A simple way to improve PP and PS AVO approximations. Chuck Ursenbach CREWES Sponsors Meeting Thursday, December 1, 2005

Size: px
Start display at page:

Download "A simple way to improve PP and PS AVO approximations. Chuck Ursenbach CREWES Sponsors Meeting Thursday, December 1, 2005"

Transcription

1 A simple way to improve PP and PS AVO approximations Chuck Ursenbach CREWES Sponsors Meeting Thursday, December 1, 2005

2 Overview Notes on spherical-wave modeling Reflectivity Explorer observations Theoretical Explanations Improving AVO theories

3 Sphericalwave Reflection Coefficients θ i = 0 θ i = 15 R spherical PP 0 ( θ ) i p RPP( pw ) n( p; θi) dp ξ θ i = 45 θ i = 85 p = sinθ

4 Efficient Explorer calculations Assume that wavelet is of form fn n ( ω) = ω exp( s ω ) Then ω-integration can be analytic This form is similar to Ricker wavelet ( ) 2 2 fricker ( ω) = ω exp ω/ ω 0 fn n ( ω) = ω exp( n ω/ ω ) ω 0 is the maximum frequency for both 0

5 Wavelet comparison ω 0

6 Spherical R PP for Ormsby and n=4 wavelets

7 Representation of Ricker wavelet (note range of axes)

8 Ursenbach, Haase, and Downton, Improvements and verifications for the Spherical Zoeppritz Explorer

9 Reflection of spherical waves in VTI media Posters Ursenbach & Haase Generalized reflections from point sources in a two-layer VTI medium: theory Haase & Ursenbach Spherical-wave AVO-modelling in elastic VTImedia Anelasticity and spherical-wave AVO-modelling in VTI-media

10 Overview Notes on spherical-wave modeling Reflectivity Explorer observations Theoretical Explanations Improving AVO theories

11 Aki-Richards Approximation A-R R 2 2 RPP = Rρ + 4γ sin θ(2 R R ), 2 β + ρ cos θ ( ) R = R + R + R 4 γ (2 R + R ) sin θ + sin θ tan θr Shuey PP ρ β ρ A+ B + C sin θ sin θ tan θ, Shuey-like 3 RPS = γ Rρ + 2 γ(2 Rβ + Rρ) sin θ + O(sin θ) A + ( ) A-R RPS = γ tanϕ Rρ + 2γ cos θ ϕ (2 Rβ + Rρ), = ( 1+ 2) / 2, = ( 1+ 2) / 2 β1+ β2 θ θ θ ϕ ϕ ϕ 3 S sin θ O(sin θ). R R R β ρ = 2 β = 2β ρ = 2ρ γ = + 1 2

12 A further approximation Shuey (1985) also suggested substituting θ 1 for θ as an approximation. What behavior does this give?

13 θ vs. θ 1 approximations R R R β ρ γ = = = = = β = β ρ = ρ

14 θ vs. θ 1 approximations R PP R PS

15 θ vs. θ 1 approximations a) γ new = 0.3 b) R β new = R β c) R β new = 0.1R β

16 Effect of θ θ 1 True linear behavior: no critical point R PS more accurate in 0 < θ 1 < 30 range R PP more accurate if o γ >.35 o R β > R, same sign R PP less accurate if o γ <.3 o R β small, or opposite sign to R

17 Overview Notes on spherical-wave modeling Reflectivity Explorer observations Theoretical Explanations Improving AVO theories

18 Why is θ 1 better at low angles? Differences disappear for R = 0 (θ = θ 1 ) Used MAPLE to linearize R exact PP, R exact PS in R β, R ρ Find coefficient of sine-powers: R RPP( θ1) = A+ Bsin θ1 +, B= [ R 4 γ (2 Rβ + Rρ)] 1 R R θ A B θ B R γ R R R PP( ) = + sin +, = [ 4 (2 β + ρ)](1 ) 1+ 2R 2 (1 R ) R ( θ ) = A sin θ +, A = [ R + 2 γ(2 R + R )] PS 1 S 1 R ( θ) = A sin θ +, A = [ R + 2 γ (2 R + R )](1 R ) PS S S S ρ β ρ ρ β ρ 1 R

19 Alternate expression for B Used MAPLE to linearize R PP exact in R ρ only 16 2 (1 + R ) γ R (nonlinear in β; ρ = 0) = ( 8 γ β) + 1 R 1 R θ1 B R R R R 3 2 β Set R = R, = 1/2 β γ Then B θ 1 = R θ B = R (1 R ) Shuey B = R 2

20 Overview Notes on spherical-wave modeling Reflectivity Explorer observations Theoretical Explanations Improving AVO theories

21 A better expression? Note that sinθ 1 = sinθ 1 R 1+ R tan sin θ (1 R ) 2 2 θ sinθ = sin θ(1 ) R Substitute 1 in the initial gradients of the sinθ 1 expressions. This should give better behavior at low angles and a critical point.

22 New approximation R PP R PS

23 New approximation

24 The Smith-Gidlow approximation S-G 1 R RPP = R + 4γ sin θ(2 R R ) 2 β + 4 cos θ 4 The Fatti approximation Fatti RI 2 2 ( R ) PP = 8γ sin θr 4 sin tan 2 J + γ θ θ R ρ cos θ

25 Conclusions The Aki-Richards expression has been compared using both θ and θ 1 as the dependent variable The expression in terms of θ is best near the critical point The expression in terms of θ 1 is best at low angles for R PS and certain regions of R PP The quality of the θ 1 expression has been justified by theoretical analysis

26 Conclusions A new version of the Aki-Richards approximation is given in which sinθ is multiplied by (1 R ) An estimate of R is already required to obtain θ, so this requires no new information The new expression is more accurate for a wider range of low angles and has a correctly located critical point.

A simple way to improve AVO approximations

A simple way to improve AVO approximations A simple way to improve AVO approximations Charles P. Ursenbach A simple way to improve AVO approximations ABSTRACT Some twenty years ago it was suggested that the average angle, = ( + )/, in the Aki-Richards

More information

Modelling of linearized Zoeppritz approximations

Modelling of linearized Zoeppritz approximations Modelling of linearized Zoeppritz approximations Arnim B. Haase Zoeppritz approximations ABSTRACT The Aki and Richards approximations to Zoeppritz s equations as well as approximations by Stewart, Smith

More information

Modelling Class 1 AVO responses of a three layer system

Modelling Class 1 AVO responses of a three layer system Modelling Class 1 AVO responses of a three layer system Arnim B. Haase ABSTRACT Class 1 three-layer model AVO-responses are computed by a method developed from the Ewing-algorithm for point sources in

More information

Spherical wave AVO-modelling in elastic isotropic media

Spherical wave AVO-modelling in elastic isotropic media Spherical wave AVO-modelling in elastic isotropic media Arnim B. Haase and Charles P. Ursenbach ABSTRACT Spherical wave AVO The AVO-response of two-layer isotropic models for AVO-Classes 1, 2, 3 and 4

More information

Frequency dependent AVO analysis

Frequency dependent AVO analysis Frequency dependent AVO analysis of P-, S-, and C-wave elastic and anelastic reflection data Kris Innanen k.innanen@ucalgary.ca CREWES 23 rd Annual Sponsor s Meeting, Banff AB, Nov 30-Dec 2, 2011 Outline

More information

Matrix forms for the Knott-Zoeppritz equations

Matrix forms for the Knott-Zoeppritz equations Kris Innanen ABSTRACT In this note we derive convenient matrix forms for the Knott-Zoeppritz equations. The attempt is to recapture results used (quoted not derived) by Levin and Keys and to extend these

More information

Improved modeling of spherical-wave AVO

Improved modeling of spherical-wave AVO Improved modeling of spherical-wave AVO Charles P. Ursenbach, Arnim B. Haase, and Jonathan E. Downton ABSTRACT Spherical-wave reection coefcients, which are vital in modeling supercritical reections, are

More information

Figure 1. P wave speed, Vp, S wave speed, Vs, and density, ρ, for the different layers of Ostrander s gas sand model shown in SI units.

Figure 1. P wave speed, Vp, S wave speed, Vs, and density, ρ, for the different layers of Ostrander s gas sand model shown in SI units. Ambiguity in Resolving the Elastic Parameters of Gas Sands from Wide-Angle AVO Andrew J. Calvert - Simon Fraser University and David F. Aldridge - Sandia National Laboratories Summary We investigate the

More information

P125 AVO for Pre-Resonant and Resonant Frequency Ranges of a Periodical Thin-Layered Stack

P125 AVO for Pre-Resonant and Resonant Frequency Ranges of a Periodical Thin-Layered Stack P125 AVO for Pre-Resonant and Resonant Frequency Ranges of a Periodical Thin-Layered Stack N. Marmalyevskyy* (Ukrainian State Geological Prospecting Institute), Y. Roganov (Ukrainian State Geological Prospecting

More information

Mapping the P-S Conversion Point in VTI Media. * Jianli Yang Don C. Lawton

Mapping the P-S Conversion Point in VTI Media. * Jianli Yang Don C. Lawton Mapping the P-S Conversion Point in VTI Media * Jianli Yang Don C. Lawton Outline! Introduction! Theory! Numerical modeling methodology and results! NORSARD anisotropy ray mapping! Discussion and conclusions!

More information

The importance of the Vp/Vs ratio in determining the error propagation and the resolution in linear AVA inversion

The importance of the Vp/Vs ratio in determining the error propagation and the resolution in linear AVA inversion The importance of the Vp/Vs ratio in determining the error propagation and the resolution in linear AVA inversion Mattia Aleardi* & Alfredo Mazzotti University of Pisa Earth Sciences Department mattia.aleardi@dst.unipi.it

More information

Amplitude variation with offset AVO. and. Direct Hydrocarbon Indicators DHI. Reflection at vertical incidence. Reflection at oblique incidence

Amplitude variation with offset AVO. and. Direct Hydrocarbon Indicators DHI. Reflection at vertical incidence. Reflection at oblique incidence Amplitude variation with offset AVO and Direct Hydrocarbon Indicators DHI Reflection at vertical incidence Reflection coefficient R(p) c α 1 S wavespeed β 1 density ρ 1 α 2 S wavespeed β 2 density ρ 2

More information

AVAZ and VVAZ practical analysis to estimate anisotropic properties

AVAZ and VVAZ practical analysis to estimate anisotropic properties AVAZ and VVAZ practical analysis to estimate anisotropic properties Yexin Liu*, SoftMirrors Ltd., Calgary, Alberta, Canada yexinliu@softmirrors.com Summary Seismic anisotropic properties, such as orientation

More information

Pitfall in AVO Anisotropic Modeling: Plane Wave vs Spherical Wave. Qing Li May, 2003

Pitfall in AVO Anisotropic Modeling: Plane Wave vs Spherical Wave. Qing Li May, 2003 Pitfall in AVO Anisotropic Modeling: Plane Wave vs Spherical Wave Qing Li May, 2003 A Client s Model A client uses the following model to model anisotropic AVO effects and raised the question of discrepancy

More information

UNIVERSITY OF CALGARY. Exact, linear and nonlinear AVO modeling in poroelastic media. Steven M. Kim A THESIS

UNIVERSITY OF CALGARY. Exact, linear and nonlinear AVO modeling in poroelastic media. Steven M. Kim A THESIS Important Notice This copy may be used only for the purposes of research and private study and any use of the copy for a purpose other than research or private study may require the authorization of the

More information

The signature of attenuation and anisotropy on AVO and inversion sensitivities

The signature of attenuation and anisotropy on AVO and inversion sensitivities The signature of attenuation and anisotropy on AVO and inversion sensitivities Shahpoor Moradi and Kristopher Innanen University of Calgary, Department of Geoscience, Calgary, Canada Summary We study the

More information

An empirical study of hydrocarbon indicators

An empirical study of hydrocarbon indicators An empirical study of hydrocarbon indicators Brian Russell 1, Hong Feng, and John Bancroft An empirical study of hydrocarbon indicators 1 Hampson-Russell, A CGGVeritas Company, Calgary, Alberta, brian.russell@cggveritas.com

More information

Joint PP and PS AVO inversion based on Zoeppritz equations

Joint PP and PS AVO inversion based on Zoeppritz equations Earthq Sci (2011)24: 329 334 329 doi:10.1007/s11589-011-0795-1 Joint PP and PS AVO inversion based on Zoeppritz equations Xiucheng Wei 1,2, and Tiansheng Chen 1,2 1 SINOPEC Key Laboratory of Seismic Multi-Component

More information

Exact elastic impedance in orthorhombic media

Exact elastic impedance in orthorhombic media Exact elastic impedance in orthorhombic media F. Zhang (hina University of Petroleum), X.Y. Li (hina University of Petroleum, British Geological Survey) SUMMARY onventional elastic/ray impedance approximations

More information

Constrained inversion of P-S seismic data

Constrained inversion of P-S seismic data PS Inversion Constrained inversion of P-S seismic data Robert J. Ferguson, and Robert R. Stewart ABSTRACT A method to estimate S-wave interval velocity, using P-S seismic data is presented. The method

More information

AVO inversion in V (x, z) media

AVO inversion in V (x, z) media Stanford Exploration Project, Report 97, July 8, 998, pages 75 94 AVO inversion in V (x, z) media Yalei Sun and Wenjie Dong keywords:.5-d Kirchhoff integral, AVO inversion, fluid-line section ABSTRACT

More information

An overview of AVO and inversion

An overview of AVO and inversion P-486 An overview of AVO and inversion Brian Russell, Hampson-Russell, CGGVeritas Company Summary The Amplitude Variations with Offset (AVO) technique has grown to include a multitude of sub-techniques,

More information

Trigonometry - Part 1 (12 pages; 4/9/16) fmng.uk

Trigonometry - Part 1 (12 pages; 4/9/16) fmng.uk Trigonometry - Part 1 (12 pages; 4/9/16) (1) Sin, cos & tan of 30, 60 & 45 sin30 = 1 2 ; sin60 = 3 2 cos30 = 3 2 ; cos60 = 1 2 cos45 = sin45 = 1 2 = 2 2 tan45 = 1 tan30 = 1 ; tan60 = 3 3 Graphs of y =

More information

Reservoir Characterization using AVO and Seismic Inversion Techniques

Reservoir Characterization using AVO and Seismic Inversion Techniques P-205 Reservoir Characterization using AVO and Summary *Abhinav Kumar Dubey, IIT Kharagpur Reservoir characterization is one of the most important components of seismic data interpretation. Conventional

More information

AVO and AVA inversion challenges: a conceptual overview

AVO and AVA inversion challenges: a conceptual overview AVO and AVA inversion challenges: a conceptual overview Jeff P. Grossman ABSTRACT Inversion of seismic data for earth parameters involves two main steps: (1) estimate the reflectivity as a function of

More information

Nonlinear Bayesian joint inversion of seismic reflection

Nonlinear Bayesian joint inversion of seismic reflection Geophys. J. Int. (2) 142, Nonlinear Bayesian joint inversion of seismic reflection coefficients Tor Erik Rabben 1,, Håkon Tjelmeland 2, and Bjørn Ursin 1 1 Department of Petroleum Engineering and Applied

More information

Mapping the conversion point in vertical transversely isotropic (VTI) media

Mapping the conversion point in vertical transversely isotropic (VTI) media Mapping the conversion point in vertical transversely isotropic (VTI) media Jianli Yang and Don. C. Lawton Conversion-point mapping ABSTRACT The important aspect of converted-wave (P-S) seismology is that

More information

Elastic wave-equation migration for laterally varying isotropic and HTI media. Richard A. Bale and Gary F. Margrave

Elastic wave-equation migration for laterally varying isotropic and HTI media. Richard A. Bale and Gary F. Margrave Elastic wave-equation migration for laterally varying isotropic and HTI media Richard A. Bale and Gary F. Margrave a Outline Introduction Theory Elastic wavefield extrapolation Extension to laterally heterogeneous

More information

Optimal Zoeppritz approximations

Optimal Zoeppritz approximations harles. Ursenbach ABSTRAT New approximations are developed for R and R S that are optimal in the sense that they preserve as much accuracy as possible with as much simplicity as possible. In particular,

More information

Integrating reservoir flow simulation with time-lapse seismic inversion in a heavy oil case study

Integrating reservoir flow simulation with time-lapse seismic inversion in a heavy oil case study Integrating reservoir flow simulation with time-lapse seismic inversion in a heavy oil case study Naimeh Riazi*, Larry Lines*, and Brian Russell** Department of Geoscience, University of Calgary **Hampson-Russell

More information

Inversion of seismic AVA data for porosity and saturation

Inversion of seismic AVA data for porosity and saturation Inversion of seismic AVA data for porosity and saturation Brikt Apeland Thesis for the degree Master of Science Department of Earth Science University of Bergen 27th June 213 2 Abstract Rock physics serves

More information

Reflections and Rotations in R 3

Reflections and Rotations in R 3 Reflections and Rotations in R 3 P. J. Ryan May 29, 21 Rotations as Compositions of Reflections Recall that the reflection in the hyperplane H through the origin in R n is given by f(x) = x 2 ξ, x ξ (1)

More information

Useful approximations for converted-wave AVO

Useful approximations for converted-wave AVO GEOPHYSICS VOL. 66 NO. 6 NOVEMBER-DECEMBER 001); P. 171 1734 14 FIGS. 3 TABLES. Useful approximations for converted-wave AVO Antonio C. B. Ramos and John P. Castagna ABSTRACT Converted-wave amplitude versus

More information

A collision theory of seismic waves applied to elastic VSP data

A collision theory of seismic waves applied to elastic VSP data A collision theory of seismic waves applied to elastic V data A collision theory of seismic waves applied to elastic V data Kris Innanen and Kevin Hall ABTRACT In previous CREWE reports we have been assembling

More information

We Challenges in shale-reservoir characterization by means of AVA and AVAZ

We Challenges in shale-reservoir characterization by means of AVA and AVAZ We-06-15 Challenges in shale-reservoir characterization by means of AVA and AVAZ N.C. Banik* (WesternGeco), M. Egan (WesternGeco), A. Koesoemadinata (WesternGeco) & A. Padhi (WesternGeco) SUMMARY In most

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.4 Basic Trigonometric Equations Copyright Cengage Learning. All rights reserved. Objectives Basic Trigonometric Equations Solving

More information

AVAZ inversion for fracture orientation and intensity: a physical modeling study

AVAZ inversion for fracture orientation and intensity: a physical modeling study AVAZ inversion for fracture orientation and intensity: a physical modeling study Faranak Mahmoudian and Gary F Margrave ABSTRACT AVAZ inversion We present a pre-stack amplitude inversion of P-wave data

More information

AN AVO METHOD TOWARD DIRECT DETECTION OF LITHOLOGIES COMBINING P-P AND P-S REFLECTION DATA. A Thesis JUAN RAMON DE JESUS CARCUZ JEREZ

AN AVO METHOD TOWARD DIRECT DETECTION OF LITHOLOGIES COMBINING P-P AND P-S REFLECTION DATA. A Thesis JUAN RAMON DE JESUS CARCUZ JEREZ AN AVO METHOD TOWARD DIRECT DETECTION OF LITHOLOGIES COMBINING P-P AND P-S REFLECTION DATA A Thesis by JUAN RAMON DE JESUS CARCUZ JEREZ Submitted to the Office of Graduate Studies of Texas A&M University

More information

p. 1/ Section 1.4: Cylindrical and Spherical Coordinates

p. 1/ Section 1.4: Cylindrical and Spherical Coordinates p. 1/ Section 1.4: Cylindrical and Spherical Coordinates p. / Cylindrical Coordinate (r,θ,w) where θ is measured counterclockwise as viewed from the positive w-axis. p. / Cylindrical Coordinate (r,θ,w)

More information

= (G T G) 1 G T d. m L2

= (G T G) 1 G T d. m L2 The importance of the Vp/Vs ratio in determining the error propagation and the resolution in linear AVA inversion M. Aleardi, A. Mazzotti Earth Sciences Department, University of Pisa, Italy Introduction.

More information

Strauss PDEs 2e: Section Exercise 1 Page 1 of 6

Strauss PDEs 2e: Section Exercise 1 Page 1 of 6 Strauss PDEs 2e: Section 3 - Exercise Page of 6 Exercise Carefully derive the equation of a string in a medium in which the resistance is proportional to the velocity Solution There are two ways (among

More information

The Study of Concurrent Forces with the Force Table

The Study of Concurrent Forces with the Force Table The Study of Concurrent Forces with the Force Table Apparatus: Force table with 4 pulleys, centering ring and string, 50 g weight hangers, slotted weights, protractors, and rulers. Discussion: The force

More information

physicsandmathstutor.com 4727 Mark Scheme June 2010

physicsandmathstutor.com 4727 Mark Scheme June 2010 477 Mark Scheme June 00 Direction of l = k[7, 0, 0] Direction of l = k[,, ] EITHER n = [7, 0, 0] [,, ] For both directions [ x, y, z]. [7,0, 0] = 0 7x 0z = 0 OR [ x, y, z]. [,, ] = 0 x y z = 0 n = k[0,,

More information

Compensating visco-acoustic effects in anisotropic resverse-time migration Sang Suh, Kwangjin Yoon, James Cai, and Bin Wang, TGS

Compensating visco-acoustic effects in anisotropic resverse-time migration Sang Suh, Kwangjin Yoon, James Cai, and Bin Wang, TGS Compensating visco-acoustic effects in anisotropic resverse-time migration Sang Suh, Kwangjin Yoon, James Cai, and Bin Wang, TGS SUMMARY Anelastic properties of the earth cause frequency dependent energy

More information

AVAZ inversion for fracture orientation and intensity: A physical modeling study. Faranak Mahmoudian Gary Margrave

AVAZ inversion for fracture orientation and intensity: A physical modeling study. Faranak Mahmoudian Gary Margrave AVAZ inversion for fracture orientation and intensity: A physical modeling study Faranak Mahmoudian Gary Margrave Objective Fracture orientation: direction of fracture planes Fracture intensity: number

More information

Chapter 5 Trigonometric Functions of Angles

Chapter 5 Trigonometric Functions of Angles Chapter 5 Trigonometric Functions of Angles Section 3 Points on Circles Using Sine and Cosine Signs Signs I Signs (+, +) I Signs II (+, +) I Signs II (, +) (+, +) I Signs II (, +) (+, +) I III Signs II

More information

Unphysical negative values of the anelastic SH plane wave energybased transmission coefficient

Unphysical negative values of the anelastic SH plane wave energybased transmission coefficient Shahin Moradi and Edward S. Krebes Anelastic energy-based transmission coefficient Unphysical negative values of the anelastic SH plane wave energybased transmission coefficient ABSTRACT Computing reflection

More information

Approximations to the Zoeppritz equations and their use in AVO analysis

Approximations to the Zoeppritz equations and their use in AVO analysis GEOPHYSICS, VOL. 64, NO. 6 (NOVEMBER-DECEMBER 1999; P. 190 197, 4 FIGS., 1 TABLE. Approximations to the Zoeppritz equations their use in AVO analysis Yanghua Wang ABSTRACT To efficiently invert seismic

More information

Lecture 1 Complex Numbers. 1 The field of complex numbers. 1.1 Arithmetic operations. 1.2 Field structure of C. MATH-GA Complex Variables

Lecture 1 Complex Numbers. 1 The field of complex numbers. 1.1 Arithmetic operations. 1.2 Field structure of C. MATH-GA Complex Variables Lecture Complex Numbers MATH-GA 245.00 Complex Variables The field of complex numbers. Arithmetic operations The field C of complex numbers is obtained by adjoining the imaginary unit i to the field R

More information

Azimuthal AVO and Curvature. Jesse Kolb* David Cho Kris Innanen

Azimuthal AVO and Curvature. Jesse Kolb* David Cho Kris Innanen Azimuthal AVO and Curvature Jesse Kolb* David Cho Kris Innanen Azimuthal AVO What is azimuthal AVO?: Analysis of incidence angle and azimuthal amplitude variations of reflection coefficients; Measures

More information

A Case Study on Simulation of Seismic Reflections for 4C Ocean Bottom Seismometer Data in Anisotropic Media Using Gas Hydrate Model

A Case Study on Simulation of Seismic Reflections for 4C Ocean Bottom Seismometer Data in Anisotropic Media Using Gas Hydrate Model A Case Study on Simulation of Seismic Reflections for 4C Ocean Bottom Seismometer Data in Anisotropic Media Using Gas Hydrate Model Summary P. Prasada Rao*, N. K. Thakur 1, Sanjeev Rajput 2 National Geophysical

More information

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3. Quiz No. 1: Tuesday Jan. 31 Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.20 Chapter 3 Vectors and Two-Dimensional Kinematics Properties of

More information

THE INVERSE TRIGONOMETRIC FUNCTIONS

THE INVERSE TRIGONOMETRIC FUNCTIONS THE INVERSE TRIGONOMETRIC FUNCTIONS Question 1 (**+) Solve the following trigonometric equation ( x ) π + 3arccos + 1 = 0. 1 x = Question (***) It is given that arcsin x = arccos y. Show, by a clear method,

More information

P191 Bayesian Linearized AVAZ Inversion in HTI Fractured Media

P191 Bayesian Linearized AVAZ Inversion in HTI Fractured Media P9 Bayesian Linearized AAZ Inversion in HI Fractured Media L. Zhao* (University of Houston), J. Geng (ongji University), D. Han (University of Houston) & M. Nasser (Maersk Oil Houston Inc.) SUMMARY A new

More information

Far-field radiation from seismic sources in 2D attenuative anisotropic media

Far-field radiation from seismic sources in 2D attenuative anisotropic media CWP-535 Far-field radiation from seismic sources in 2D attenuative anisotropic media Yaping Zhu and Ilya Tsvankin Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines, Golden,

More information

Topics Covered: Pythagoras Theorem Definition of sin, cos and tan Solving right-angle triangles Sine and cosine rule

Topics Covered: Pythagoras Theorem Definition of sin, cos and tan Solving right-angle triangles Sine and cosine rule Trigonometry Topis overed: Pythgors Theorem Definition of sin, os nd tn Solving right-ngle tringles Sine nd osine rule Lelling right-ngle tringle Opposite (Side opposite the ngle θ) Hypotenuse (Side opposite

More information

THE COMPOUND ANGLE IDENTITIES

THE COMPOUND ANGLE IDENTITIES TRIGONOMETRY THE COMPOUND ANGLE IDENTITIES Question 1 Prove the validity of each of the following trigonometric identities. a) sin x + cos x 4 4 b) cos x + + 3 sin x + 2cos x 3 3 c) cos 2x + + cos 2x cos

More information

A New AVO Attribute for Hydrocarbon Prediction and Application to the Marmousi II Dataset*

A New AVO Attribute for Hydrocarbon Prediction and Application to the Marmousi II Dataset* A New AVO Attribute for Hydrocarbon Prediction and Application to the Marmousi II Dataset* Changcheng Liu 1 and Prasad Ghosh 2 Search and Discovery Article #41764 (2016) Posted January 25, 2016 *Adapted

More information

Sum and difference formulae for sine and cosine. Elementary Functions. Consider angles α and β with α > β. These angles identify points on the

Sum and difference formulae for sine and cosine. Elementary Functions. Consider angles α and β with α > β. These angles identify points on the Consider angles α and β with α > β. These angles identify points on the unit circle, P (cos α, sin α) and Q(cos β, sin β). Part 5, Trigonometry Lecture 5.1a, Sum and Difference Formulas Dr. Ken W. Smith

More information

P-wave impedance, S-wave impedance and density from linear AVO inversion: Application to VSP data from Alberta

P-wave impedance, S-wave impedance and density from linear AVO inversion: Application to VSP data from Alberta Linear AVO inversion P-wave impedance, S-wave impedance and density from linear AVO inversion: Application to VSP data from Alberta Faranak Mahmoudian and Gary F. Margrave ABSTRACT In AVO (amplitude variation

More information

Joint inversion of AVA data for elastic parameters by bootstrapping

Joint inversion of AVA data for elastic parameters by bootstrapping ARTICLE IN PRESS Computers & Geosciences 33 (2007) 367 382 www.elsevier.com/locate/cageo Joint inversion of AVA data for elastic parameters by bootstrapping Hu lya Kurt Istanbul Technical University, Department

More information

Exercise Set 6.2: Double-Angle and Half-Angle Formulas

Exercise Set 6.2: Double-Angle and Half-Angle Formulas Exercise Set : Double-Angle and Half-Angle Formulas Answer the following π 1 (a Evaluate sin π (b Evaluate π π (c Is sin = (d Graph f ( x = sin ( x and g ( x = sin ( x on the same set of axes (e Is sin

More information

Practical aspects of AVO modeling

Practical aspects of AVO modeling Practical aspects of AVO modeling YONGYI LI, Paradigm Geophysical, Calgary, Canada JONATHAN DOWNTON, Veritas, Calgary, Canada, YONG XU, Arcis Corporation, Calgary, Canada AVO (amplitude variation with

More information

Vectors for Physics. AP Physics C

Vectors for Physics. AP Physics C Vectors for Physics AP Physics C A Vector is a quantity that has a magnitude (size) AND a direction. can be in one-dimension, two-dimensions, or even three-dimensions can be represented using a magnitude

More information

Linearized AVO and Poroelasticity for HRS9. Brian Russell, Dan Hampson and David Gray 2011

Linearized AVO and Poroelasticity for HRS9. Brian Russell, Dan Hampson and David Gray 2011 Linearized AO and oroelasticity for HR9 Brian Russell, Dan Hampson and David Gray 0 Introduction In this talk, we combine the linearized Amplitude ariations with Offset (AO) technique with the Biot-Gassmann

More information

Mathematics Trigonometry: Unit Circle

Mathematics Trigonometry: Unit Circle a place of mind F A C U L T Y O F E D U C A T I O N Department of Curriculum and Pedagog Mathematics Trigonometr: Unit Circle Science and Mathematics Education Research Group Supported b UBC Teaching and

More information

P235 Modelling Anisotropy for Improved Velocities, Synthetics and Well Ties

P235 Modelling Anisotropy for Improved Velocities, Synthetics and Well Ties P235 Modelling Anisotropy for Improved Velocities, Synthetics and Well Ties P.W. Wild* (Ikon Science Ltd), M. Kemper (Ikon Science Ltd), L. Lu (Ikon Science Ltd) & C.D. MacBeth (Heriot Watt University)

More information

Compensating for attenuation by inverse Q filtering. Carlos A. Montaña Dr. Gary F. Margrave

Compensating for attenuation by inverse Q filtering. Carlos A. Montaña Dr. Gary F. Margrave Compensating for attenuation by inverse Q filtering Carlos A. Montaña Dr. Gary F. Margrave Motivation Assess and compare the different methods of applying inverse Q filter Use Q filter as a reference to

More information

Application of nonlinear time-lapse AVO to the Pouce Coupe data set. Presented by Shahin Jabbari Supervisor Kris Innanen

Application of nonlinear time-lapse AVO to the Pouce Coupe data set. Presented by Shahin Jabbari Supervisor Kris Innanen Application of nonlinear time-lapse AVO to the Pouce Coupe data set Presented by Shahin Jabbari Supervisor Kris Innanen Outline Motivation and review Geology Seismic surveys Well tie and interpretation

More information

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics LECTURE OUTLINE CHAPTER 3 Vectors in Physics 3-1 Scalars Versus Vectors Scalar a numerical value (number with units). May be positive or negative. Examples: temperature, speed, height, and mass. Vector

More information

Edinburgh Anisotropy Project, British Geological Survey, Murchison House, West Mains

Edinburgh Anisotropy Project, British Geological Survey, Murchison House, West Mains Frequency-dependent AVO attribute: theory and example Xiaoyang Wu, 1* Mark Chapman 1,2 and Xiang-Yang Li 1 1 Edinburgh Anisotropy Project, British Geological Survey, Murchison House, West Mains Road, Edinburgh

More information

6.1 Reciprocal, Quotient, and Pythagorean Identities.notebook. Chapter 6: Trigonometric Identities

6.1 Reciprocal, Quotient, and Pythagorean Identities.notebook. Chapter 6: Trigonometric Identities Chapter 6: Trigonometric Identities 1 Chapter 6 Complete the following table: 6.1 Reciprocal, Quotient, and Pythagorean Identities Pages 290 298 6.3 Proving Identities Pages 309 315 Measure of

More information

Reflection and Transmission coefficient for VTI media

Reflection and Transmission coefficient for VTI media Reflection and Transmission coefficient for VTI media R. K. Sharma and R. J. Ferguson ABSTRACT VTI, R & T coefficients Presently, we obtain the reflection (R and transmission (T coefficients of plane waves

More information

Week 7: Integration: Special Coordinates

Week 7: Integration: Special Coordinates Week 7: Integration: Special Coordinates Introduction Many problems naturally involve symmetry. One should exploit it where possible and this often means using coordinate systems other than Cartesian coordinates.

More information

Motion in Three Dimensions

Motion in Three Dimensions Motion in Three Dimensions We ve learned about the relationship between position, velocity and acceleration in one dimension Now we need to extend those ideas to the three-dimensional world In the 1-D

More information

Rotations about the coordinate axes are easy to define and work with. Rotation about the x axis by angle θ is. R x (θ) = 0 cos θ sin θ 0 sin θ cos θ

Rotations about the coordinate axes are easy to define and work with. Rotation about the x axis by angle θ is. R x (θ) = 0 cos θ sin θ 0 sin θ cos θ Euler Angle Formulas David Eberly Magic Software, Inc. http://www.magic-software.com Created: December 1, 1999 1 Introduction Rotations about the coordinate axes are easy to define and work with. Rotation

More information

PreCalculus First Semester Exam Review

PreCalculus First Semester Exam Review PreCalculus First Semester Eam Review Name You may turn in this eam review for % bonus on your eam if all work is shown (correctly) and answers are correct. Please show work NEATLY and bo in or circle

More information

Solution Set of Homework # 2. Friday, September 09, 2017

Solution Set of Homework # 2. Friday, September 09, 2017 Temple University Department of Physics Quantum Mechanics II Physics 57 Fall Semester 17 Z. Meziani Quantum Mechanics Textboo Volume II Solution Set of Homewor # Friday, September 9, 17 Problem # 1 In

More information

9231 FURTHER MATHEMATICS

9231 FURTHER MATHEMATICS CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level MARK SCHEME for the May/June 201 series 921 FURTHER MATHEMATICS 921/21 Paper 2, maximum raw mark 100 This mark scheme is published as an aid to teachers

More information

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS MATH 3 FALL 0 FINAL EXAM - PRACTICE EXAM SOLUTIONS () You cut a slice from a circular pizza (centered at the origin) with radius 6 along radii at angles 4 and 3 with the positive horizontal axis. (a) (3

More information

Framework for AVO gradient and intercept interpretation

Framework for AVO gradient and intercept interpretation GEOPHYSICS, VOL. 63, NO. 3 (MAY-JUNE 1998); P. 948 956, 10 FIGS., 2 TABLES. Framework for AVO gradient and intercept interpretation John P. Castagna, Herbert W. Swan, and Douglas J. Foster ABSTRACT Amplitude

More information

Unit IV: Introduction to Vector Analysis

Unit IV: Introduction to Vector Analysis Unit IV: Introduction to Vector nalysis s you learned in the last unit, there is a difference between speed and velocity. Speed is an example of a scalar: a quantity that has only magnitude. Velocity is

More information

Note 1: Pythagoras Theorem. The longest side is always opposite the right angle and is called the hypotenuse (H).

Note 1: Pythagoras Theorem. The longest side is always opposite the right angle and is called the hypotenuse (H). Trigonometry Note 1: Pythagoras Theorem The longest side is always opposite the right angle and is called the hypotenuse (H). O H x Note 1: Pythagoras Theorem In a right-angled triangle the square of the

More information

EE 333 Electricity and Magnetism, Fall 2009 Homework #9 solution

EE 333 Electricity and Magnetism, Fall 2009 Homework #9 solution EE 333 Electricity and Magnetism, Fall 009 Homework #9 solution 4.10. The two infinite conducting cones θ = θ 1, and θ = θ are maintained at the two potentials Φ 1 = 100, and Φ = 0, respectively, as shown

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.1 Trigonometric Identities Copyright Cengage Learning. All rights reserved. Objectives Simplifying Trigonometric Expressions Proving

More information

As we know, the three basic trigonometric functions are as follows: Figure 1

As we know, the three basic trigonometric functions are as follows: Figure 1 Trigonometry Basic Functions As we know, the three basic trigonometric functions are as follows: sin θ = cos θ = opposite hypotenuse adjacent hypotenuse tan θ = opposite adjacent Where θ represents an

More information

15 x. Substitute. Multiply. Add. Find the positive square root.

15 x. Substitute. Multiply. Add. Find the positive square root. hapter Review.1 The Pythagorean Theorem (pp. 3 70) Dynamic Solutions available at igideasmath.com Find the value of. Then tell whether the side lengths form a Pythagorean triple. c 2 = a 2 + b 2 Pythagorean

More information

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x +

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x + MATH 06 0 Practice Exam #. (0 points) Evaluate the following integrals: (a) (0 points). t +t+7 This is an irreducible quadratic; its denominator can thus be rephrased via completion of the square as a

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics Diffraction I Basic Physics M.P. Vaughan Diffraction Electromagnetic waves Geometric wavefront The Principle of Linear Superposition Diffraction regimes Single

More information

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear.

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear. Precalculus Review Functions to KNOW! 1. Polynomial Functions Types: General form Generic Graph and unique properties Constants Linear Quadratic Cubic Generalizations for Polynomial Functions - The domain

More information

General review: - a) Dot Product

General review: - a) Dot Product General review: - a) Dot Product If θ is the angle between the vectors a and b, then a b = a b cos θ NOTE: Two vectors a and b are orthogonal, if and only if a b = 0. Properties of the Dot Product If a,

More information

Chapter 4 Reflection and Transmission of Waves

Chapter 4 Reflection and Transmission of Waves 4-1 Chapter 4 Reflection and Transmission of Waves ECE 3317 Dr. Stuart Long www.bridgat.com www.ranamok.com Boundary Conditions 4- -The convention is that is the outward pointing normal at the boundary

More information

PLC Papers. Created For:

PLC Papers. Created For: PLC Papers Created For: Algebra and proof 2 Grade 8 Objective: Use algebra to construct proofs Question 1 a) If n is a positive integer explain why the expression 2n + 1 is always an odd number. b) Use

More information

Solutions: Homework 7

Solutions: Homework 7 Solutions: Homework 7 Ex. 7.1: Frustrated Total Internal Reflection a) Consider light propagating from a prism, with refraction index n, into air, with refraction index 1. We fix the angle of incidence

More information

P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry

P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry GEOPHYSICS, VOL. 62, NO. 3 (MAY-JUNE 1997); P. 713 722, 7 FIGS., 1 TABLE. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry Andreas Rüger ABSTRACT

More information

Robust one-step (deconvolution + integration) seismic inversion in the frequency domain Ivan Priezzhev* and Aaron Scollard, Schlumberger

Robust one-step (deconvolution + integration) seismic inversion in the frequency domain Ivan Priezzhev* and Aaron Scollard, Schlumberger Robust one-step (deconvolution + integration) seismic inversion in the frequency domain Ivan Priezzhev and Aaron Scollard, Schlumberger Summary Seismic inversion requires two main operations relative to

More information

Stochastic vs Deterministic Pre-stack Inversion Methods. Brian Russell

Stochastic vs Deterministic Pre-stack Inversion Methods. Brian Russell Stochastic vs Deterministic Pre-stack Inversion Methods Brian Russell Introduction Seismic reservoir analysis techniques utilize the fact that seismic amplitudes contain information about the geological

More information

Math 3c Solutions: Exam 1 Fall Graph by eliiminating the parameter; be sure to write the equation you get when you eliminate the parameter.

Math 3c Solutions: Exam 1 Fall Graph by eliiminating the parameter; be sure to write the equation you get when you eliminate the parameter. Math c Solutions: Exam 1 Fall 16 1. Graph by eliiminating the parameter; be sure to write the equation you get when you eliminate the parameter. x tan t x tan t y sec t y sec t t π 4 To eliminate the parameter,

More information

Chapter 2 A Mathematical Toolbox

Chapter 2 A Mathematical Toolbox Chapter 2 Mathematical Toolbox Vectors and Scalars 1) Scalars have only a magnitude (numerical value) Denoted by a symbol, a 2) Vectors have a magnitude and direction Denoted by a bold symbol (), or symbol

More information

Linearized AVO in viscoelastic media Shahpoor Moradi,Kristopher A. Innanen, University of Calgary, Department of Geoscience, Calgary, Canada

Linearized AVO in viscoelastic media Shahpoor Moradi,Kristopher A. Innanen, University of Calgary, Department of Geoscience, Calgary, Canada Shahpoor Moradi,Kristopher. Innanen, University of Calgary, Department of Geoscience, Calgary, Canada SUMMRY Study of linearized reflectivity is very important for amplitude versus offset VO) analysis.

More information