9.3 Path independence

Size: px
Start display at page:

Download "9.3 Path independence"

Transcription

1 66 CHAPTER 9. ONE DIMENSIONAL INTEGRALS IN SEVERAL VARIABLES 9.3 Path independence Note:??? lectures Path independent integrals Let U R n be a set and ω a one-form defined on U, The integral of ω is said to be path independent if for any two points,y U and any two piecewise smooth paths : [a,b] U and : [c,d] U such that (a = (c = and (b = (d = y we have In this case we simply write y ω = ω = ω = Not every one-form gives a path independent integral. In fact, most do not. Eample 9.3.1: Let : [,1] R 2 be the path (t = (t, going from (, to (1,. : [,1] R 2 be the path (t = ( t,(1 tt also going between the same points. Then Let yd = yd = (t 1(tdt 2 (t 1(tdt 1 (1dt =, (1 tt(1dt = 1 6. So the integral of yd is not path independent. In particular, (1, yd does not make sense. (, Definition Let U R n be an open set and f : U R a continuously differentiable function. Then the one-form d f := f d 1 + f d f d n 1 2 n is called the total derivative of f. An open set U R n is said to be path connected if for every two points and y in U, there eists a piecewise smooth path starting at and ending at y. We will leave as an eercise that every connected open set is path connected. Normally only a continuous path is used in this definition, but for open sets two two definitions are equivalent. See the eercises.

2 9.3. PATH INDEPENDENCE 67 Proposition Let U R n be a path connected open set and ω a one-form defined on U. Then y ω is path independent (for all,y U if and only if there eists a continuously differentiable f : U R such that ω = d f. In fact, if such an f eists, then for any two points,y U y ω = f (y f (. In other words if we fi, then f ( = C + Proof. First suppose that the integral is path independent. Pick U and define f ( = Let e j be an arbitrary standard basis vector. Compute f ( + he j f ( = 1 ( +he j ω h h ω = 1 h +he j which follows by Proposition and path indepdendence as +he j ω = ω + +he j Write ω = ω 1 d 1 +ω 2 d 2 + +ω n d n. Now pick the simplest path possible from to +he j, that is (t = +the j for t [,1]. Notice that (t has only a simple nonzero component and that is the jth component which is h. Therefore +he j 1 1 ω = 1 ω j ( +the j hdt = ω j ( +the j dt. h h We wish to take the limit as h. The function ω j is continuous. So given ε >, h can be small enough so that ω( ω j ( +the j < ε. Therefore for such small h we find that 1 ω j ( +the j dt ω( < ε. That is f ( + he j f ( lim = ω j (, h h which is what we wanted that is d f = As ω j are continuous for all j, we find that f has continuous partial derivatives and therefore is continuously differentiable. For the other direction suppose f eists such that d f = Suppose we take a smooth path : [a,b] U such that (a = and (b = y, then b ( f ( d f = (t a 1 (t + f ( (t 1 2 (t + + f 2 b d [ ( ] = f (t dt a dt = f (y f (. 1 ω, ( (t n (t n dt

3 68 CHAPTER 9. ONE DIMENSIONAL INTEGRALS IN SEVERAL VARIABLES The value of the integral only depends on and y, not the path taken. Therefore the integral is path independent. We leave checking this for a piecewise smooth path as an eercise to the reader. Proposition Let U R n be a path connected open set and ω a 1-form defined on U. Then ω = d f for some continuously differentiable f : U : R if and only if ω = for every piecewise smooth closed path : [a,b] U. Proof. Suppose first that ω = d f and let be a piecewise smooth closed path. Then we from above we have that ω = f ( (b f ( (a =, because (a = (b for a closed path. Now suppose that for every piecewise smooth closed path, ω =. Let,y be two points in U and let α : [,1] U and : [,1] U be two piecewise smooth paths with α( = ( = and α(1 = (1 = y. Then let : [,2] U be defined by { α(t if t [,1], (t := (2 t if t (1,2]. This is a piecewise smooth closed path and so = ω = α ω This follows first by Proposition 9.2.1, and then noticing that the second part is travelled backwards so that we get minus the integral. Thus the integral of ω on U is path independent. There is a local criterion, that is a differential equation, that guarantees path independence. That is, under the right condition there eists an antiderivative f whose total derivative is the given one form However, since the criterion is local, we only get the result locally. We can define the antiderivative in any so-called simply connected domain, which informally is a domain where any path between two points can be continuously deformed into any other path between those two points. To make matters simple, the usual way this result is proved is for so-called star-shaped domains. Definition Let U R n be an open set and U. We say U is a star shaped domain with respect to if for any other point U, the line segment between and is in U, that is, if (1 t +t U for all t [,1]. If we say simply star shaped then U is star shaped with respect to some U.

4 9.3. PATH INDEPENDENCE 69 Notice the difference between star shaped and conve. A conve domain is star shaped, but a star shaped domain need not be conve. Theorem (Poincarè lemma. Let U R n be a star shaped domain and ω a continuously differentiable one-form defined on U. That is, if ω = ω 1 d 1 + ω 2 d ω n d n, then ω 1,ω 2,...,ω n are continuously differentiable functions. Suppose that for every j and k ω j k = ω k j, then there eists a twice continuously differentiable function f : U R such that d f = The condition on the derivatives of ω is precisely the condition that the second partial derivatives commute. That is, if d f = ω, then ω j = 2 f. k k j Proof. Suppose U is star shaped with respect to y = (y 1,y 2,...,y n U. Given = ( 1, 2,..., n U, define the path : [,1] U as (t = (1 ty +t, so (t = y. Then let f ( = ω = 1 ( n ( ω k (1 ty +t (yk k k=1 Now we can differentiate in j under the integral. We can do that since everything, including the partials themselves are continuous. (( f 1 n ω k ( ( ( = (1 ty +t t(yk k ω j (1 ty +t dt j k=1 j (( 1 n ω j ( ( = (1 ty +t t(yk k ω j (1 ty +t dt k=1 k 1 d [ ( ] = tω j (1 ty +t dt dt = ω j (. And this is precisely what we wanted. Eample 9.3.7: Without some hypothesis on U the theorem is not true. Let ω(,y = y 2 + y 2 d y 2 dy dt

5 7 CHAPTER 9. ONE DIMENSIONAL INTEGRALS IN SEVERAL VARIABLES be defined on R 2 \ {}. It is easy to see that [ ] y y 2 + y 2 = [ 2 + y 2 However, there is no f : R 2 \ {} R such that d f = We saw in if we integrate from (1, to (1, along the unit circle, that is (t = ( cos(t,sin(t for t [,2π] we got 2π and not as it should be if the integral is path independent or in other words if there would eist an f such that d f = ] Vector fields A common object to integrate is a so-called vector field. That is an assignment of a vector at each point of a domain. Definition Let U R n be a set. A continuous function v: U R n is called a vector field. Write v = (v 1,v 2,...,v n Given a smooth path : [a,b] R n with ( [a,b] U we define the path integral of the vectorfield v as b v d := v ( (t (tdt, a where the dot in the definition is the standard dot product. Again the definition of a piecewise smooth path is done by integrating over each smooth interval and adding the result. If we unravel the definition we find that v d = v 1 d 1 + v 2 d v n d n. Therefore what we know about integration of one-forms carries over to the integration of vector fields. For eample path independence for integration of vector fields is simply that y v d is path independent (so for any if and only if v = f, that is the gradient of a function. The function f is then called the potential for v. A vector field v whose path integrals are path independent is called a conservative vector field. The naming comes from the fact that such vector fields arise in physical systems where a certain quantity, the energy is conserved.

6 9.3. PATH INDEPENDENCE Eercises Eercise 9.3.1: Find an f : R 2 R such that d f = e 2 +y 2 d + ye 2 +y 2 dy. Eercise 9.3.2: Finish the proof of Proposition 9.3.3, that is, we only proved the second direction for a smooth path, not a piecewise smooth path. Eercise 9.3.3: Show that a star shaped domain U R n is path connected. Eercise 9.3.4: Show that U := R 2 \{(,y R 2 :,y = } is star shaped and find all points (,y U such that U is star shaped with respect to (,y. Eercise 9.3.5: Let : [a,b] R n be a simple nonclosed path (so is one-to-one. Suppose that ω is a continuously differentiable one-form defined on some open set V with ( [a,b] V and ω j k = ω k j for all j and k. Prove that there eists an open set U with ( [a,b] U V and a twice continuously differentiable function f : U R such that d f = Hint 1: ( [a,b] is compact. Hint 2: Piecing together several different functions f can be tricky, but notice that the intersection of any number of balls is always conve as balls are conve, and conve sets are in particular connected (path connected. Eercise 9.3.6: a Show that a connected open set is path connected. Hint: Start with two points and y in a connected set U, and let U U is the set of points that are reachable by a path from and similarly for U y. Show that both sets are open, since they are nonempty ( U and y U y it must be that U = U y = U. b Prove the converse that is, a path connected set U R n is connected. Hint: for contradiction assume there eist two open and disjoint nonempty open sets and then assume there is a piecewise smooth (and therefore continuous path between a point in one to a point in the other. Eercise 9.3.7: Usually path connectedness is defined using just continuous paths rather than piecewise smooth paths. Prove that the definitions are equivalent, in other words prove the following statement: Suppose U R n is such that for any,y U, there eists a continuous function : [a,b] U such that (a = and (b = y. Then U is path connected (in other words, then there eists a piecewise smooth path. Eercise (Hard: Take ω(,y = y 2 + y 2 d y 2 dy defined on R 2 \ {(,}. Let : [a,b] R 2 \ {(,} be a closed piecewise smooth path. Let R := {(,y R 2 : and y = }. Suppose that R ( [a,b] is a finite set of k points. Then ω = 2πl for some integer l with l k. Hint 1: First prove that for a path that starts and end on R but does not intersect it otherwise, you find that ω is 2π,, or 2π. Hint 2: You proved above that R2 \ R is star shaped. Note: The number l is called the winding number it it measures how many times does wind around the origin in the clockwise direction.

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer.

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer. Problem Sheet,. i) Draw the graphs for [] and {}. ii) Show that for α R, α+ α [t] dt = α and α+ α {t} dt =. Hint Split these integrals at the integer which must lie in any interval of length, such as [α,

More information

The fundamental theorem of calculus for definite integration helped us to compute If has an anti-derivative,

The fundamental theorem of calculus for definite integration helped us to compute If has an anti-derivative, Module 16 : Line Integrals, Conservative fields Green's Theorem and applications Lecture 47 : Fundamental Theorems of Calculus for Line integrals [Section 47.1] Objectives In this section you will learn

More information

Green s Theorem in the Plane

Green s Theorem in the Plane hapter 6 Green s Theorem in the Plane Introduction Recall the following special case of a general fact proved in the previous chapter. Let be a piecewise 1 plane curve, i.e., a curve in R defined by a

More information

A CURL-FREE VECTOR FIELD THAT IS NOT A GRADIENT. Robert L. Foote. Math 225

A CURL-FREE VECTOR FIELD THAT IS NOT A GRADIENT. Robert L. Foote. Math 225 A URL-FREE VETOR FIELD THAT IS NOT A GRADIENT Robert L. Foote Math 225 Recall our main theorem about vector fields. Theorem. Let R be an open region in E 2 and let F be a vector field on R. The following

More information

AP Calculus BC : The Fundamental Theorem of Calculus

AP Calculus BC : The Fundamental Theorem of Calculus AP Calculus BC 415 5.3: The Fundamental Theorem of Calculus Tuesday, November 5, 008 Homework Answers 6. (a) approimately 0.5 (b) approimately 1 (c) approimately 1.75 38. 4 40. 5 50. 17 Introduction In

More information

Green s Theorem in the Plane

Green s Theorem in the Plane hapter 6 Green s Theorem in the Plane Recall the following special case of a general fact proved in the previous chapter. Let be a piecewise 1 plane curve, i.e., a curve in R defined by a piecewise 1 -function

More information

Vector-Valued Functions

Vector-Valued Functions Vector-Valued Functions 1 Parametric curves 8 ' 1 6 1 4 8 1 6 4 1 ' 4 6 8 Figure 1: Which curve is a graph of a function? 1 4 6 8 1 8 1 6 4 1 ' 4 6 8 Figure : A graph of a function: = f() 8 ' 1 6 4 1 1

More information

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li 1 L Hospital s Rule Another useful application of mean value theorems is L Hospital s Rule. It helps us to evaluate its of indeterminate

More information

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math 44 Activity (Due by end of class July 3) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

Math 320-2: Final Exam Practice Solutions Northwestern University, Winter 2015

Math 320-2: Final Exam Practice Solutions Northwestern University, Winter 2015 Math 30-: Final Exam Practice Solutions Northwestern University, Winter 015 1. Give an example of each of the following. No justification is needed. (a) A closed and bounded subset of C[0, 1] which is

More information

Review Questions for Test 3 Hints and Answers

Review Questions for Test 3 Hints and Answers eview Questions for Test 3 Hints and Answers A. Some eview Questions on Vector Fields and Operations. A. (a) The sketch is left to the reader, but the vector field appears to swirl in a clockwise direction,

More information

Slopes and Rates of Change

Slopes and Rates of Change Slopes and Rates of Change If a particle is moving in a straight line at a constant velocity, then the graph of the function of distance versus time is as follows s s = f(t) t s s t t = average velocity

More information

In last semester, we have seen some examples about it (See Tutorial Note #13). Try to have a look on that. Here we try to show more technique.

In last semester, we have seen some examples about it (See Tutorial Note #13). Try to have a look on that. Here we try to show more technique. MATH202 Introduction to Analysis (2007 Fall and 2008 Spring) Tutorial Note #4 Part I: Cauchy Sequence Definition (Cauchy Sequence): A sequence of real number { n } is Cauchy if and only if for any ε >

More information

MA2223 Tutorial solutions Part 1. Metric spaces

MA2223 Tutorial solutions Part 1. Metric spaces MA2223 Tutorial solutions Part 1. Metric spaces T1 1. Show that the function d(,y) = y defines a metric on R. The given function is symmetric and non-negative with d(,y) = 0 if and only if = y. It remains

More information

USING THE RANDOM ITERATION ALGORITHM TO CREATE FRACTALS

USING THE RANDOM ITERATION ALGORITHM TO CREATE FRACTALS USING THE RANDOM ITERATION ALGORITHM TO CREATE FRACTALS UNIVERSITY OF MARYLAND DIRECTED READING PROGRAM FALL 205 BY ADAM ANDERSON THE SIERPINSKI GASKET 2 Stage 0: A 0 = 2 22 A 0 = Stage : A = 2 = 4 A

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES. 1. Compact Sets

FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES. 1. Compact Sets FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES CHRISTOPHER HEIL 1. Compact Sets Definition 1.1 (Compact and Totally Bounded Sets). Let X be a metric space, and let E X be

More information

20th Bay Area Mathematical Olympiad. BAMO 2018 Problems and Solutions. February 27, 2018

20th Bay Area Mathematical Olympiad. BAMO 2018 Problems and Solutions. February 27, 2018 20th Bay Area Mathematical Olympiad BAMO 201 Problems and Solutions The problems from BAMO- are A E, and the problems from BAMO-12 are 1 5. February 27, 201 A Twenty-five people of different heights stand

More information

Chapter 3a Topics in differentiation. Problems in differentiation. Problems in differentiation. LC Abueg: mathematical economics

Chapter 3a Topics in differentiation. Problems in differentiation. Problems in differentiation. LC Abueg: mathematical economics Chapter 3a Topics in differentiation Lectures in Mathematical Economics L Cagandahan Abueg De La Salle University School of Economics Problems in differentiation Problems in differentiation Problem 1.

More information

Limits and the derivative function. Limits and the derivative function

Limits and the derivative function. Limits and the derivative function The Velocity Problem A particle is moving in a straight line. t is the time that has passed from the start of motion (which corresponds to t = 0) s(t) is the distance from the particle to the initial position

More information

3 COUNTABILITY AND CONNECTEDNESS AXIOMS

3 COUNTABILITY AND CONNECTEDNESS AXIOMS 3 COUNTABILITY AND CONNECTEDNESS AXIOMS Definition 3.1 Let X be a topological space. A subset D of X is dense in X iff D = X. X is separable iff it contains a countable dense subset. X satisfies the first

More information

Large subsets of semigroups

Large subsets of semigroups CHAPTER 8 Large subsets of semigroups In the van der Waerden theorem 7.5, we are given a finite colouring ω = A 1 A r of the commutative semigroup (ω, +); the remark 7.7(b) states that (at least) one of

More information

Solution to Exercise 3

Solution to Exercise 3 Spring 207 MATH502 Real Analysis II Solution to Eercise 3 () For a, b > 0, set a sin( b ), 0 < f() = 0, = 0. nπ+π/2 Show that f is in BV [0, ] iff a > b. ( ) b Solution. Put n = for n 0. We claim that

More information

Math 421, Homework #9 Solutions

Math 421, Homework #9 Solutions Math 41, Homework #9 Solutions (1) (a) A set E R n is said to be path connected if for any pair of points x E and y E there exists a continuous function γ : [0, 1] R n satisfying γ(0) = x, γ(1) = y, and

More information

Rose-Hulman Undergraduate Mathematics Journal

Rose-Hulman Undergraduate Mathematics Journal Rose-Hulman Undergraduate Mathematics Journal Volume 17 Issue 1 Article 5 Reversing A Doodle Bryan A. Curtis Metropolitan State University of Denver Follow this and additional works at: http://scholar.rose-hulman.edu/rhumj

More information

Lecture 3: September 10

Lecture 3: September 10 CS294 Markov Chain Monte Carlo: Foundations & Applications Fall 2009 Lecture 3: September 10 Lecturer: Prof. Alistair Sinclair Scribes: Andrew H. Chan, Piyush Srivastava Disclaimer: These notes have not

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

LECTURE 15: COMPLETENESS AND CONVEXITY

LECTURE 15: COMPLETENESS AND CONVEXITY LECTURE 15: COMPLETENESS AND CONVEXITY 1. The Hopf-Rinow Theorem Recall that a Riemannian manifold (M, g) is called geodesically complete if the maximal defining interval of any geodesic is R. On the other

More information

POWER SERIES AND ANALYTIC CONTINUATION

POWER SERIES AND ANALYTIC CONTINUATION POWER SERIES AND ANALYTIC CONTINUATION 1. Analytic functions Definition 1.1. A function f : Ω C C is complex-analytic if for each z 0 Ω there exists a power series f z0 (z) := a n (z z 0 ) n which converges

More information

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1.

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1. Sep. 1 9 Intuitively, the solution u to the Poisson equation S chauder Theory u = f 1 should have better regularity than the right hand side f. In particular one expects u to be twice more differentiable

More information

HW 4 SOLUTIONS. , x + x x 1 ) 2

HW 4 SOLUTIONS. , x + x x 1 ) 2 HW 4 SOLUTIONS The Way of Analysis p. 98: 1.) Suppose that A is open. Show that A minus a finite set is still open. This follows by induction as long as A minus one point x is still open. To see that A

More information

Many of you got these steps reversed or otherwise out of order.

Many of you got these steps reversed or otherwise out of order. Problem 1. Let (X, d X ) and (Y, d Y ) be metric spaces. Suppose that there is a bijection f : X Y such that for all x 1, x 2 X. 1 10 d X(x 1, x 2 ) d Y (f(x 1 ), f(x 2 )) 10d X (x 1, x 2 ) Show that if

More information

Math 2414 Activity 1 (Due by end of class Jan. 26) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class Jan. 26) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math Activity (Due by end of class Jan. 6) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

Problem Set 9 Solutions

Problem Set 9 Solutions 8.4 Problem Set 9 Solutions Total: 4 points Problem : Integrate (a) (b) d. ( 4 + 4)( 4 + 5) d 4. Solution (4 points) (a) We use the method of partial fractions to write A B (C + D) = + +. ( ) ( 4 + 5)

More information

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ).

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ). Connectedness 1 Motivation Connectedness is the sort of topological property that students love. Its definition is intuitive and easy to understand, and it is a powerful tool in proofs of well-known results.

More information

1 Convexity, Convex Relaxations, and Global Optimization

1 Convexity, Convex Relaxations, and Global Optimization 1 Conveity, Conve Relaations, and Global Optimization Algorithms 1 1.1 Minima Consider the nonlinear optimization problem in a Euclidean space: where the feasible region. min f(), R n Definition (global

More information

Topic 3 Notes Jeremy Orloff

Topic 3 Notes Jeremy Orloff Topic 3 Notes Jerem Orloff 3 Line integrals and auch s theorem 3.1 Introduction The basic theme here is that comple line integrals will mirror much of what we ve seen for multivariable calculus line integrals.

More information

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t Analysis Comprehensive Exam Questions Fall 2. Let f L 2 (, ) be given. (a) Prove that ( x 2 f(t) dt) 2 x x t f(t) 2 dt. (b) Given part (a), prove that F L 2 (, ) 2 f L 2 (, ), where F(x) = x (a) Using

More information

1 Directional Derivatives and Differentiability

1 Directional Derivatives and Differentiability Wednesday, January 18, 2012 1 Directional Derivatives and Differentiability Let E R N, let f : E R and let x 0 E. Given a direction v R N, let L be the line through x 0 in the direction v, that is, L :=

More information

1998 AP Calculus AB: Section I, Part A

1998 AP Calculus AB: Section I, Part A 998 AP Calculus AB: 55 Minutes No Calculator Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number.. What is the -coordinate

More information

Lecture notes: Introduction to Partial Differential Equations

Lecture notes: Introduction to Partial Differential Equations Lecture notes: Introduction to Partial Differential Equations Sergei V. Shabanov Department of Mathematics, University of Florida, Gainesville, FL 32611 USA CHAPTER 1 Classification of Partial Differential

More information

3 Contour integrals and Cauchy s Theorem

3 Contour integrals and Cauchy s Theorem 3 ontour integrals and auchy s Theorem 3. Line integrals of complex functions Our goal here will be to discuss integration of complex functions = u + iv, with particular regard to analytic functions. Of

More information

1969 AP Calculus BC: Section I

1969 AP Calculus BC: Section I 969 AP Calculus BC: Section I 9 Minutes No Calculator Note: In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e).. t The asymptotes of the graph of the parametric

More information

Solutions Quiz 9 Nov. 8, Prove: If a, b, m are integers such that 2a + 3b 12m + 1, then a 3m + 1 or b 2m + 1.

Solutions Quiz 9 Nov. 8, Prove: If a, b, m are integers such that 2a + 3b 12m + 1, then a 3m + 1 or b 2m + 1. Solutions Quiz 9 Nov. 8, 2010 1. Prove: If a, b, m are integers such that 2a + 3b 12m + 1, then a 3m + 1 or b 2m + 1. Answer. We prove the contrapositive. Suppose a, b, m are integers such that a < 3m

More information

To hand in: (a) Prove that a group G is abelian (= commutative) if and only if (xy) 2 = x 2 y 2 for all x, y G.

To hand in: (a) Prove that a group G is abelian (= commutative) if and only if (xy) 2 = x 2 y 2 for all x, y G. Homework #6. Due Thursday, October 14th Reading: For this homework assignment: Sections 3.3 and 3.4 (up to page 167) Before the class next Thursday: Sections 3.5 and 3.4 (pp. 168-171). Also review the

More information

Homework 1 (revised) Solutions

Homework 1 (revised) Solutions Homework 1 (revised) Solutions 1. Textbook, 1.1.1, # 1.1.2 (p. 24) Let S be an ordered set. Let A be a non-empty finite subset. Then A is bounded and sup A, inf A A Solution. The hint was: Use induction,

More information

CHAPTER 7. Connectedness

CHAPTER 7. Connectedness CHAPTER 7 Connectedness 7.1. Connected topological spaces Definition 7.1. A topological space (X, T X ) is said to be connected if there is no continuous surjection f : X {0, 1} where the two point set

More information

I. The space C(K) Let K be a compact metric space, with metric d K. Let B(K) be the space of real valued bounded functions on K with the sup-norm

I. The space C(K) Let K be a compact metric space, with metric d K. Let B(K) be the space of real valued bounded functions on K with the sup-norm I. The space C(K) Let K be a compact metric space, with metric d K. Let B(K) be the space of real valued bounded functions on K with the sup-norm Proposition : B(K) is complete. f = sup f(x) x K Proof.

More information

2.31 Definition By an open cover of a set E in a metric space X we mean a collection {G α } of open subsets of X such that E α G α.

2.31 Definition By an open cover of a set E in a metric space X we mean a collection {G α } of open subsets of X such that E α G α. Chapter 2. Basic Topology. 2.3 Compact Sets. 2.31 Definition By an open cover of a set E in a metric space X we mean a collection {G α } of open subsets of X such that E α G α. 2.32 Definition A subset

More information

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that 1 Stokes s Theorem Let D R 2 be a connected compact smooth domain, so that D is a smooth embedded circle. Given a smooth function f : D R, define fdx dy fdxdy, D where the left-hand side is the integral

More information

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA address:

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA  address: Topology Xiaolong Han Department of Mathematics, California State University, Northridge, CA 91330, USA E-mail address: Xiaolong.Han@csun.edu Remark. You are entitled to a reward of 1 point toward a homework

More information

2. The Concept of Convergence: Ultrafilters and Nets

2. The Concept of Convergence: Ultrafilters and Nets 2. The Concept of Convergence: Ultrafilters and Nets NOTE: AS OF 2008, SOME OF THIS STUFF IS A BIT OUT- DATED AND HAS A FEW TYPOS. I WILL REVISE THIS MATE- RIAL SOMETIME. In this lecture we discuss two

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenourseWare http://ocw.mit.edu 18.02 Multivariable alculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.02 Lecture 21. Test for

More information

ERRATA MATHEMATICS FOR THE INTERNATIONAL STUDENT MATHEMATICS HL (CORE) (2nd edition)

ERRATA MATHEMATICS FOR THE INTERNATIONAL STUDENT MATHEMATICS HL (CORE) (2nd edition) ERRATA MATHEMATICS FOR THE INTERNATIONAL STUDENT MATHEMATICS HL (CORE) (nd edition) Second edition - 010 reprint page 95 TEXT last paragraph on the page should read: e is a special number in mathematics.

More information

4 Inverse function theorem

4 Inverse function theorem Tel Aviv University, 2014/15 Analysis-III,IV 71 4 Inverse function theorem 4a What is the problem................ 71 4b Simple observations before the theorem..... 72 4c The theorem.....................

More information

CHAPTER 3 Further properties of splines and B-splines

CHAPTER 3 Further properties of splines and B-splines CHAPTER 3 Further properties of splines and B-splines In Chapter 2 we established some of the most elementary properties of B-splines. In this chapter our focus is on the question What kind of functions

More information

Second Order Optimality Conditions for Constrained Nonlinear Programming

Second Order Optimality Conditions for Constrained Nonlinear Programming Second Order Optimality Conditions for Constrained Nonlinear Programming Lecture 10, Continuous Optimisation Oxford University Computing Laboratory, HT 2006 Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

More information

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key NAME: Mathematics 205A, Fall 2008, Final Examination Answer Key 1 1. [25 points] Let X be a set with 2 or more elements. Show that there are topologies U and V on X such that the identity map J : (X, U)

More information

Introduction to Real Analysis Alternative Chapter 1

Introduction to Real Analysis Alternative Chapter 1 Christopher Heil Introduction to Real Analysis Alternative Chapter 1 A Primer on Norms and Banach Spaces Last Updated: March 10, 2018 c 2018 by Christopher Heil Chapter 1 A Primer on Norms and Banach Spaces

More information

(x k ) sequence in F, lim x k = x x F. If F : R n R is a function, level sets and sublevel sets of F are any sets of the form (respectively);

(x k ) sequence in F, lim x k = x x F. If F : R n R is a function, level sets and sublevel sets of F are any sets of the form (respectively); STABILITY OF EQUILIBRIA AND LIAPUNOV FUNCTIONS. By topological properties in general we mean qualitative geometric properties (of subsets of R n or of functions in R n ), that is, those that don t depend

More information

An introduction to Mathematical Theory of Control

An introduction to Mathematical Theory of Control An introduction to Mathematical Theory of Control Vasile Staicu University of Aveiro UNICA, May 2018 Vasile Staicu (University of Aveiro) An introduction to Mathematical Theory of Control UNICA, May 2018

More information

Devil s Staircase Rotation Number of Outer Billiard with Polygonal Invariant Curves

Devil s Staircase Rotation Number of Outer Billiard with Polygonal Invariant Curves Devil s Staircase Rotation Number of Outer Billiard with Polygonal Invariant Curves Zijian Yao February 10, 2014 Abstract In this paper, we discuss rotation number on the invariant curve of a one parameter

More information

Metric Spaces Lecture 17

Metric Spaces Lecture 17 Metric Spaces Lecture 17 Homeomorphisms At the end of last lecture an example was given of a bijective continuous function f such that f 1 is not continuous. For another example, consider the sets T =

More information

1 Continuity and Limits of Functions

1 Continuity and Limits of Functions Week 4 Summary This week, we will move on from our discussion of sequences and series to functions. Even though sequences and functions seem to be very different things, they very similar. In fact, we

More information

1998 AP Calculus AB: Section I, Part A

1998 AP Calculus AB: Section I, Part A 55 Minutes No Calculator Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number.. What is the -coordinate of the point

More information

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5 MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5.. The Arzela-Ascoli Theorem.. The Riemann mapping theorem Let X be a metric space, and let F be a family of continuous complex-valued functions on X. We have

More information

Hungry, Hungry Homology

Hungry, Hungry Homology September 27, 2017 Motiving Problem: Algebra Problem (Preliminary Version) Given two groups A, C, does there exist a group E so that A E and E /A = C? If such an group exists, we call E an extension of

More information

Mid Term-1 : Practice problems

Mid Term-1 : Practice problems Mid Term-1 : Practice problems These problems are meant only to provide practice; they do not necessarily reflect the difficulty level of the problems in the exam. The actual exam problems are likely to

More information

n and C and D be positive constants so that nn 1

n and C and D be positive constants so that nn 1 Math Activity 0 (Due by end of class August 6). The graph of the equation y is called an astroid. a) Find the length of this curve. {Hint: One-fourth of the curve is given by the graph of y for 0.} b)

More information

Lebesgue Measure. Dung Le 1

Lebesgue Measure. Dung Le 1 Lebesgue Measure Dung Le 1 1 Introduction How do we measure the size of a set in IR? Let s start with the simplest ones: intervals. Obviously, the natural candidate for a measure of an interval is its

More information

WORKSHEET #13 MATH 1260 FALL 2014

WORKSHEET #13 MATH 1260 FALL 2014 WORKSHEET #3 MATH 26 FALL 24 NOT DUE. Short answer: (a) Find the equation of the tangent plane to z = x 2 + y 2 at the point,, 2. z x (, ) = 2x = 2, z y (, ) = 2y = 2. So then the tangent plane equation

More information

Operators. Pontus Giselsson

Operators. Pontus Giselsson Operators Pontus Giselsson 1 Today s lecture forward step operators gradient step operators (subclass of forward step operators) resolvents proimal operators (subclass of resolvents) reflected resolvents

More information

Homework 5. Solutions

Homework 5. Solutions Homework 5. Solutions 1. Let (X,T) be a topological space and let A,B be subsets of X. Show that the closure of their union is given by A B = A B. Since A B is a closed set that contains A B and A B is

More information

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X. Math 6342/7350: Topology and Geometry Sample Preliminary Exam Questions 1. For each of the following topological spaces X i, determine whether X i and X i X i are homeomorphic. (a) X 1 = [0, 1] (b) X 2

More information

Notes for Functional Analysis

Notes for Functional Analysis Notes for Functional Analysis Wang Zuoqin (typed by Xiyu Zhai) November 6, 2015 1 Lecture 18 1.1 The convex hull Let X be any vector space, and E X a subset. Definition 1.1. The convex hull of E is the

More information

Mathematical Tripos Part III Michaelmas 2017 Distribution Theory & Applications, Example sheet 1 (answers) Dr A.C.L. Ashton

Mathematical Tripos Part III Michaelmas 2017 Distribution Theory & Applications, Example sheet 1 (answers) Dr A.C.L. Ashton Mathematical Tripos Part III Michaelmas 7 Distribution Theory & Applications, Eample sheet (answers) Dr A.C.L. Ashton Comments and corrections to acla@damtp.cam.ac.uk.. Construct a non-zero element of

More information

Math The Laplacian. 1 Green s Identities, Fundamental Solution

Math The Laplacian. 1 Green s Identities, Fundamental Solution Math. 209 The Laplacian Green s Identities, Fundamental Solution Let be a bounded open set in R n, n 2, with smooth boundary. The fact that the boundary is smooth means that at each point x the external

More information

INTRODUCTION TO REAL ANALYTIC GEOMETRY

INTRODUCTION TO REAL ANALYTIC GEOMETRY INTRODUCTION TO REAL ANALYTIC GEOMETRY KRZYSZTOF KURDYKA 1. Analytic functions in several variables 1.1. Summable families. Let (E, ) be a normed space over the field R or C, dim E

More information

X. Numerical Methods

X. Numerical Methods X. Numerical Methods. Taylor Approximation Suppose that f is a function defined in a neighborhood of a point c, and suppose that f has derivatives of all orders near c. In section 5 of chapter 9 we introduced

More information

Dealing with Rotating Coordinate Systems Physics 321. (Eq.1)

Dealing with Rotating Coordinate Systems Physics 321. (Eq.1) Dealing with Rotating Coordinate Systems Physics 321 The treatment of rotating coordinate frames can be very confusing because there are two different sets of aes, and one set of aes is not constant in

More information

MA3111S COMPLEX ANALYSIS I

MA3111S COMPLEX ANALYSIS I MA3111S COMPLEX ANALYSIS I 1. The Algebra of Complex Numbers A complex number is an expression of the form a + ib, where a and b are real numbers. a is called the real part of a + ib and b the imaginary

More information

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: Oct. 1 The Dirichlet s P rinciple In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: 1. Dirichlet s Principle. u = in, u = g on. ( 1 ) If we multiply

More information

Corrections to Introduction to Topological Manifolds (First edition) by John M. Lee December 7, 2015

Corrections to Introduction to Topological Manifolds (First edition) by John M. Lee December 7, 2015 Corrections to Introduction to Topological Manifolds (First edition) by John M. Lee December 7, 2015 Changes or additions made in the past twelve months are dated. Page 29, statement of Lemma 2.11: The

More information

LECTURE 3 LECTURE OUTLINE

LECTURE 3 LECTURE OUTLINE LECTURE 3 LECTURE OUTLINE Differentiable Conve Functions Conve and A ne Hulls Caratheodory s Theorem Reading: Sections 1.1, 1.2 All figures are courtesy of Athena Scientific, and are used with permission.

More information

Seminaar Abstrakte Wiskunde Seminar in Abstract Mathematics Lecture notes in progress (27 March 2010)

Seminaar Abstrakte Wiskunde Seminar in Abstract Mathematics Lecture notes in progress (27 March 2010) http://math.sun.ac.za/amsc/sam Seminaar Abstrakte Wiskunde Seminar in Abstract Mathematics 2009-2010 Lecture notes in progress (27 March 2010) Contents 2009 Semester I: Elements 5 1. Cartesian product

More information

One dimensional integrals in several variables

One dimensional integrals in several variables Chpter 9 One dimensionl integrls in severl vribles 9.1 Differentition under the integrl Note: less thn 1 lecture Let f (x,y be function of two vribles nd define g(y : b f (x,y dx Suppose tht f is differentible

More information

HOMEWORK ASSIGNMENT 6

HOMEWORK ASSIGNMENT 6 HOMEWORK ASSIGNMENT 6 DUE 15 MARCH, 2016 1) Suppose f, g : A R are uniformly continuous on A. Show that f + g is uniformly continuous on A. Solution First we note: In order to show that f + g is uniformly

More information

HW #1 SOLUTIONS. g(x) sin 1 x

HW #1 SOLUTIONS. g(x) sin 1 x HW #1 SOLUTIONS 1. Let f : [a, b] R and let v : I R, where I is an interval containing f([a, b]). Suppose that f is continuous at [a, b]. Suppose that lim s f() v(s) = v(f()). Using the ɛ δ definition

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

Analysis III. Exam 1

Analysis III. Exam 1 Analysis III Math 414 Spring 27 Professor Ben Richert Exam 1 Solutions Problem 1 Let X be the set of all continuous real valued functions on [, 1], and let ρ : X X R be the function ρ(f, g) = sup f g (1)

More information

Solutions to the Exercises of Chapter 8

Solutions to the Exercises of Chapter 8 8A Domains of Functions Solutions to the Eercises of Chapter 8 1 For 7 to make sense, we need 7 0or7 So the domain of f() is{ 7} For + 5 to make sense, +5 0 So the domain of g() is{ 5} For h() to make

More information

Simply Connected Domains

Simply Connected Domains Simply onnected Domains Generaliing the losed urve Theorem We have shown that if f() is analytic inside and on a closed curve, then f()d = 0. We have also seen examples where f() is analytic on the curve,

More information

Eilenberg-Steenrod properties. (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, )

Eilenberg-Steenrod properties. (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, ) II.3 : Eilenberg-Steenrod properties (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, 8.3 8.5 Definition. Let U be an open subset of R n for some n. The de Rham cohomology groups (U are the cohomology groups

More information

Extreme points of compact convex sets

Extreme points of compact convex sets Extreme points of compact convex sets In this chapter, we are going to show that compact convex sets are determined by a proper subset, the set of its extreme points. Let us start with the main definition.

More information

Helpful Concepts for MTH 261 Final. What are the general strategies for determining the domain of a function?

Helpful Concepts for MTH 261 Final. What are the general strategies for determining the domain of a function? Helpful Concepts for MTH 261 Final What are the general strategies for determining the domain of a function? How do we use the graph of a function to determine its range? How many graphs of basic functions

More information

Lecture 20. The Gauss-Bonnet Theorem

Lecture 20. The Gauss-Bonnet Theorem Lecture 0. The Gauss-Bonnet Theorem In this lecture we will prove two important global theorems about the geometr and topolog of two-dimensional manifolds. These are the Gauss-Bonnet theorem and the Poincaré-Hopf

More information

Energy method for wave equations

Energy method for wave equations Energy method for wave equations Willie Wong Based on commit 5dfb7e5 of 2017-11-06 13:29 Abstract We give an elementary discussion of the energy method (and particularly the vector field method) in the

More information

Lecture 2: Connecting the Three Models

Lecture 2: Connecting the Three Models IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Advanced Course on Computational Complexity Lecture 2: Connecting the Three Models David Mix Barrington and Alexis Maciel July 18, 2000

More information

1 The Local-to-Global Lemma

1 The Local-to-Global Lemma Point-Set Topology Connectedness: Lecture 2 1 The Local-to-Global Lemma In the world of advanced mathematics, we are often interested in comparing the local properties of a space to its global properties.

More information

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous: MATH 51H Section 4 October 16, 2015 1 Continuity Recall what it means for a function between metric spaces to be continuous: Definition. Let (X, d X ), (Y, d Y ) be metric spaces. A function f : X Y is

More information

Discrete Geometry. Problem 1. Austin Mohr. April 26, 2012

Discrete Geometry. Problem 1. Austin Mohr. April 26, 2012 Discrete Geometry Austin Mohr April 26, 2012 Problem 1 Theorem 1 (Linear Programming Duality). Suppose x, y, b, c R n and A R n n, Ax b, x 0, A T y c, and y 0. If x maximizes c T x and y minimizes b T

More information