1 Convexity, Convex Relaxations, and Global Optimization

Size: px
Start display at page:

Download "1 Convexity, Convex Relaxations, and Global Optimization"

Transcription

1 1 Conveity, Conve Relaations, and Global Optimization Algorithms Minima Consider the nonlinear optimization problem in a Euclidean space: where the feasible region. min f(), R n Definition (global minimum). A point is a global minimum of f if ynonyms: problem). f() f( ). optimal solution, global optimal solution, or solution (to the optimization Definition (local minimum). A point is a local minimum if there eists an ε > 0 f() f( ) < ε. Remark. Trivially, global minimum local minimum. f() f() local and global minimum local min. (not global) global min. What is so special about the function on the left that the local minimum is also the global minimum? CONVEXITY! The property of conveity is so important because its definition implies that every local minimum is also a global minimum. 1 c PIB 1/2/02 1

2 1.2 Conve sets Definition (conve set). A set R n is conve if for every, y, λ + (1 λ)y λ [0, 1]. Remark. In words, every point on the straight line connecting any pair of points in must also be in. 2 2 y y Conve et 1 Nonconve et 1 N.B. Must hold for all pairs of points in the set. The intersection of two conve sets is conve. number of conve sets is conve. By induction, the intersection of a finite 1.3 Conve functions Definition (conve function). Let f : R, where is a nonempty conve set in R n. The function is said to be conve on if for each, y and for each λ (0, 1). f(λ + (1 λ)y) λf() + (1 λ)f(y) Geometrically: Function always lies below straight line connecting any two points. 2

3 λf() + (1 λ)f(y) f(z) y [ ] f(λ + (1 λ)y) Conve Function z Must be satisfied for all pairs of points in. f(z) [ y ] z Nonconve Function 1 Conveity depends on the set. nonconve on. In the above eample, the function is conve on 1 but 3

4 Lemma. Let be a nonempty conve set in R n and let g : R be a conve function. Then, the set { : g() α, α R} is conve. 1.4 Conve Optimization Theorem. Let be a nonempty conve set in R n and let f : R be conve on. Consider the problem to minimize f() subject to. uppose is a local minimum. Then is a global minimum. Proof. By hypothesis, is a local minimum of f. Thus, by definition, there eists an ε > 0 f() f( ) B ε ( ) where B ε ( ) is the open ball defined by B ε ( ) = { : < ε}. Assume the contrary. That is, suppose that is not a global minimum. This implies the eistence of an ˆ f(ˆ) < f( ). (1) Choose λ (0, 1) sufficiently small λˆ + (1 λ) B ε ( ). The eistence of such a λ is clear by the Archimedean property of the real numbers. By the conveity of f and the Inequality (1), we have f(λˆ + (1 λ) ) λf(ˆ) + (1 λ)f( ) < λf( ) + (1 λ)f( ) = f( ). However, this contradicts that is a local minimum of f. In other words, for conve optimization (minimization of a conve function on a conve set): Why is this useful? local minimum global minimum. Eample. Consider the unconstrained minimization: From elementary calculus, we know: min f(). =R n Theorem. uppose that f : R n R is differentiable at. If is a local minimum, then f( ) = f( ) = 0. 4

5 Remark. f() = 0 are known as stationary points. Assume that we have an algorithm that can reliably find points f ( ) = 0. Differentiable conve functions satisfy the following theorem. Theorem. Let be a nonempty open conve set in R n, and let f : R be differentiable on. Then f is conve on if and only if for any ˆ we have f() f(ˆ) + f(ˆ) T ( ˆ). Now suppose f() is differentiable and conve on = R n. If f( ) = 0 then f() f( ). Or, is a global minimum on. Check: R n is open and conve, so satisfies the hypotheses. This illustrates the general strategy: For conve optimization problems, if we have a reliable procedure for locating local minima, then we always get the global minimum. In fact, an infallible procedure to locate local minima of conve optimization problems appears very difficult to implement in practice, even if algorithms eist that promise this property theoretically. N.B. Might search for local minima directly, not stationary points. 1.5 Nonconve Optimization f() stationary point local minimum global minimum For nonconve optimization problems, the strategy of finding local minima or stationary points fails. In the figure, 5

6 All three points indicated are stationary points, one of which is actually a local maimum. Of the two local minima, only one is a global minimum. A simple descent strategy started to the left of the maimum will most likely locate the suboptimal local minimum. A deterministic global optimization algorithm is designed to guarantee locating the global minimum objective function value within some ε tolerance with a finite number of iterations. There are many approaches to the design of deterministic global optimization algorithms but here we will only discuss the branch-and-bound approach (B&B). B&B relies on the notion of a conve relaation of a nonconve function. Definition (conve relaation). Let f : R where R n is a nonempty conve set. Then a conve function u : R is a conve relaation of f if u() f(). f() u() [ ] Definition (conve envelope). Let f : R where R n is a nonempty conve set. The conve envelope of f over (denoted f ) is a conve relaation for any other conve relaation u of f on, we have f () u(). Remark. The conve envelope is the tightest possible conve relaation of a nonconve function. For a univariate concave function, the conve envelope is the secant joining the end points of the set, as shown in the figure. 6

7 f() f () [ ] The conve envelopes of many functions are known. However, in general, finding the conve envelope of an arbitrary function is as hard as finding the global minimum. On the other hand, a number of polynomial algorithms eist for constructing conve relaations of quite general classes of functions. uppose we have the nonconve optimization problem min f() g() 0 where R n is a nonempty conve compact set, f : R and g : R m are continuous and potentially nonconve. We can construct a conve optimization problem that is a relaation of this problem via conve relaations u and h of f and g respectively on : min u() h() 0. N.B. The set { : h() 0} is conve, so every local minimum will also be a global minimum. Consider the minimum of the nonconve and conve problems, and ˆ, respectively. Both and ˆ will be feasible for the conve problem because h( ) g( ) 0. 7

8 Moreover, u(ˆ) u( ) f( ). i.e., the minimum for the conve problem is a lower bound on the minimum of the nonconve problem. Hence, the term conve underestimating problem is frequently used. These preliminaries enable us to describe the B&B procedure for nonconve optimization. f() UBD LBD u() [ ] Partition the space : f() UBD 1 LBD 1 UBD 2 LBD 2 u 2 () u 1 () [ ][ ] 1 2 8

9 Now, because LBD 1 UBD 2, the minimum cannot be attained in the set 1. o, 1 is ecluded from further considerations, or fathomed. 2 is further partitioned, fathoming as necessary until LBD on all sets comes within ε of the UBD. The partitioning procedure can be illustrated by the following branch-and-bound tree: etc. The labels denote the partition over which the LBD and UBD are generated. In order to have finite termination for ε tolerance, it is also necessary to have convergence of the conve relaation to the nonconve function as the size of the partition tends toward zero. 1.6 Constructing conve relaations using AD Eample. Consider the following nonconve function: f() = 1 [ 2 3 ( which can be represented by the following binary tree: etc. )] 1/3 / w 5 1 w 4 w w 2 3 / w

10 or the elementary operation list: w 1 = ( )/2 w 2 = 3 w 1 w 3 = 2 w 2 w 4 = w 1/3 3 w 5 = 1 /w 4 These representations indicate that the optimization problem min f() X can be reformulated as min X,w W w 5 w 1 = ( )/2 w 2 = 3 w 1 w 3 = 2 w 2 w 4 = w 1/3 3 w 5 = 1 /w 4 A conve relaation of this problem may be constructed via the known conve and concave envelopes of the RH of the equality constraints. For eample: linear constraints such as always define a conve set. w 1 = ( )/2 The conve and concave envelopes for any bilinear term such as 3 w 1 leading to the following relaation: are known, w 2 L 3 w w1 L L 3 w1 L w 2 U 3 w w1 U U 3 w1 U w 2 L 3 w w1 U L 3 w1 U w 2 U 3 w w1 L U 3 w1 L where L 3, U 3 are lower and upper bounds on 3 in the partition of interest, and w1 L and w1 U can be inferred by interval analysis from the elementary functions and the bounds on the i and other w i 10

Kaisa Joki Adil M. Bagirov Napsu Karmitsa Marko M. Mäkelä. New Proximal Bundle Method for Nonsmooth DC Optimization

Kaisa Joki Adil M. Bagirov Napsu Karmitsa Marko M. Mäkelä. New Proximal Bundle Method for Nonsmooth DC Optimization Kaisa Joki Adil M. Bagirov Napsu Karmitsa Marko M. Mäkelä New Proximal Bundle Method for Nonsmooth DC Optimization TUCS Technical Report No 1130, February 2015 New Proximal Bundle Method for Nonsmooth

More information

Lagrangian Duality for Dummies

Lagrangian Duality for Dummies Lagrangian Duality for Dummies David Knowles November 13, 2010 We want to solve the following optimisation problem: f 0 () (1) such that f i () 0 i 1,..., m (2) For now we do not need to assume conveity.

More information

Chapter 2 Convex Analysis

Chapter 2 Convex Analysis Chapter 2 Convex Analysis The theory of nonsmooth analysis is based on convex analysis. Thus, we start this chapter by giving basic concepts and results of convexity (for further readings see also [202,

More information

1 Kernel methods & optimization

1 Kernel methods & optimization Machine Learning Class Notes 9-26-13 Prof. David Sontag 1 Kernel methods & optimization One eample of a kernel that is frequently used in practice and which allows for highly non-linear discriminant functions

More information

Some Properties of Convex Functions

Some Properties of Convex Functions Filomat 31:10 2017), 3015 3021 https://doi.org/10.2298/fil1710015a Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Some Properties

More information

1.4 FOUNDATIONS OF CONSTRAINED OPTIMIZATION

1.4 FOUNDATIONS OF CONSTRAINED OPTIMIZATION Essential Microeconomics -- 4 FOUNDATIONS OF CONSTRAINED OPTIMIZATION Fundamental Theorem of linear Programming 3 Non-linear optimization problems 6 Kuhn-Tucker necessary conditions Sufficient conditions

More information

Lecture 3 Introduction to optimality conditions

Lecture 3 Introduction to optimality conditions TMA947 / MMG621 Nonlinear optimisation Lecture 3 Introduction to optimality conditions Emil Gustavsson October 31, 2013 Local and global optimality We consider an optimization problem which is that to

More information

Safe and Tight Linear Estimators for Global Optimization

Safe and Tight Linear Estimators for Global Optimization Safe and Tight Linear Estimators for Global Optimization Glencora Borradaile and Pascal Van Hentenryck Brown University Bo 1910 Providence, RI, 02912 {glencora, pvh}@cs.brown.edu Abstract. Global optimization

More information

Outline. Basic Concepts in Optimization Part I. Illustration of a (Strict) Local Minimum, x. Local Optima. Neighborhood.

Outline. Basic Concepts in Optimization Part I. Illustration of a (Strict) Local Minimum, x. Local Optima. Neighborhood. Outline Basic Concepts in Optimization Part I Local and Global Optima Benoît Chachuat McMaster University Department of Chemical Engineering ChE G: Optimization in Chemical Engineering

More information

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems Robert M. Freund February 2016 c 2016 Massachusetts Institute of Technology. All rights reserved. 1 1 Introduction

More information

Economics 205 Exercises

Economics 205 Exercises Economics 05 Eercises Prof. Watson, Fall 006 (Includes eaminations through Fall 003) Part 1: Basic Analysis 1. Using ε and δ, write in formal terms the meaning of lim a f() = c, where f : R R.. Write the

More information

CHAPTER 7. Connectedness

CHAPTER 7. Connectedness CHAPTER 7 Connectedness 7.1. Connected topological spaces Definition 7.1. A topological space (X, T X ) is said to be connected if there is no continuous surjection f : X {0, 1} where the two point set

More information

1 Directional Derivatives and Differentiability

1 Directional Derivatives and Differentiability Wednesday, January 18, 2012 1 Directional Derivatives and Differentiability Let E R N, let f : E R and let x 0 E. Given a direction v R N, let L be the line through x 0 in the direction v, that is, L :=

More information

A note on fixed point sets in CAT(0) spaces

A note on fixed point sets in CAT(0) spaces J. Math. Anal. Appl. 320 (2006) 983 987 www.elsevier.com/locate/jmaa Note A note on fied point sets in CAT(0) spaces P. Chaoha,1, A. Phon-on Department of Mathematics, Faculty of Science, Chulalongkorn

More information

Convex Functions and Optimization

Convex Functions and Optimization Chapter 5 Convex Functions and Optimization 5.1 Convex Functions Our next topic is that of convex functions. Again, we will concentrate on the context of a map f : R n R although the situation can be generalized

More information

Lecture 7: Weak Duality

Lecture 7: Weak Duality EE 227A: Conve Optimization and Applications February 7, 2012 Lecture 7: Weak Duality Lecturer: Laurent El Ghaoui 7.1 Lagrange Dual problem 7.1.1 Primal problem In this section, we consider a possibly

More information

Review of Optimization Basics

Review of Optimization Basics Review of Optimization Basics. Introduction Electricity markets throughout the US are said to have a two-settlement structure. The reason for this is that the structure includes two different markets:

More information

Unconstrained Optimization

Unconstrained Optimization 1 / 36 Unconstrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University February 2, 2015 2 / 36 3 / 36 4 / 36 5 / 36 1. preliminaries 1.1 local approximation

More information

Preliminary draft only: please check for final version

Preliminary draft only: please check for final version ARE211, Fall2012 CALCULUS4: THU, OCT 11, 2012 PRINTED: AUGUST 22, 2012 (LEC# 15) Contents 3. Univariate and Multivariate Differentiation (cont) 1 3.6. Taylor s Theorem (cont) 2 3.7. Applying Taylor theory:

More information

9.3 Path independence

9.3 Path independence 66 CHAPTER 9. ONE DIMENSIONAL INTEGRALS IN SEVERAL VARIABLES 9.3 Path independence Note:??? lectures 9.3.1 Path independent integrals Let U R n be a set and ω a one-form defined on U, The integral of ω

More information

Chapter 2: Preliminaries and elements of convex analysis

Chapter 2: Preliminaries and elements of convex analysis Chapter 2: Preliminaries and elements of convex analysis Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Website: http://home.deib.polimi.it/amaldi/opt-14-15.shtml Academic year 2014-15

More information

The binary entropy function

The binary entropy function ECE 7680 Lecture 2 Definitions and Basic Facts Objective: To learn a bunch of definitions about entropy and information measures that will be useful through the quarter, and to present some simple but

More information

Constrained maxima and Lagrangean saddlepoints

Constrained maxima and Lagrangean saddlepoints Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analysis and Economic Theory Winter 2018 Topic 10: Constrained maxima and Lagrangean saddlepoints 10.1 An alternative As an application

More information

Inexact Solution of NLP Subproblems in MINLP

Inexact Solution of NLP Subproblems in MINLP Ineact Solution of NLP Subproblems in MINLP M. Li L. N. Vicente April 4, 2011 Abstract In the contet of conve mied-integer nonlinear programming (MINLP, we investigate how the outer approimation method

More information

MA651 Topology. Lecture 10. Metric Spaces.

MA651 Topology. Lecture 10. Metric Spaces. MA65 Topology. Lecture 0. Metric Spaces. This text is based on the following books: Topology by James Dugundgji Fundamental concepts of topology by Peter O Neil Linear Algebra and Analysis by Marc Zamansky

More information

Pessimistic Bi-Level Optimization

Pessimistic Bi-Level Optimization Pessimistic Bi-Level Optimization Wolfram Wiesemann 1, Angelos Tsoukalas,2, Polyeni-Margarita Kleniati 3, and Berç Rustem 1 1 Department of Computing, Imperial College London, UK 2 Department of Mechanical

More information

Gradient Descent. Dr. Xiaowei Huang

Gradient Descent. Dr. Xiaowei Huang Gradient Descent Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ Up to now, Three machine learning algorithms: decision tree learning k-nn linear regression only optimization objectives are discussed,

More information

2019 Spring MATH2060A Mathematical Analysis II 1

2019 Spring MATH2060A Mathematical Analysis II 1 2019 Spring MATH2060A Mathematical Analysis II 1 Notes 1. CONVEX FUNCTIONS First we define what a convex function is. Let f be a function on an interval I. For x < y in I, the straight line connecting

More information

Math 341: Convex Geometry. Xi Chen

Math 341: Convex Geometry. Xi Chen Math 341: Convex Geometry Xi Chen 479 Central Academic Building, University of Alberta, Edmonton, Alberta T6G 2G1, CANADA E-mail address: xichen@math.ualberta.ca CHAPTER 1 Basics 1. Euclidean Geometry

More information

Zangwill s Global Convergence Theorem

Zangwill s Global Convergence Theorem Zangwill s Global Convergence Theorem A theory of global convergence has been given by Zangwill 1. This theory involves the notion of a set-valued mapping, or point-to-set mapping. Definition 1.1 Given

More information

Discrete Geometry. Problem 1. Austin Mohr. April 26, 2012

Discrete Geometry. Problem 1. Austin Mohr. April 26, 2012 Discrete Geometry Austin Mohr April 26, 2012 Problem 1 Theorem 1 (Linear Programming Duality). Suppose x, y, b, c R n and A R n n, Ax b, x 0, A T y c, and y 0. If x maximizes c T x and y minimizes b T

More information

Chapter 1. Optimality Conditions: Unconstrained Optimization. 1.1 Differentiable Problems

Chapter 1. Optimality Conditions: Unconstrained Optimization. 1.1 Differentiable Problems Chapter 1 Optimality Conditions: Unconstrained Optimization 1.1 Differentiable Problems Consider the problem of minimizing the function f : R n R where f is twice continuously differentiable on R n : P

More information

EC9A0: Pre-sessional Advanced Mathematics Course. Lecture Notes: Unconstrained Optimisation By Pablo F. Beker 1

EC9A0: Pre-sessional Advanced Mathematics Course. Lecture Notes: Unconstrained Optimisation By Pablo F. Beker 1 EC9A0: Pre-sessional Advanced Mathematics Course Lecture Notes: Unconstrained Optimisation By Pablo F. Beker 1 1 Infimum and Supremum Definition 1. Fix a set Y R. A number α R is an upper bound of Y if

More information

Convex envelopes, cardinality constrained optimization and LASSO. An application in supervised learning: support vector machines (SVMs)

Convex envelopes, cardinality constrained optimization and LASSO. An application in supervised learning: support vector machines (SVMs) ORF 523 Lecture 8 Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Any typos should be emailed to a a a@princeton.edu. 1 Outline Convexity-preserving operations Convex envelopes, cardinality

More information

Basic convexity. 1.1 Convex sets and combinations. λ + μ b (λ + μ)a;

Basic convexity. 1.1 Convex sets and combinations. λ + μ b (λ + μ)a; 1 Basic convexity 1.1 Convex sets and combinations AsetA R n is convex if together with any two points x, y it contains the segment [x, y], thus if (1 λ)x + λy A for x, y A, 0 λ 1. Examples of convex sets

More information

Convex Analysis and Economic Theory Winter 2018

Convex Analysis and Economic Theory Winter 2018 Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analysis and Economic Theory Winter 2018 Topic 7: Quasiconvex Functions I 7.1 Level sets of functions For an extended real-valued

More information

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS )

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) CHAPTER : Limits and continuit of functions in R n. -. Sketch the following subsets of R. Sketch their boundar and the interior. Stud

More information

DR.RUPNATHJI( DR.RUPAK NATH )

DR.RUPNATHJI( DR.RUPAK NATH ) Contents 1 Sets 1 2 The Real Numbers 9 3 Sequences 29 4 Series 59 5 Functions 81 6 Power Series 105 7 The elementary functions 111 Chapter 1 Sets It is very convenient to introduce some notation and terminology

More information

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus 1/41 Subgradient Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes definition subgradient calculus duality and optimality conditions directional derivative Basic inequality

More information

Chebyshev Criterion. written by Oleg Ivrii

Chebyshev Criterion. written by Oleg Ivrii Chebyshev Criterion written by Oleg Ivrii Given two continuous functions f, g on an interval [a, b], we will measure their distance by taking f g = ma [a,b] f() g(). We are interested in the following

More information

Chapter 1 Preliminaries

Chapter 1 Preliminaries Chapter 1 Preliminaries 1.1 Conventions and Notations Throughout the book we use the following notations for standard sets of numbers: N the set {1, 2,...} of natural numbers Z the set of integers Q the

More information

Convex Optimization and an Introduction to Congestion Control. Lecture Notes. Fabian Wirth

Convex Optimization and an Introduction to Congestion Control. Lecture Notes. Fabian Wirth Convex Optimization and an Introduction to Congestion Control Lecture Notes Fabian Wirth August 29, 2012 ii Contents 1 Convex Sets and Convex Functions 3 1.1 Convex Sets....................................

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 13 Overview of nonlinear programming. Ann-Brith Strömberg

MVE165/MMG631 Linear and integer optimization with applications Lecture 13 Overview of nonlinear programming. Ann-Brith Strömberg MVE165/MMG631 Overview of nonlinear programming Ann-Brith Strömberg 2015 05 21 Areas of applications, examples (Ch. 9.1) Structural optimization Design of aircraft, ships, bridges, etc Decide on the material

More information

IE 521 Convex Optimization Homework #1 Solution

IE 521 Convex Optimization Homework #1 Solution IE 521 Convex Optimization Homework #1 Solution your NAME here your NetID here February 13, 2019 Instructions. Homework is due Wednesday, February 6, at 1:00pm; no late homework accepted. Please use the

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

A SET OF LECTURE NOTES ON CONVEX OPTIMIZATION WITH SOME APPLICATIONS TO PROBABILITY THEORY INCOMPLETE DRAFT. MAY 06

A SET OF LECTURE NOTES ON CONVEX OPTIMIZATION WITH SOME APPLICATIONS TO PROBABILITY THEORY INCOMPLETE DRAFT. MAY 06 A SET OF LECTURE NOTES ON CONVEX OPTIMIZATION WITH SOME APPLICATIONS TO PROBABILITY THEORY INCOMPLETE DRAFT. MAY 06 CHRISTIAN LÉONARD Contents Preliminaries 1 1. Convexity without topology 1 2. Convexity

More information

Intro to Nonlinear Optimization

Intro to Nonlinear Optimization Intro to Nonlinear Optimization We now rela the proportionality and additivity assumptions of LP What are the challenges of nonlinear programs NLP s? Objectives and constraints can use any function: ma

More information

Douglas-Rachford splitting for nonconvex feasibility problems

Douglas-Rachford splitting for nonconvex feasibility problems Douglas-Rachford splitting for nonconvex feasibility problems Guoyin Li Ting Kei Pong Jan 3, 015 Abstract We adapt the Douglas-Rachford DR) splitting method to solve nonconvex feasibility problems by studying

More information

Numerical Optimization

Numerical Optimization Constrained Optimization Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Constrained Optimization Constrained Optimization Problem: min h j (x) 0,

More information

9. Interpretations, Lifting, SOS and Moments

9. Interpretations, Lifting, SOS and Moments 9-1 Interpretations, Lifting, SOS and Moments P. Parrilo and S. Lall, CDC 2003 2003.12.07.04 9. Interpretations, Lifting, SOS and Moments Polynomial nonnegativity Sum of squares (SOS) decomposition Eample

More information

Existence and Uniqueness

Existence and Uniqueness Chapter 3 Existence and Uniqueness An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect

More information

4 Inverse function theorem

4 Inverse function theorem Tel Aviv University, 2014/15 Analysis-III,IV 71 4 Inverse function theorem 4a What is the problem................ 71 4b Simple observations before the theorem..... 72 4c The theorem.....................

More information

Lecture 6 - Convex Sets

Lecture 6 - Convex Sets Lecture 6 - Convex Sets Definition A set C R n is called convex if for any x, y C and λ [0, 1], the point λx + (1 λ)y belongs to C. The above definition is equivalent to saying that for any x, y C, the

More information

STATIC LECTURE 4: CONSTRAINED OPTIMIZATION II - KUHN TUCKER THEORY

STATIC LECTURE 4: CONSTRAINED OPTIMIZATION II - KUHN TUCKER THEORY STATIC LECTURE 4: CONSTRAINED OPTIMIZATION II - KUHN TUCKER THEORY UNIVERSITY OF MARYLAND: ECON 600 1. Some Eamples 1 A general problem that arises countless times in economics takes the form: (Verbally):

More information

Appendix A Taylor Approximations and Definite Matrices

Appendix A Taylor Approximations and Definite Matrices Appendix A Taylor Approximations and Definite Matrices Taylor approximations provide an easy way to approximate a function as a polynomial, using the derivatives of the function. We know, from elementary

More information

Set, functions and Euclidean space. Seungjin Han

Set, functions and Euclidean space. Seungjin Han Set, functions and Euclidean space Seungjin Han September, 2018 1 Some Basics LOGIC A is necessary for B : If B holds, then A holds. B A A B is the contraposition of B A. A is sufficient for B: If A holds,

More information

Economics 204 Fall 2011 Problem Set 1 Suggested Solutions

Economics 204 Fall 2011 Problem Set 1 Suggested Solutions Economics 204 Fall 2011 Problem Set 1 Suggested Solutions 1. Suppose k is a positive integer. Use induction to prove the following two statements. (a) For all n N 0, the inequality (k 2 + n)! k 2n holds.

More information

Introduction to Real Analysis Alternative Chapter 1

Introduction to Real Analysis Alternative Chapter 1 Christopher Heil Introduction to Real Analysis Alternative Chapter 1 A Primer on Norms and Banach Spaces Last Updated: March 10, 2018 c 2018 by Christopher Heil Chapter 1 A Primer on Norms and Banach Spaces

More information

2 Generating Functions

2 Generating Functions 2 Generating Functions In this part of the course, we re going to introduce algebraic methods for counting and proving combinatorial identities. This is often greatly advantageous over the method of finding

More information

THE UNIQUE MINIMAL DUAL REPRESENTATION OF A CONVEX FUNCTION

THE UNIQUE MINIMAL DUAL REPRESENTATION OF A CONVEX FUNCTION THE UNIQUE MINIMAL DUAL REPRESENTATION OF A CONVEX FUNCTION HALUK ERGIN AND TODD SARVER Abstract. Suppose (i) X is a separable Banach space, (ii) C is a convex subset of X that is a Baire space (when endowed

More information

Convexity II: Optimization Basics

Convexity II: Optimization Basics Conveity II: Optimization Basics Lecturer: Ryan Tibshirani Conve Optimization 10-725/36-725 See supplements for reviews of basic multivariate calculus basic linear algebra Last time: conve sets and functions

More information

On a Problem of Alsina Again

On a Problem of Alsina Again Journal of Mathematical Analysis and Applications 54, 67 635 00 doi:0.006 jmaa.000.768, available online at http: www.idealibrary.com on On a Problem of Alsina Again Janusz Matkowski Institute of Mathematics,

More information

Chapter 4. Measure Theory. 1. Measure Spaces

Chapter 4. Measure Theory. 1. Measure Spaces Chapter 4. Measure Theory 1. Measure Spaces Let X be a nonempty set. A collection S of subsets of X is said to be an algebra on X if S has the following properties: 1. X S; 2. if A S, then A c S; 3. if

More information

arxiv: v2 [math.oc] 31 May 2010

arxiv: v2 [math.oc] 31 May 2010 A joint+marginal algorithm for polynomial optimization Jean B. Lasserre and Tung Phan Thanh arxiv:1003.4915v2 [math.oc] 31 May 2010 Abstract We present a new algorithm for solving a polynomial program

More information

Operations Research Letters

Operations Research Letters Operations Research Letters 37 (2009) 1 6 Contents lists available at ScienceDirect Operations Research Letters journal homepage: www.elsevier.com/locate/orl Duality in robust optimization: Primal worst

More information

Bregman Divergence and Mirror Descent

Bregman Divergence and Mirror Descent Bregman Divergence and Mirror Descent Bregman Divergence Motivation Generalize squared Euclidean distance to a class of distances that all share similar properties Lots of applications in machine learning,

More information

4.3 - How Derivatives Affect the Shape of a Graph

4.3 - How Derivatives Affect the Shape of a Graph 4.3 - How Derivatives Affect the Shape of a Graph 1. Increasing and Decreasing Functions Definition: A function f is (strictly) increasing on an interval I if for every 1, in I with 1, f 1 f. A function

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Convex Optimization Fourth lecture, 05.05.2010 Jun.-Prof. Matthias Hein Reminder from last time Convex functions: first-order condition: f(y) f(x) + f x,y x, second-order

More information

Appendix PRELIMINARIES 1. THEOREMS OF ALTERNATIVES FOR SYSTEMS OF LINEAR CONSTRAINTS

Appendix PRELIMINARIES 1. THEOREMS OF ALTERNATIVES FOR SYSTEMS OF LINEAR CONSTRAINTS Appendix PRELIMINARIES 1. THEOREMS OF ALTERNATIVES FOR SYSTEMS OF LINEAR CONSTRAINTS Here we consider systems of linear constraints, consisting of equations or inequalities or both. A feasible solution

More information

Computational and Statistical Learning theory

Computational and Statistical Learning theory Computational and Statistical Learning theory Problem set 2 Due: January 31st Email solutions to : karthik at ttic dot edu Notation : Input space : X Label space : Y = {±1} Sample : (x 1, y 1,..., (x n,

More information

Chapter 1 The Real Numbers

Chapter 1 The Real Numbers Chapter 1 The Real Numbers In a beginning course in calculus, the emphasis is on introducing the techniques of the subject;i.e., differentiation and integration and their applications. An advanced calculus

More information

Disconnecting Networks via Node Deletions

Disconnecting Networks via Node Deletions 1 / 27 Disconnecting Networks via Node Deletions Exact Interdiction Models and Algorithms Siqian Shen 1 J. Cole Smith 2 R. Goli 2 1 IOE, University of Michigan 2 ISE, University of Florida 2012 INFORMS

More information

ECONOMIC OPTIMALITY. Date: October 10, 2005.

ECONOMIC OPTIMALITY. Date: October 10, 2005. ECONOMIC OPTIMALITY 1. FORMAL STATEMENT OF THE DECISION PROBLEM 1.1. Statement of the problem. ma h(, a) (1) such that G(a) This says that the problem is to maimize the function h which depends on and

More information

10. Ellipsoid method

10. Ellipsoid method 10. Ellipsoid method EE236C (Spring 2008-09) ellipsoid method convergence proof inequality constraints 10 1 Ellipsoid method history developed by Shor, Nemirovski, Yudin in 1970s used in 1979 by Khachian

More information

Econ Lecture 3. Outline. 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n

Econ Lecture 3. Outline. 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n Econ 204 2011 Lecture 3 Outline 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n 1 Metric Spaces and Metrics Generalize distance and length notions

More information

Grade 12 (MCV4UE) AP Calculus Page 1 of 5 Derivative of a Function & Differentiability

Grade 12 (MCV4UE) AP Calculus Page 1 of 5 Derivative of a Function & Differentiability Grade 2 (MCV4UE) AP Calculus Page of 5 The Derivative at a Point f ( a h) f ( a) Recall, lim provides the slope of h0 h the tangent to the graph y f ( at the point, f ( a), and the instantaneous rate of

More information

HW #1 SOLUTIONS. g(x) sin 1 x

HW #1 SOLUTIONS. g(x) sin 1 x HW #1 SOLUTIONS 1. Let f : [a, b] R and let v : I R, where I is an interval containing f([a, b]). Suppose that f is continuous at [a, b]. Suppose that lim s f() v(s) = v(f()). Using the ɛ δ definition

More information

A Note on Discrete Convexity and Local Optimality

A Note on Discrete Convexity and Local Optimality A Note on Discrete Convexity and Local Optimality Takashi Ui Faculty of Economics Yokohama National University oui@ynu.ac.jp May 2005 Abstract One of the most important properties of a convex function

More information

Introduction to Alternating Direction Method of Multipliers

Introduction to Alternating Direction Method of Multipliers Introduction to Alternating Direction Method of Multipliers Yale Chang Machine Learning Group Meeting September 29, 2016 Yale Chang (Machine Learning Group Meeting) Introduction to Alternating Direction

More information

4y Springer NONLINEAR INTEGER PROGRAMMING

4y Springer NONLINEAR INTEGER PROGRAMMING NONLINEAR INTEGER PROGRAMMING DUAN LI Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong Shatin, N. T. Hong Kong XIAOLING SUN Department of Mathematics Shanghai

More information

1 Sparsity and l 1 relaxation

1 Sparsity and l 1 relaxation 6.883 Learning with Combinatorial Structure Note for Lecture 2 Author: Chiyuan Zhang Sparsity and l relaxation Last time we talked about sparsity and characterized when an l relaxation could recover the

More information

too, of course, but is perhaps overkill here.

too, of course, but is perhaps overkill here. LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR OPTIMERING 018-01-11 kl 08-13 1. a) CQ points are shown as A and B below. Graphically: they are the only points that share the same tangent line for both active

More information

Convex Analysis Background

Convex Analysis Background Convex Analysis Background John C. Duchi Stanford University Park City Mathematics Institute 206 Abstract In this set of notes, we will outline several standard facts from convex analysis, the study of

More information

Convex Optimization Problems. Prof. Daniel P. Palomar

Convex Optimization Problems. Prof. Daniel P. Palomar Conve Optimization Problems Prof. Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST) MAFS6010R- Portfolio Optimization with R MSc in Financial Mathematics Fall 2018-19, HKUST,

More information

arxiv: v1 [math.oc] 21 Mar 2015

arxiv: v1 [math.oc] 21 Mar 2015 Convex KKM maps, monotone operators and Minty variational inequalities arxiv:1503.06363v1 [math.oc] 21 Mar 2015 Marc Lassonde Université des Antilles, 97159 Pointe à Pitre, France E-mail: marc.lassonde@univ-ag.fr

More information

1 Examples of Weak Induction

1 Examples of Weak Induction More About Mathematical Induction Mathematical induction is designed for proving that a statement holds for all nonnegative integers (or integers beyond an initial one). Here are some extra examples of

More information

1 Lesson 1: Brunn Minkowski Inequality

1 Lesson 1: Brunn Minkowski Inequality 1 Lesson 1: Brunn Minkowski Inequality A set A R n is called convex if (1 λ)x + λy A for any x, y A and any λ [0, 1]. The Minkowski sum of two sets A, B R n is defined by A + B := {a + b : a A, b B}. One

More information

Using quadratic convex reformulation to tighten the convex relaxation of a quadratic program with complementarity constraints

Using quadratic convex reformulation to tighten the convex relaxation of a quadratic program with complementarity constraints Noname manuscript No. (will be inserted by the editor) Using quadratic conve reformulation to tighten the conve relaation of a quadratic program with complementarity constraints Lijie Bai John E. Mitchell

More information

Optimality conditions for unconstrained optimization. Outline

Optimality conditions for unconstrained optimization. Outline Optimality conditions for unconstrained optimization Daniel P. Robinson Department of Applied Mathematics and Statistics Johns Hopkins University September 13, 2018 Outline 1 The problem and definitions

More information

Duality Theory of Constrained Optimization

Duality Theory of Constrained Optimization Duality Theory of Constrained Optimization Robert M. Freund April, 2014 c 2014 Massachusetts Institute of Technology. All rights reserved. 1 2 1 The Practical Importance of Duality Duality is pervasive

More information

Entropy-Preserving Cuttings and Space-Efficient Planar Point Location

Entropy-Preserving Cuttings and Space-Efficient Planar Point Location Appeared in ODA 2001, pp. 256-261. Entropy-Preserving Cuttings and pace-efficient Planar Point Location unil Arya Theocharis Malamatos David M. Mount Abstract Point location is the problem of preprocessing

More information

Convex Analysis and Economic Theory AY Elementary properties of convex functions

Convex Analysis and Economic Theory AY Elementary properties of convex functions Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analysis and Economic Theory AY 2018 2019 Topic 6: Convex functions I 6.1 Elementary properties of convex functions We may occasionally

More information

Some topics in analysis related to Banach algebras, 2

Some topics in analysis related to Banach algebras, 2 Some topics in analysis related to Banach algebras, 2 Stephen Semmes Rice University... Abstract Contents I Preliminaries 3 1 A few basic inequalities 3 2 q-semimetrics 4 3 q-absolute value functions 7

More information

A notion of Total Dual Integrality for Convex, Semidefinite and Extended Formulations

A notion of Total Dual Integrality for Convex, Semidefinite and Extended Formulations A notion of for Convex, Semidefinite and Extended Formulations Marcel de Carli Silva Levent Tunçel April 26, 2018 A vector in R n is integral if each of its components is an integer, A vector in R n is

More information

Written Assignment #1 - SOLUTIONS

Written Assignment #1 - SOLUTIONS Written Assignment #1 - SOLUTIONS Question 1. Use the definitions of continuity and differentiability to prove that the function { cos(1/) if 0 f() = 0 if = 0 is continuous at 0 but not differentiable

More information

ON A CLASS OF NONCONVEX PROBLEMS WHERE ALL LOCAL MINIMA ARE GLOBAL. Leo Liberti

ON A CLASS OF NONCONVEX PROBLEMS WHERE ALL LOCAL MINIMA ARE GLOBAL. Leo Liberti PUBLICATIONS DE L INSTITUT MATHÉMATIQUE Nouvelle série, tome 76(90) (2004), 0 09 ON A CLASS OF NONCONVEX PROBLEMS WHERE ALL LOCAL MINIMA ARE GLOBAL Leo Liberti Communicated by Gradimir Milovanović Abstract.

More information

Lecture notes on the ellipsoid algorithm

Lecture notes on the ellipsoid algorithm Massachusetts Institute of Technology Handout 1 18.433: Combinatorial Optimization May 14th, 007 Michel X. Goemans Lecture notes on the ellipsoid algorithm The simplex algorithm was the first algorithm

More information

Computational Optimization. Convexity and Unconstrained Optimization 1/29/08 and 2/1(revised)

Computational Optimization. Convexity and Unconstrained Optimization 1/29/08 and 2/1(revised) Computational Optimization Convexity and Unconstrained Optimization 1/9/08 and /1(revised) Convex Sets A set S is convex if the line segment joining any two points in the set is also in the set, i.e.,

More information

On Conics in Minkowski Planes

On Conics in Minkowski Planes E etracta mathematicae Vol. 27, Núm. 1, 13 29 (2012) On Conics in Minkowski Planes Andreas Fankhänel Faculty of Mathematics, University of Technology Chemnitz, 09107 Chemnitz, Germany andreas.fankhaenel@mathematik.tu-chemnitz.de

More information

OPTIMISATION 3: NOTES ON THE SIMPLEX ALGORITHM

OPTIMISATION 3: NOTES ON THE SIMPLEX ALGORITHM OPTIMISATION 3: NOTES ON THE SIMPLEX ALGORITHM Abstract These notes give a summary of the essential ideas and results It is not a complete account; see Winston Chapters 4, 5 and 6 The conventions and notation

More information