadratic additive functional equations

A general theorem on the stability of a class of functional equations including quadratic additive functional equations Lee and Jung SpringerPlus 20165:159 DOI 10.1186/s40064-016-1771-y RESEARCH A general theorem on the stability of a class of functional equations including quadratic additive functional equations Yang Hi

More information

Certain inequalities involving the k-struve function

Certain inequalities involving the k-struve function Nisar et al. Journal of Inequalities and Applications 7) 7:7 DOI.86/s366-7-343- R E S E A R C H Open Access Certain inequalities involving the -Struve function Kottaaran Sooppy Nisar, Saiful Rahman Mondal

More information

Iteration of the rational function z 1/z and a Hausdorff moment sequence

Iteration of the rational function z 1/z and a Hausdorff moment sequence Iteration of the rational function z /z and a Hausdorff moment sequence Christian Berg University of Copenhagen, Institute of Mathematical Sciences Universitetsparken 5, DK-200 København Ø, Denmark Antonio

More information

MINIMAL NORMAL AND COMMUTING COMPLETIONS

MINIMAL NORMAL AND COMMUTING COMPLETIONS INTERNATIONAL JOURNAL OF INFORMATION AND SYSTEMS SCIENCES Volume 4, Number 1, Pages 5 59 c 8 Institute for Scientific Computing and Information MINIMAL NORMAL AND COMMUTING COMPLETIONS DAVID P KIMSEY AND

More information

4 Inverse function theorem

4 Inverse function theorem Tel Aviv University, 2014/15 Analysis-III,IV 71 4 Inverse function theorem 4a What is the problem................ 71 4b Simple observations before the theorem..... 72 4c The theorem.....................

More information

Research Article Subnormal Solutions of Second-Order Nonhomogeneous Linear Differential Equations with Periodic Coefficients

Research Article Subnormal Solutions of Second-Order Nonhomogeneous Linear Differential Equations with Periodic Coefficients Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2009, Article ID 416273, 12 pages doi:10.1155/2009/416273 Research Article Subnormal Solutions of Second-Order Nonhomogeneous

More information

Block companion matrices, discrete-time block diagonal stability and polynomial matrices

Block companion matrices, discrete-time block diagonal stability and polynomial matrices Block companion matrices, discrete-time block diagonal stability and polynomial matrices Harald K. Wimmer Mathematisches Institut Universität Würzburg D-97074 Würzburg Germany October 25, 2008 Abstract

More information

SUPPLEMENTS TO KNOWN MONOTONICITY RESULTS AND INEQUALITIES FOR THE GAMMA AND INCOMPLETE GAMMA FUNCTIONS

SUPPLEMENTS TO KNOWN MONOTONICITY RESULTS AND INEQUALITIES FOR THE GAMMA AND INCOMPLETE GAMMA FUNCTIONS SUPPLEMENTS TO KNOWN MONOTONICITY RESULTS AND INEQUALITIES FOR THE GAMMA AND INCOMPLETE GAMMA FUNCTIONS A. LAFORGIA AND P. NATALINI Received 29 June 25; Acceted 3 July 25 We denote by ΓaandΓa;z the gamma

More information

The Generating Functions for Pochhammer

The Generating Functions for Pochhammer The Generating Functions for Pochhammer Symbol { }, n N Aleksandar Petoević University of Novi Sad Teacher Training Faculty, Department of Mathematics Podgorička 4, 25000 Sombor SERBIA and MONTENEGRO Email

More information

On product of range symmetric matrices in an indefinite inner product space

On product of range symmetric matrices in an indefinite inner product space Functional Analysis, Approximation and Computation 8 (2) (2016), 15 20 Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac On product

More information

Fixed Point Theorems for -Monotone Maps on Partially Ordered S-Metric Spaces

Fixed Point Theorems for -Monotone Maps on Partially Ordered S-Metric Spaces Filomat 28:9 (2014), 1885 1898 DOI 10.2298/FIL1409885D Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Fixed Point Theorems for

More information

arxiv: v1 [math.ca] 31 Jan 2016

arxiv: v1 [math.ca] 31 Jan 2016 ASYMPTOTIC STABILITY OF THE CAUCHY AND JENSEN FUNCTIONAL EQUATIONS ANNA BAHYRYCZ, ZSOLT PÁLES, AND MAGDALENA PISZCZEK arxiv:160.00300v1 [math.ca] 31 Jan 016 Abstract. The aim of this note is to investigate

More information

Applications of Fourier Series and Zeta Functions to Genocchi Polynomials

Applications of Fourier Series and Zeta Functions to Genocchi Polynomials Appl. Math. Inf. Sci., No. 5, 95-955 (8) 95 Applied Mathematics & Information Sciences An International Journal http://d.doi.org/.8576/amis/58 Applications of Fourier Series Zeta Functions to Genocchi

More information

DETERMINATION OF AN UNKNOWN SOURCE TERM IN A SPACE-TIME FRACTIONAL DIFFUSION EQUATION

DETERMINATION OF AN UNKNOWN SOURCE TERM IN A SPACE-TIME FRACTIONAL DIFFUSION EQUATION Journal of Fractional Calculus and Applications, Vol. 6(1) Jan. 2015, pp. 83-90. ISSN: 2090-5858. http://fcag-egypt.com/journals/jfca/ DETERMINATION OF AN UNKNOWN SOURCE TERM IN A SPACE-TIME FRACTIONAL

More information

SCHUR-CONVEXITY AND SCHUR-GEOMETRICALLY CONCAVITY OF GINI MEAN

SCHUR-CONVEXITY AND SCHUR-GEOMETRICALLY CONCAVITY OF GINI MEAN SCHUR-CONVEXITY AND SCHUR-GEOMETRICALLY CONCAVITY OF GINI MEAN HUAN-NAN SHI Abstract. The monotonicity and the Schur-convexity with parameters s, t) in R 2 for fixed x, y) and the Schur-convexity and the

More information

NEW ASYMPTOTIC EXPANSION AND ERROR BOUND FOR STIRLING FORMULA OF RECIPROCAL GAMMA FUNCTION

NEW ASYMPTOTIC EXPANSION AND ERROR BOUND FOR STIRLING FORMULA OF RECIPROCAL GAMMA FUNCTION M athematical Inequalities & Applications Volume, Number 4 8), 957 965 doi:.753/mia-8--65 NEW ASYMPTOTIC EXPANSION AND ERROR BOUND FOR STIRLING FORMULA OF RECIPROCAL GAMMA FUNCTION PEDRO J. PAGOLA Communicated

More information

Two new regularization methods for solving sideways heat equation

Two new regularization methods for solving sideways heat equation Nguyen and uu Journal of Inequalities and Applications 015) 015:65 DOI 10.1186/s13660-015-0564-0 R E S E A R C H Open Access Two new regularization methods for solving sideways heat equation Huy Tuan Nguyen

More information

Ann. Funct. Anal. 1 (2010), no. 1, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 1 (2010), no. 1, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Funct. Anal. 1 (1), no. 1, 51 58 A nnals of F unctional A nalysis ISSN: 8-875 (electronic) URL: www.emis.de/journals/afa/ ON MINKOWSKI AND HERMITE HADAMARD INTEGRAL INEQUALITIES VIA FRACTIONAL INTEGRATION

More information

ON QUALITATIVE PROPERTIES OF SOLUTIONS OF QUASILINEAR ELLIPTIC EQUATIONS WITH STRONG DEPENDENCE ON THE GRADIENT

ON QUALITATIVE PROPERTIES OF SOLUTIONS OF QUASILINEAR ELLIPTIC EQUATIONS WITH STRONG DEPENDENCE ON THE GRADIENT GLASNIK MATEMATIČKI Vol. 49(69)(2014), 369 375 ON QUALITATIVE PROPERTIES OF SOLUTIONS OF QUASILINEAR ELLIPTIC EQUATIONS WITH STRONG DEPENDENCE ON THE GRADIENT Jadranka Kraljević University of Zagreb, Croatia

More information

Geometry of Banach spaces with an octahedral norm

Geometry of Banach spaces with an octahedral norm ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 18, Number 1, June 014 Available online at http://acutm.math.ut.ee Geometry of Banach spaces with an octahedral norm Rainis Haller

More information

Variations on a Theme by James Stirling

Variations on a Theme by James Stirling Variations on a Theme by James Stirling Diego Dominici Department of Mathematics State University of New York at New Paltz 75 S. Manheim Blvd. Suite 9 New Paltz, NY 1561-443 USA Phone: (845) 57-607 Fax:

More information

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer.

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer. Problem Sheet,. i) Draw the graphs for [] and {}. ii) Show that for α R, α+ α [t] dt = α and α+ α {t} dt =. Hint Split these integrals at the integer which must lie in any interval of length, such as [α,

More information

APPROXIMATIONS FOR SOME FUNCTIONS OF PRIMES

APPROXIMATIONS FOR SOME FUNCTIONS OF PRIMES APPROXIMATIONS FOR SOME FUNCTIONS OF PRIMES Fataneh Esteki B. Sc., University of Isfahan, 2002 A Thesis Submitted to the School of Graduate Studies of the University of Lethbridge in Partial Fulfillment

More information

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem Chapter 1 Introduction to prime number theory 1.1 The Prime Number Theorem In the first part of this course, we focus on the theory of prime numbers. We use the following notation: we write f( g( as if

More information

Interpolating the arithmetic geometric mean inequality and its operator version

Interpolating the arithmetic geometric mean inequality and its operator version Linear Algebra and its Applications 413 (006) 355 363 www.elsevier.com/locate/laa Interpolating the arithmetic geometric mean inequality and its operator version Rajendra Bhatia Indian Statistical Institute,

More information

On Picard value problem of some difference polynomials

On Picard value problem of some difference polynomials Arab J Math 018 7:7 37 https://doiorg/101007/s40065-017-0189-x Arabian Journal o Mathematics Zinelâabidine Latreuch Benharrat Belaïdi On Picard value problem o some dierence polynomials Received: 4 April

More information

Exponents in R of Elements in a Uniformly Complete Φ-Algebra

Exponents in R of Elements in a Uniformly Complete Φ-Algebra Rend. Istit. Mat. Univ. Trieste Vol. XL, 29 44 (2008) Exponents in R of Elements in a Uniformly Complete Φ-Algebra Mohamed Ali Toumi Abstract. In this paper we give a new and constructive proof of exponents

More information

MEAN VALUE THEOREMS FOR SOME LINEAR INTEGRAL OPERATORS

MEAN VALUE THEOREMS FOR SOME LINEAR INTEGRAL OPERATORS Electronic Journal of Differential Equations, Vol. 2929, No. 117, pp. 1 15. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu MEAN VALUE THEOREMS FOR

More information

The Hardy-Littlewood Function: An Exercise in Slowly Convergent Series

The Hardy-Littlewood Function: An Exercise in Slowly Convergent Series The Hardy-Littlewood Function: An Exercise in Slowly Convergent Series Walter Gautschi Department of Computer Sciences Purdue University West Lafayette, IN 4797-66 U.S.A. Dedicated to Olav Njåstad on the

More information

1 Convexity, Convex Relaxations, and Global Optimization

1 Convexity, Convex Relaxations, and Global Optimization 1 Conveity, Conve Relaations, and Global Optimization Algorithms 1 1.1 Minima Consider the nonlinear optimization problem in a Euclidean space: where the feasible region. min f(), R n Definition (global

More information

Some Fixed Point Results for the Generalized F -suzuki Type Contractions in b-metric Spaces

Some Fixed Point Results for the Generalized F -suzuki Type Contractions in b-metric Spaces Sahand Communications in Mathematical Analysis (SCMA) Vol. No. (208) 8-89 http://scma.maragheh.ac.ir DOI: 0.2230/scma.208.52976.55 Some Fixed Point Results for the Generalized F -suzuki Type Contractions

More information

Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 30 (2003) A NOTE ON NON-NEGATIVE INFORMATION FUNCTIONS

Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 30 (2003) A NOTE ON NON-NEGATIVE INFORMATION FUNCTIONS Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 30 (2003 3 36 A NOTE ON NON-NEGATIVE INFORMATION FUNCTIONS Béla Brindza and Gyula Maksa (Debrecen, Hungary Dedicated to the memory of Professor

More information

V. Gupta, A. Aral and M. Ozhavzali. APPROXIMATION BY q-szász-mirakyan-baskakov OPERATORS

V. Gupta, A. Aral and M. Ozhavzali. APPROXIMATION BY q-szász-mirakyan-baskakov OPERATORS F A S C I C U L I M A T H E M A T I C I Nr 48 212 V. Gupta, A. Aral and M. Ozhavzali APPROXIMATION BY -SZÁSZ-MIRAKYAN-BASKAKOV OPERATORS Abstract. In the present paper we propose the analogue of well known

More information

FUZZY H-WEAK CONTRACTIONS AND FIXED POINT THEOREMS IN FUZZY METRIC SPACES

FUZZY H-WEAK CONTRACTIONS AND FIXED POINT THEOREMS IN FUZZY METRIC SPACES Gulf Journal of Mathematics Vol, Issue 2 203 7-79 FUZZY H-WEAK CONTRACTIONS AND FIXED POINT THEOREMS IN FUZZY METRIC SPACES SATISH SHUKLA Abstract. The purpose of this paper is to introduce the notion

More information

Weak Subordination for Convex Univalent Harmonic Functions

Weak Subordination for Convex Univalent Harmonic Functions Weak Subordination for Convex Univalent Harmonic Functions Stacey Muir Abstract For two complex-valued harmonic functions f and F defined in the open unit disk with f() = F () =, we say f is weakly subordinate

More information

Epiconvergence and ε-subgradients of Convex Functions

Epiconvergence and ε-subgradients of Convex Functions Journal of Convex Analysis Volume 1 (1994), No.1, 87 100 Epiconvergence and ε-subgradients of Convex Functions Andrei Verona Department of Mathematics, California State University Los Angeles, CA 90032,

More information

THE IMPLICIT FUNCTION THEOREM FOR CONTINUOUS FUNCTIONS. Carlos Biasi Carlos Gutierrez Edivaldo L. dos Santos. 1. Introduction

THE IMPLICIT FUNCTION THEOREM FOR CONTINUOUS FUNCTIONS. Carlos Biasi Carlos Gutierrez Edivaldo L. dos Santos. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 32, 2008, 177 185 THE IMPLICIT FUNCTION THEOREM FOR CONTINUOUS FUNCTIONS Carlos Biasi Carlos Gutierrez Edivaldo L.

More information

ALUR DUAL RENORMINGS OF BANACH SPACES SEBASTIÁN LAJARA

ALUR DUAL RENORMINGS OF BANACH SPACES SEBASTIÁN LAJARA ALUR DUAL RENORMINGS OF BANACH SPACES SEBASTIÁN LAJARA ABSTRACT. We give a covering type characterization for the class of dual Banach spaces with an equivalent ALUR dual norm. Let K be a closed convex

More information

Characterizations on Heavy-tailed Distributions by Means of Hazard Rate

Characterizations on Heavy-tailed Distributions by Means of Hazard Rate Acta Mathematicae Applicatae Sinica, English Series Vol. 19, No. 1 (23) 135 142 Characterizations on Heavy-tailed Distributions by Means of Hazard Rate Chun Su 1, Qi-he Tang 2 1 Department of Statistics

More information

Linear functionals and the duality principle for harmonic functions

Linear functionals and the duality principle for harmonic functions Math. Nachr. 285, No. 13, 1565 1571 (2012) / DOI 10.1002/mana.201100259 Linear functionals and the duality principle for harmonic functions Rosihan M. Ali 1 and S. Ponnusamy 2 1 School of Mathematical

More information

PRIME NUMBER THEOREM

PRIME NUMBER THEOREM PRIME NUMBER THEOREM RYAN LIU Abstract. Prime numbers have always been seen as the building blocks of all integers, but their behavior and distribution are often puzzling. The prime number theorem gives

More information