Frequency dependent AVO analysis

Size: px
Start display at page:

Download "Frequency dependent AVO analysis"

Transcription

1 Frequency dependent AVO analysis of P-, S-, and C-wave elastic and anelastic reflection data Kris Innanen CREWES 23 rd Annual Sponsor s Meeting, Banff AB, Nov 30-Dec 2, 2011

2 Outline 1. Geophysical setting: elastic & anelastic targets 2. Formulation 3. Results: expansions truncated at 2 nd order 4. Predictions & observations: I: elastic: R PS and target V P ; importance of V P /V S = 2 II: anelastic: mode conversions from Q S / Q P contrasts III: anelastic: R PS and R SS inversion; Q 1 R/ ω 5. Conclusions

3 Geophysical setting θ R PS (θ, ω) R PP (θ, ω) R SS (φ, ω) φ R SP (φ, ω) V P0,V S0, ρ 0 V P0,V S0, ρ 0 V P1,V S1, ρ 1,Q P1,Q S1 V P1,V S1, ρ 1,Q P1,Q S1 Elastic overburden, anelastic target θ φ : P-wave angle of incidence : S-wave angle of incidence

4 Theoretical tools 1. Knott-Zoeppritz: exact equations for R PP, R PS, etc. precise amplitudes regardless of angle (for plane waves) inaccessible: geophysical interpretation difficult 2. Aki-Richards approximation for R PP, R PS, etc. highly accessible to geophysical interpretation inaccurate RE. large contrasts, influence of parameters

5 Example: R PS and target V P 1. Knott-Zoeppritz: exact equations for R PP, R PS A = ρ 1 /ρ 0 B = V S0 /V P0 C = V P1 /V P0 D = B(V S1 /V S0 ) X = sin θ S Y = (1 2Y 2 X 2 ) X S B CX S D S 1 BX S C DX 2B 2 XS 1 BS B 2AD 2 XS C ADS D S B 2B 2 XS B ACS D 2AD 2 XS D S Y = 1 Y 2 X 2 R P R S T P = T S X S 1 2BS 1 X S B Question: what influence does a ΔV P have on R PS? Answer: I haven t the foggiest idea. Inaccessible to analysis

6 Example: R PS and target V P 2. Aki-Richards: approximate form for R PS : R PS γ tan φ 2 [ (1 + δ) ρ ρ +2δ V S V S ] where δ = 2 sin2 θ γ 2 +2 cos θ cos φ γ Question: what influence does a ΔV P have on R PS? Answer: easy no effect. Highly accessible to analysis

7 Example: R PS and target V P P I S R φ 0 θ 0 V S0 = 1500m/s ρ 0 =2.0gm/cc V P0 = 3000gm/cc V S1 = 2300m/s ρ 1 =2.5gm/cc V P1A V P1B = 4000gm/cc = 4500gm/cc V P1C = 5000gm/cc / 0 1 %" %" %",)&, -. %" %" %" %# %# %# " # $ &'()*+ " # $ &'()*+ " # $ &'()*+ Highly accessible to analysis Wrong for certain angles/contrasts

8 Formulation 1. Matrix forms for Knott-Zoeppritz 2. Adjust for finite Q P, Q S in target medium 3. All contrasts 5 dimensionless perturbations: a VP =1 V P 2 0 VP 2 a VS =1 V S VS 2 1 a ρ =1 ρ 0 a QP = 1 a QS = 1 ρ 1 Q P1 Q S1 4. Expand R PP, R PS, R SP, R SS in orders of each & sinθ 5. Truncate at 1 st or 2 nd order 1 st order ~ Aki-Richards approximation with incidence angle 2 nd order ~ low-moderate angle, low-large contrast 3 rd order and higher ~ negligible

9 Results (anelastic P-P example) R PP (θ 0, ω) =R (1) PP (θ 0, ω)+r (2) PP (θ 0, ω)+..., The output is the set of Δs for the expansion: R (1) PP (θ 0, ω) = p a VP + s a VS + ρ a ρ + Qp a QP + Qs a QS R (2) PP (θ 0, ω) = pp a 2 VP + ps a VP a VS + pρ a VP a ρ + pqp a VP a QP + pqs a VP a QS + ss a 2 VS + sρ a VS a ρ + sqp a VS a QP + sqs a VS a QS + ρρ a 2 ρ + ρqp a ρ a QP + ρqs a ρ a QS + QpQp a 2 QP + QsQp a QP a QS + QsQs a 2 QS

10 Results (anelastic P-P example) Interpretability & ease of use. No target anelasticity? Q P contrast only? R (1) PP (θ 0, ω) = p a VP + s a VS + ρ a ρ + Qp a QP + Qs a QS R (2) PP (θ 0, ω) = pp a 2 VP + ps a VP a VS + pρ a VP a ρ + pqp a VP a QP + pqs a VP a QS + ss a 2 VS + sρ a VS a ρ + sqp a VS a QP + sqs a VS a QS + ρρ a 2 ρ + ρqp a ρ a QP + ρqs a ρ a QS + QpQp a 2 QP + QsQp a QP a QS + QsQs a 2 QS

11 Results (anelastic P-P example) Interpretability & ease of use. No target anelasticity? Q P contrast only? R (1) PP (θ 0, ω) = p a VP + s a VS + ρ a ρ + Qp a QP + Qs a QS R (2) PP (θ 0, ω) = pp a 2 VP + ps a VP a VS + pρ a VP a ρ + pqp a VP a QP + pqs a VP a QS + ss a 2 VS + sρ a VS a ρ + sqp a VS a QP + sqs a VS a QS + ρρ a 2 ρ + ρqp a ρ a QP + ρqs a ρ a QS + QpQp a 2 QP + QsQp a QP a QS + QsQs a 2 QS

12 Results (anelastic P-P example) Interpretability & ease of use. No target anelasticity? Q P contrast only? = 0 (Lines et al., 2011) R (1) PP (θ 0, ω) = p a VP + s a VS + ρ a ρ + Qp a QP + Qs a QS R (2) PP (θ 0, ω) = pp a 2 VP + ps a VP a VS + pρ a VP a ρ + pqp a VP a QP + pqs a VP a QS + ss a 2 VS + sρ a VS a ρ + sqp a VS a QP + sqs a VS a QS + ρρ a 2 ρ + ρqp a ρ a QP + ρqs a ρ a QS + QpQp a 2 QP + QsQp a QP a QS + QsQs a 2 QS

13 Observation I: R PS and target V P R PS (θ 0 )=Λ s a VS + Λ ρ a ρ +Λ ps a VP a VS + Λ pρ a VP a ρ + Λ ss a 2 VS + Λ sρ a VS a ρ + Λ ρρ a 2 ρ +... Linear: no influence of V P Nonlinear: coupling of V S, ρ with V P %" %" %" &'(& )* %" %" %" %# %# %# " # $ " # $ " # $ Linear &'(& )* %, %+ %+, %, %+ %+, %, %+ %+, %" + " (-.'/0 %" + " (-.'/0 %" + " (-.'/0

14 Observation I: R PS and target V P R PS (θ 0 )=Λ s a VS + Λ ρ a ρ +Λ ps a VP a VS + Λ pρ a VP a ρ + Λ ss a 2 VS + Λ sρ a VS a ρ + Λ ρρ a 2 ρ +... Linear: no influence of V P Nonlinear: coupling of V S, ρ with V P %" %" %" &'(& )* %" %" %" %# %# %# " # $ " # $ " # $ Nonlinear &'(& )* %, %+ %+, %, %+ %+, %, %+ %+, %" + " (-.'/0 %" + " (-.'/0 %" + " (-.'/0

15 Observation II: V P /V S = 2 ALL 2 nd order coupling involving ρ have coefficients Δ proportional to ρ[ ] 1 2 ( VS0 V P0 ) A V P -V S ratio of 2 has an inherent mathematical importance for the Zoeppritz equations, originating from elastodynamics + BCs alone.

16 Prediction: mode conversions from Q S contrasts θ R PS (θ, ω) Lines, Wong, Sondergeld, Treitel & others: P-P reflections from contrasts in Q only. V P0,V S0, ρ 0 Mode conversions: R V P0,V S0, ρ 0,Q P1,Q PS, R SP? S1 Λ Qp (θ 0, ω) =0 Λ QpQp (θ 0, ω) =0 Λ QsQs (θ 0, ω) =0 R PS (θ 0, ω) =Λ Qp a QP + Λ Qs a QS + Λ QpQp a 2 QP + Λ QpQs a QP a QS + Λ QsQs a 2 QS Λ Qs (θ 0, ω) =2F S (ω) ( VS0 V P0 ) sin θ 0 Λ QpQs (θ 0, ω) = ( VS0 V P0 ) F P (ω)f S (ω) sin θ 0

17 Prediction: mode conversions from Q S contrasts A Q S contrast alone generates a mode conversion The amplitude of the Q S mode conversion is proportional to A Q P contrast alone generates no mode conversion However, Q P contrasts will influence, to 2 nd order, the amplitudes of mode conversions due to Q S contrasts, with a strength proportional to ( ω log ω p ( ω log ) ω s ) ( ω log ω s ( VS0 ) V P0 ) sin θ 0 ( VS0 V P0 ) sin θ 0

18 Linear anelastic inversion Frequency rate of change of R PP, R PS, R SS ( π Q 1 S 2 V P 0 ω ) V S0 sin θ ω R PS(θ, ω) Q 1 S Q 1 P (2π ω) ω R PP(0, ω) [2π ω (1 7 sin2 φ) 1 ] ω R SS(φ, ω) ))(/'*0'12345(14'**313'52 $ 6(((+("(& )) (7("((. %" #" &'(& )) %# %#" %$ # " %$" " # #" $ *(+,-. " # #" $ *(+,-.

19 Conclusions 1. Accuracy v. interpretability scalable analysis 2. 2 nd order influences for low angles, large contrasts 3. Predictions & observations: I: elastic: R PS and target V P ; importance of V P /V S = 2 II: anelastic: mode conversions from Q S / Q P contrasts III: anelastic: R PS and R SS inversion; Q R/ ω 4. Practical frequency dependent AVO and/or AVF analysis? Next talk.

20 Acknowledgments CREWES project sponsors & researchers NSERC

21 Linear anelastic inversion R PP (θ), R PS (θ) in the elastic limit (-) and for 2 frequencies (-,-) & */. '( *2. 0,)0 11 0,)0 11 '( '( & " # $ % )*+,-. '4( '4 '$( '$ '(( '( *5. '#( ( & &( " )*+,-. 0,)0 13 0,)0 13 '( & " # $ % )*+,-. '& '" '6 *+. f = 3Hz f = 20Hz '# ( & &( " )*+,-. V P0 V P1 V S0 V S1 = 2000m/s = 5000m/s = 1500m/s = 3500m/s ρ 0 =2.0gm/cc ρ 1 =4.0gm/cc Q P1 = 30 Q S1 =5

22 Linear anelastic inversion DATA = [ R PP (θ fixed,ω 1 ), R PP (θ fixed,ω 2 ), R PP (θ fixed,ω 3 ) ] %$ '.+ %$ '6+ %# %#,)&, -- %",)&, -- %" %" " # $ &'()*+ "2 ':+ %" " # $ &'()*+ "2 '(+ Exact Recovered -) " 2 -) " 2 2 /0 /1 2 /0 /1 From R PP AVF: target Q P recovered, Q S not

23 Linear anelastic inversion DATA = [ R PS (θ fixed,ω 1 ), R PS (θ fixed,ω 3 ) ] )1- )9- %# %#.+(. /0 %$ %'.+(. /0 %$ %' %& %" " # #" $ ()*+,- )=- %& %" " # #" $ ()*+,- )*- Exact Recovered 5 5 / :;<4 & $ / :;<4 & $ $ $ From R PS AVF: target Q S recovered, Q P not

Matrix forms for the Knott-Zoeppritz equations

Matrix forms for the Knott-Zoeppritz equations Kris Innanen ABSTRACT In this note we derive convenient matrix forms for the Knott-Zoeppritz equations. The attempt is to recapture results used (quoted not derived) by Levin and Keys and to extend these

More information

The roles of baseline Earth elastic properties and time-lapse changes in determining difference AVO. Shahin Jabbari Kris Innanen

The roles of baseline Earth elastic properties and time-lapse changes in determining difference AVO. Shahin Jabbari Kris Innanen The roles of baseline Earth elastic properties and time-lapse changes in determining difference AO hahin Jabbari Kris Innanen Outline Introduction and review A framework for time-lapse AO alidation of

More information

A simple way to improve PP and PS AVO approximations. Chuck Ursenbach CREWES Sponsors Meeting Thursday, December 1, 2005

A simple way to improve PP and PS AVO approximations. Chuck Ursenbach CREWES Sponsors Meeting Thursday, December 1, 2005 A simple way to improve PP and PS AVO approximations Chuck Ursenbach CREWES Sponsors Meeting Thursday, December 1, 2005 Overview Notes on spherical-wave modeling Reflectivity Explorer observations Theoretical

More information

Application of nonlinear time-lapse AVO to the Pouce Coupe data set. Presented by Shahin Jabbari Supervisor Kris Innanen

Application of nonlinear time-lapse AVO to the Pouce Coupe data set. Presented by Shahin Jabbari Supervisor Kris Innanen Application of nonlinear time-lapse AVO to the Pouce Coupe data set Presented by Shahin Jabbari Supervisor Kris Innanen Outline Motivation and review Geology Seismic surveys Well tie and interpretation

More information

Modelling of linearized Zoeppritz approximations

Modelling of linearized Zoeppritz approximations Modelling of linearized Zoeppritz approximations Arnim B. Haase Zoeppritz approximations ABSTRACT The Aki and Richards approximations to Zoeppritz s equations as well as approximations by Stewart, Smith

More information

The signature of attenuation and anisotropy on AVO and inversion sensitivities

The signature of attenuation and anisotropy on AVO and inversion sensitivities The signature of attenuation and anisotropy on AVO and inversion sensitivities Shahpoor Moradi and Kristopher Innanen University of Calgary, Department of Geoscience, Calgary, Canada Summary We study the

More information

Estimation of fractured weaknesses and attenuation factors from azimuthal seismic data

Estimation of fractured weaknesses and attenuation factors from azimuthal seismic data Estimation of fractured weaknesses and attenuation factors from azimuthal seismic data Huaizhen Chen and Kris Innanen CREWES project Department of Geoscience University of Calgary Summary Seismic wave

More information

AVAZ inversion for fracture orientation and intensity: A physical modeling study. Faranak Mahmoudian Gary Margrave

AVAZ inversion for fracture orientation and intensity: A physical modeling study. Faranak Mahmoudian Gary Margrave AVAZ inversion for fracture orientation and intensity: A physical modeling study Faranak Mahmoudian Gary Margrave Objective Fracture orientation: direction of fracture planes Fracture intensity: number

More information

Azimuthal AVO and Curvature. Jesse Kolb* David Cho Kris Innanen

Azimuthal AVO and Curvature. Jesse Kolb* David Cho Kris Innanen Azimuthal AVO and Curvature Jesse Kolb* David Cho Kris Innanen Azimuthal AVO What is azimuthal AVO?: Analysis of incidence angle and azimuthal amplitude variations of reflection coefficients; Measures

More information

A collision theory of seismic waves applied to elastic VSP data

A collision theory of seismic waves applied to elastic VSP data A collision theory of seismic waves applied to elastic V data A collision theory of seismic waves applied to elastic V data Kris Innanen and Kevin Hall ABTRACT In previous CREWE reports we have been assembling

More information

The importance of the Vp/Vs ratio in determining the error propagation and the resolution in linear AVA inversion

The importance of the Vp/Vs ratio in determining the error propagation and the resolution in linear AVA inversion The importance of the Vp/Vs ratio in determining the error propagation and the resolution in linear AVA inversion Mattia Aleardi* & Alfredo Mazzotti University of Pisa Earth Sciences Department mattia.aleardi@dst.unipi.it

More information

AVAZ inversion for fracture orientation and intensity: a physical modeling study

AVAZ inversion for fracture orientation and intensity: a physical modeling study AVAZ inversion for fracture orientation and intensity: a physical modeling study Faranak Mahmoudian and Gary F Margrave ABSTRACT AVAZ inversion We present a pre-stack amplitude inversion of P-wave data

More information

= (G T G) 1 G T d. m L2

= (G T G) 1 G T d. m L2 The importance of the Vp/Vs ratio in determining the error propagation and the resolution in linear AVA inversion M. Aleardi, A. Mazzotti Earth Sciences Department, University of Pisa, Italy Introduction.

More information

Linearized AVO in viscoelastic media Shahpoor Moradi,Kristopher A. Innanen, University of Calgary, Department of Geoscience, Calgary, Canada

Linearized AVO in viscoelastic media Shahpoor Moradi,Kristopher A. Innanen, University of Calgary, Department of Geoscience, Calgary, Canada Shahpoor Moradi,Kristopher. Innanen, University of Calgary, Department of Geoscience, Calgary, Canada SUMMRY Study of linearized reflectivity is very important for amplitude versus offset VO) analysis.

More information

Joint PP and PS AVO inversion based on Zoeppritz equations

Joint PP and PS AVO inversion based on Zoeppritz equations Earthq Sci (2011)24: 329 334 329 doi:10.1007/s11589-011-0795-1 Joint PP and PS AVO inversion based on Zoeppritz equations Xiucheng Wei 1,2, and Tiansheng Chen 1,2 1 SINOPEC Key Laboratory of Seismic Multi-Component

More information

We Challenges in shale-reservoir characterization by means of AVA and AVAZ

We Challenges in shale-reservoir characterization by means of AVA and AVAZ We-06-15 Challenges in shale-reservoir characterization by means of AVA and AVAZ N.C. Banik* (WesternGeco), M. Egan (WesternGeco), A. Koesoemadinata (WesternGeco) & A. Padhi (WesternGeco) SUMMARY In most

More information

Approximations to the Zoeppritz equations and their use in AVO analysis

Approximations to the Zoeppritz equations and their use in AVO analysis GEOPHYSICS, VOL. 64, NO. 6 (NOVEMBER-DECEMBER 1999; P. 190 197, 4 FIGS., 1 TABLE. Approximations to the Zoeppritz equations their use in AVO analysis Yanghua Wang ABSTRACT To efficiently invert seismic

More information

Compensating for attenuation by inverse Q filtering. Carlos A. Montaña Dr. Gary F. Margrave

Compensating for attenuation by inverse Q filtering. Carlos A. Montaña Dr. Gary F. Margrave Compensating for attenuation by inverse Q filtering Carlos A. Montaña Dr. Gary F. Margrave Motivation Assess and compare the different methods of applying inverse Q filter Use Q filter as a reference to

More information

Pitfall in AVO Anisotropic Modeling: Plane Wave vs Spherical Wave. Qing Li May, 2003

Pitfall in AVO Anisotropic Modeling: Plane Wave vs Spherical Wave. Qing Li May, 2003 Pitfall in AVO Anisotropic Modeling: Plane Wave vs Spherical Wave Qing Li May, 2003 A Client s Model A client uses the following model to model anisotropic AVO effects and raised the question of discrepancy

More information

AVAZ inversion for fracture orientation and intensity: a physical modeling study

AVAZ inversion for fracture orientation and intensity: a physical modeling study AVAZ inversion for fracture orientation and intensity: a physical modeling study Faranak Mahmoudian*, Gary F. Margrave, and Joe Wong, University of Calgary. CREWES fmahmoud@ucalgary.ca Summary We present

More information

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics LECTURE OUTLINE CHAPTER 3 Vectors in Physics 3-1 Scalars Versus Vectors Scalar a numerical value (number with units). May be positive or negative. Examples: temperature, speed, height, and mass. Vector

More information

Elastic wave-equation migration for laterally varying isotropic and HTI media. Richard A. Bale and Gary F. Margrave

Elastic wave-equation migration for laterally varying isotropic and HTI media. Richard A. Bale and Gary F. Margrave Elastic wave-equation migration for laterally varying isotropic and HTI media Richard A. Bale and Gary F. Margrave a Outline Introduction Theory Elastic wavefield extrapolation Extension to laterally heterogeneous

More information

A simple way to improve AVO approximations

A simple way to improve AVO approximations A simple way to improve AVO approximations Charles P. Ursenbach A simple way to improve AVO approximations ABSTRACT Some twenty years ago it was suggested that the average angle, = ( + )/, in the Aki-Richards

More information

2. A die is rolled 3 times, the probability of getting a number larger than the previous number each time is

2. A die is rolled 3 times, the probability of getting a number larger than the previous number each time is . If P(A) = x, P = 2x, P(A B) = 2, P ( A B) = 2 3, then the value of x is (A) 5 8 5 36 6 36 36 2. A die is rolled 3 times, the probability of getting a number larger than the previous number each time

More information

An empirical study of hydrocarbon indicators

An empirical study of hydrocarbon indicators An empirical study of hydrocarbon indicators Brian Russell 1, Hong Feng, and John Bancroft An empirical study of hydrocarbon indicators 1 Hampson-Russell, A CGGVeritas Company, Calgary, Alberta, brian.russell@cggveritas.com

More information

Mapping the conversion point in vertical transversely isotropic (VTI) media

Mapping the conversion point in vertical transversely isotropic (VTI) media Mapping the conversion point in vertical transversely isotropic (VTI) media Jianli Yang and Don. C. Lawton Conversion-point mapping ABSTRACT The important aspect of converted-wave (P-S) seismology is that

More information

An investigation of the free surface effect

An investigation of the free surface effect An investigation of the free surface effect Nasser S. Hamarbitan and Gary F. Margrave, An investigation of the free surface effect ABSTRACT When P and S seismic waves are incident on a solid-air interface

More information

Amplitude variation with offset AVO. and. Direct Hydrocarbon Indicators DHI. Reflection at vertical incidence. Reflection at oblique incidence

Amplitude variation with offset AVO. and. Direct Hydrocarbon Indicators DHI. Reflection at vertical incidence. Reflection at oblique incidence Amplitude variation with offset AVO and Direct Hydrocarbon Indicators DHI Reflection at vertical incidence Reflection coefficient R(p) c α 1 S wavespeed β 1 density ρ 1 α 2 S wavespeed β 2 density ρ 2

More information

Figure 1. P wave speed, Vp, S wave speed, Vs, and density, ρ, for the different layers of Ostrander s gas sand model shown in SI units.

Figure 1. P wave speed, Vp, S wave speed, Vs, and density, ρ, for the different layers of Ostrander s gas sand model shown in SI units. Ambiguity in Resolving the Elastic Parameters of Gas Sands from Wide-Angle AVO Andrew J. Calvert - Simon Fraser University and David F. Aldridge - Sandia National Laboratories Summary We investigate the

More information

Modelling Class 1 AVO responses of a three layer system

Modelling Class 1 AVO responses of a three layer system Modelling Class 1 AVO responses of a three layer system Arnim B. Haase ABSTRACT Class 1 three-layer model AVO-responses are computed by a method developed from the Ewing-algorithm for point sources in

More information

P125 AVO for Pre-Resonant and Resonant Frequency Ranges of a Periodical Thin-Layered Stack

P125 AVO for Pre-Resonant and Resonant Frequency Ranges of a Periodical Thin-Layered Stack P125 AVO for Pre-Resonant and Resonant Frequency Ranges of a Periodical Thin-Layered Stack N. Marmalyevskyy* (Ukrainian State Geological Prospecting Institute), Y. Roganov (Ukrainian State Geological Prospecting

More information

2013 HSC Mathematics Extension 2 Marking Guidelines

2013 HSC Mathematics Extension 2 Marking Guidelines 3 HSC Mathematics Extension Marking Guidelines Section I Multiple-choice Answer Key Question Answer B A 3 D 4 A 5 B 6 D 7 C 8 C 9 B A 3 HSC Mathematics Extension Marking Guidelines Section II Question

More information

AVAZ and VVAZ practical analysis to estimate anisotropic properties

AVAZ and VVAZ practical analysis to estimate anisotropic properties AVAZ and VVAZ practical analysis to estimate anisotropic properties Yexin Liu*, SoftMirrors Ltd., Calgary, Alberta, Canada yexinliu@softmirrors.com Summary Seismic anisotropic properties, such as orientation

More information

( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear.

( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear. Problems 01 - POINT Page 1 ( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear. ( ) Prove that the two lines joining the mid-points of the pairs of opposite sides and the line

More information

Exact elastic impedance in orthorhombic media

Exact elastic impedance in orthorhombic media Exact elastic impedance in orthorhombic media F. Zhang (hina University of Petroleum), X.Y. Li (hina University of Petroleum, British Geological Survey) SUMMARY onventional elastic/ray impedance approximations

More information

Spherical wave AVO-modelling in elastic isotropic media

Spherical wave AVO-modelling in elastic isotropic media Spherical wave AVO-modelling in elastic isotropic media Arnim B. Haase and Charles P. Ursenbach ABSTRACT Spherical wave AVO The AVO-response of two-layer isotropic models for AVO-Classes 1, 2, 3 and 4

More information

UNIVERSITY OF CALGARY. Exact, linear and nonlinear AVO modeling in poroelastic media. Steven M. Kim A THESIS

UNIVERSITY OF CALGARY. Exact, linear and nonlinear AVO modeling in poroelastic media. Steven M. Kim A THESIS Important Notice This copy may be used only for the purposes of research and private study and any use of the copy for a purpose other than research or private study may require the authorization of the

More information

Inversion of seismic AVA data for porosity and saturation

Inversion of seismic AVA data for porosity and saturation Inversion of seismic AVA data for porosity and saturation Brikt Apeland Thesis for the degree Master of Science Department of Earth Science University of Bergen 27th June 213 2 Abstract Rock physics serves

More information

Earthscope Imaging Science & CIG Seismology Workshop

Earthscope Imaging Science & CIG Seismology Workshop Earthscope Imaging Science & CIG Seismology Introduction to Direct Imaging Methods Alan Levander Department of Earth Science Rice University 1 Two classes of scattered wave imaging systems 1. Incoherent

More information

ADDITIONAL MATHEMATICS

ADDITIONAL MATHEMATICS 005-CE A MATH HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 005 ADDITIONAL MATHEMATICS :00 pm 5:0 pm (½ hours) This paper must be answered in English 1. Answer ALL questions in Section A and any FOUR

More information

AVO inversion in V (x, z) media

AVO inversion in V (x, z) media Stanford Exploration Project, Report 97, July 8, 998, pages 75 94 AVO inversion in V (x, z) media Yalei Sun and Wenjie Dong keywords:.5-d Kirchhoff integral, AVO inversion, fluid-line section ABSTRACT

More information

Optimal Zoeppritz approximations

Optimal Zoeppritz approximations harles. Ursenbach ABSTRAT New approximations are developed for R and R S that are optimal in the sense that they preserve as much accuracy as possible with as much simplicity as possible. In particular,

More information

Comparison between least-squares reverse time migration and full-waveform inversion

Comparison between least-squares reverse time migration and full-waveform inversion Comparison between least-squares reverse time migration and full-waveform inversion Lei Yang, Daniel O. Trad and Wenyong Pan Summary The inverse problem in exploration geophysics usually consists of two

More information

Reflection and Transmission coefficient for VTI media

Reflection and Transmission coefficient for VTI media Reflection and Transmission coefficient for VTI media R. K. Sharma and R. J. Ferguson ABSTRACT VTI, R & T coefficients Presently, we obtain the reflection (R and transmission (T coefficients of plane waves

More information

Useful approximations for converted-wave AVO

Useful approximations for converted-wave AVO GEOPHYSICS VOL. 66 NO. 6 NOVEMBER-DECEMBER 001); P. 171 1734 14 FIGS. 3 TABLES. Useful approximations for converted-wave AVO Antonio C. B. Ramos and John P. Castagna ABSTRACT Converted-wave amplitude versus

More information

Nonlinear Bayesian joint inversion of seismic reflection

Nonlinear Bayesian joint inversion of seismic reflection Geophys. J. Int. (2) 142, Nonlinear Bayesian joint inversion of seismic reflection coefficients Tor Erik Rabben 1,, Håkon Tjelmeland 2, and Bjørn Ursin 1 1 Department of Petroleum Engineering and Applied

More information

Constrained inversion of P-S seismic data

Constrained inversion of P-S seismic data PS Inversion Constrained inversion of P-S seismic data Robert J. Ferguson, and Robert R. Stewart ABSTRACT A method to estimate S-wave interval velocity, using P-S seismic data is presented. The method

More information

Research Project Report

Research Project Report Research Project Report Title: Prediction of pre-critical seismograms from post-critical traces Principal Investigator: Co-principal Investigators: Mrinal Sen Arthur Weglein and Paul Stoffa Final report

More information

COMPARISON OF OPTICAL AND ELASTIC BREWSTER S ANGLES TO PROVIDE INVUITIVE INSIGHT INTO PROPAGATION OF P- AND S-WAVES. Robert H.

COMPARISON OF OPTICAL AND ELASTIC BREWSTER S ANGLES TO PROVIDE INVUITIVE INSIGHT INTO PROPAGATION OF P- AND S-WAVES. Robert H. COMPARISON OF OPTICAL AND ELASTIC BREWSTER S ANGLES TO PROVIDE INVUITIVE INSIGHT INTO PROPAGATION OF P- AND S-WAVES Robert H. Tatham Department of Geological Sciences The University of Texas at Austin

More information

Unphysical negative values of the anelastic SH plane wave energybased transmission coefficient

Unphysical negative values of the anelastic SH plane wave energybased transmission coefficient Shahin Moradi and Edward S. Krebes Anelastic energy-based transmission coefficient Unphysical negative values of the anelastic SH plane wave energybased transmission coefficient ABSTRACT Computing reflection

More information

Approximate- vs. full-hessian in FWI: 1D analytical and numerical experiments

Approximate- vs. full-hessian in FWI: 1D analytical and numerical experiments Approximate- vs. full-hessian in FWI: 1D analytical and numerical experiments Raul Cova and Kris Innanen ABSTRACT Feasibility of using Full Waveform Inversion (FWI) to build velocity models has been increasing

More information

Towards Tomographic Photoelasticity

Towards Tomographic Photoelasticity Towards Tomographic Photoelasticity Dr Rachel Tomlinson Department of Mechanical Engineering, Outline What is photoelasticity? 3D Photoelasticity Methods Advances in data collection and processing Future

More information

Stolt residual migration for converted waves

Stolt residual migration for converted waves Stanford Exploration Project, Report 11, September 18, 1, pages 1 6 Stolt residual migration for converted waves Daniel Rosales, Paul Sava, and Biondo Biondi 1 ABSTRACT P S velocity analysis is a new frontier

More information

GEOPHYSICS. A hybrid elastic one-way propagator for strong-contrast media and its application to subsalt migration

GEOPHYSICS. A hybrid elastic one-way propagator for strong-contrast media and its application to subsalt migration A hybrid elastic one-way propagator for strong-contrast media and its application to subsalt migration Journal: Geophysics Manuscript ID GEO-- Manuscript ype: Letters Date Submitted by the Author: -Nov-

More information

A new second order absorbing boundary layer formulation for anisotropic-elastic wavefeld simulation

A new second order absorbing boundary layer formulation for anisotropic-elastic wavefeld simulation A new second order absorbing boundary layer formulation for anisotropic-elastic wavefeld simulation Junxiao Li, Kris Innanen and Bing Wang University of Calgary China University of Petroleum-Beijing Summary

More information

Fundamentals of Fluid Dynamics: Waves in Fluids

Fundamentals of Fluid Dynamics: Waves in Fluids Fundamentals of Fluid Dynamics: Waves in Fluids Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/ tzielins/ Institute

More information

Integrating reservoir flow simulation with time-lapse seismic inversion in a heavy oil case study

Integrating reservoir flow simulation with time-lapse seismic inversion in a heavy oil case study Integrating reservoir flow simulation with time-lapse seismic inversion in a heavy oil case study Naimeh Riazi*, Larry Lines*, and Brian Russell** Department of Geoscience, University of Calgary **Hampson-Russell

More information

Snell s law in transversely isotropic media using linearized group velocities and related quantities

Snell s law in transversely isotropic media using linearized group velocities and related quantities Snell's law using group angles and velocities Snell s law in transversely isotropic media using linearized group velocities and related quantities P.F. Daley ABSTRACT Using a linearized approximation for

More information

A New Penalty-SQP Method

A New Penalty-SQP Method Background and Motivation Illustration of Numerical Results Final Remarks Frank E. Curtis Informs Annual Meeting, October 2008 Background and Motivation Illustration of Numerical Results Final Remarks

More information

A Case Study on Simulation of Seismic Reflections for 4C Ocean Bottom Seismometer Data in Anisotropic Media Using Gas Hydrate Model

A Case Study on Simulation of Seismic Reflections for 4C Ocean Bottom Seismometer Data in Anisotropic Media Using Gas Hydrate Model A Case Study on Simulation of Seismic Reflections for 4C Ocean Bottom Seismometer Data in Anisotropic Media Using Gas Hydrate Model Summary P. Prasada Rao*, N. K. Thakur 1, Sanjeev Rajput 2 National Geophysical

More information

4754A Mark Scheme June 2014 BUT

4754A Mark Scheme June 2014 BUT 4754A Mark Scheme June 04 3x A Bx C ( x)(4 x ) x 4 x correct form of partial fractions ( condone additional coeffs eg A B BUT x 4 x ** is M0 ) Ax B Cx D x 4 x * for 3x = A(4 + x ) + (Bx + C)( x) Multiplying

More information

Clarifying the underlying and fundamental meaning of the approximate linear inversion of seismic data

Clarifying the underlying and fundamental meaning of the approximate linear inversion of seismic data GEOPHYSICS, VOL. 74, NO. 6 NOVEMBER-DECEMBER 29; P. WCD1 WCD13, 1 FIG. 1.119/1.3256286 Clarifying the underlying and fundamental meaning of the approximate linear inversion of seismic data Arthur B. Weglein

More information

Society of Actuaries Leaving Cert Maths Revision 1 Solutions 19 November 2018

Society of Actuaries Leaving Cert Maths Revision 1 Solutions 19 November 2018 1. (Question 1, Paper 1, 2000) (a) 3x-5 + 1 = 3x 5 1 = 3x 6 = 3 (x-2) = 3 x-2 2-x = x-2 x-2 (x-2) (b) (c) Standard Factor Theorem Proof Let k be the third root so (x-t)²(x-k) = x³+ 3px + c (x²- 2tx + t²)(x-k)

More information

Mathematics Extension 2

Mathematics Extension 2 00 HIGHER SCHOOL CERTIFICATE EXAMINATION Mathematics Extension General Instructions Reading time 5 minutes Working time hours Write using black or blue pen Board-approved calculators may be used A table

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 000 MATHEMATICS UNIT (ADDITIONAL) AND /4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time) DIRECTIONS TO CANDIDATES Attempt ALL questions. ALL questions

More information

Answers to exam-style questions

Answers to exam-style questions Answers to exam-style questions Option B 1 = 1 mark 1 a i he forces are as shown in the left diagram: F F 8.0 m 0 8.0 m 0 W W he perpendicular distance between the axis and the line of the tension force

More information

Shocks in the ICM and the IPM

Shocks in the ICM and the IPM Shocks in the ICM and the IPM Tom Jones (University of Minnesota) 1 Outline Setting the stage for following talks The Interplanetary and Intracluster Media as Collisionless Plasmas Basic Introduction to

More information

P-wave and S-wave near-surface characterization in NEBC. Liliana Zuleta and Don C. Lawton 1 st December, 2011

P-wave and S-wave near-surface characterization in NEBC. Liliana Zuleta and Don C. Lawton 1 st December, 2011 P-wave and S-wave near-surface characterization in NEBC Liliana Zuleta and Don C. Lawton 1 st December, 2011 Outline Objective heory and procedure Velocity and depth analysis SH data analysis / P-wave

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation CE 530 Molecular Simulation Lecture 7 Beyond Atoms: Simulating Molecules David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu Review Fundamentals units, properties, statistical

More information

JUST THE MATHS UNIT NUMBER LAPLACE TRANSFORMS 3 (Differential equations) A.J.Hobson

JUST THE MATHS UNIT NUMBER LAPLACE TRANSFORMS 3 (Differential equations) A.J.Hobson JUST THE MATHS UNIT NUMBER 16.3 LAPLACE TRANSFORMS 3 (Differential equations) by A.J.Hobson 16.3.1 Examples of solving differential equations 16.3.2 The general solution of a differential equation 16.3.3

More information

Elastic Scattering. R = m 1r 1 + m 2 r 2 m 1 + m 2. is the center of mass which is known to move with a constant velocity (see previous lectures):

Elastic Scattering. R = m 1r 1 + m 2 r 2 m 1 + m 2. is the center of mass which is known to move with a constant velocity (see previous lectures): Elastic Scattering In this section we will consider a problem of scattering of two particles obeying Newtonian mechanics. The problem of scattering can be viewed as a truncated version of dynamic problem

More information

Framework for AVO gradient and intercept interpretation

Framework for AVO gradient and intercept interpretation GEOPHYSICS, VOL. 63, NO. 3 (MAY-JUNE 1998); P. 948 956, 10 FIGS., 2 TABLES. Framework for AVO gradient and intercept interpretation John P. Castagna, Herbert W. Swan, and Douglas J. Foster ABSTRACT Amplitude

More information

2012 HSC Mathematics Extension 2 Sample Answers

2012 HSC Mathematics Extension 2 Sample Answers 01 HSC Mathematics Extension Sample Answers When examination committees develop questions for the examination, they may write sample answers or, in the case of some questions, answers could include. The

More information

Reservoir Characterization using AVO and Seismic Inversion Techniques

Reservoir Characterization using AVO and Seismic Inversion Techniques P-205 Reservoir Characterization using AVO and Summary *Abhinav Kumar Dubey, IIT Kharagpur Reservoir characterization is one of the most important components of seismic data interpretation. Conventional

More information

Robust one-step (deconvolution + integration) seismic inversion in the frequency domain Ivan Priezzhev* and Aaron Scollard, Schlumberger

Robust one-step (deconvolution + integration) seismic inversion in the frequency domain Ivan Priezzhev* and Aaron Scollard, Schlumberger Robust one-step (deconvolution + integration) seismic inversion in the frequency domain Ivan Priezzhev and Aaron Scollard, Schlumberger Summary Seismic inversion requires two main operations relative to

More information

Compensating visco-acoustic effects in anisotropic resverse-time migration Sang Suh, Kwangjin Yoon, James Cai, and Bin Wang, TGS

Compensating visco-acoustic effects in anisotropic resverse-time migration Sang Suh, Kwangjin Yoon, James Cai, and Bin Wang, TGS Compensating visco-acoustic effects in anisotropic resverse-time migration Sang Suh, Kwangjin Yoon, James Cai, and Bin Wang, TGS SUMMARY Anelastic properties of the earth cause frequency dependent energy

More information

Expanding brackets and factorising

Expanding brackets and factorising CHAPTER 8 Epanding brackets and factorising 8 CHAPTER Epanding brackets and factorising 8.1 Epanding brackets There are three rows. Each row has n students. The number of students is 3 n 3n. Two students

More information

Far-field radiation from seismic sources in 2D attenuative anisotropic media

Far-field radiation from seismic sources in 2D attenuative anisotropic media CWP-535 Far-field radiation from seismic sources in 2D attenuative anisotropic media Yaping Zhu and Ilya Tsvankin Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines, Golden,

More information

Finite difference elastic modeling of the topography and the weathering layer

Finite difference elastic modeling of the topography and the weathering layer Finite difference elastic modeling of the topography and the weathering layer Saul E. Guevara and Gary F. Margrave ABSTRACT Finite difference 2D elastic modeling is used to study characteristics of the

More information

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I SYDE 372 Introduction to Pattern Recognition Probability Measures for Classification: Part I Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 Why use probability

More information

Linearized AVO and Poroelasticity for HRS9. Brian Russell, Dan Hampson and David Gray 2011

Linearized AVO and Poroelasticity for HRS9. Brian Russell, Dan Hampson and David Gray 2011 Linearized AO and oroelasticity for HR9 Brian Russell, Dan Hampson and David Gray 0 Introduction In this talk, we combine the linearized Amplitude ariations with Offset (AO) technique with the Biot-Gassmann

More information

Interpolation of nonstationary seismic records using a fast non-redundant S-transform

Interpolation of nonstationary seismic records using a fast non-redundant S-transform Interpolation of nonstationary seismic records using a fast non-redundant S-transform Mostafa Naghizadeh and Kris A. Innanen CREWES University of Calgary SEG annual meeting San Antonio 22 September 2011

More information

RAJASTHAN P.E.T. MATHS 1997

RAJASTHAN P.E.T. MATHS 1997 RAJASTHAN P.E.T. MATHS 1997 1. The value of k for which the points (0,0), (2,0), (0,1) and (0,k) lies on a circle is : (1) 1,2 (2) -1,2 (3) 0,2 (4) 0, 1 2. The area of the triangle formed by the tangent

More information

The Implementation of AVO Formulations to the Water Saturated Sandstone and Lithological Reflection in Shallow Gound Water

The Implementation of AVO Formulations to the Water Saturated Sandstone and Lithological Reflection in Shallow Gound Water J. Basic. Appl. Sci. Res., 6(5)6-33, 016 016, TextRoad Publication ISSN 090-4304 Journal of Basic and Applied Scientific Research www.textroad.com The Implementation of AVO Formulations to the Water Saturated

More information

Hydrogeophysics - Seismics

Hydrogeophysics - Seismics Hydrogeophysics - Seismics Matthias Zillmer EOST-ULP p. 1 Table of contents SH polarized shear waves: Seismic source Case study: porosity of an aquifer Seismic velocities for porous media: The Frenkel-Biot-Gassmann

More information

P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry

P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry GEOPHYSICS, VOL. 62, NO. 3 (MAY-JUNE 1997); P. 713 722, 7 FIGS., 1 TABLE. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry Andreas Rüger ABSTRACT

More information

Single-Phase Synchronverter for DC Microgrid Interface with AC Grid

Single-Phase Synchronverter for DC Microgrid Interface with AC Grid The First Power Electronics and Renewable Energy Workshop (PEREW 2017) March 1-2, 2017- Aswan Faculty of Engineering, Aswan Egypt Single-Phase Synchronverter for Microgrid Interface with AC Grid Presenter:

More information

2012 HSC Notes from the Marking Centre Mathematics Extension 2

2012 HSC Notes from the Marking Centre Mathematics Extension 2 Contents 01 HSC Notes from the Marking Centre Mathematics Extension Introduction...1 General comments...1 Question 11...1 Question 1... Question 13...3 Question 14...4 Question 15...5 Question 16...6 Introduction

More information

Estimation of Elastic Parameters Using Two-Term Fatti Elastic Impedance Inversion

Estimation of Elastic Parameters Using Two-Term Fatti Elastic Impedance Inversion Journal of Earth Science, Vol. 6, No. 4, p. 556 566, August 15 ISSN 1674-487X Printed in China DOI:.7/s158-15-564-5 Estimation of Elastic Parameters Using Two-Term Fatti Elastic Impedance Inversion Jin

More information

Matrix Theory and Differential Equations Homework 6 Solutions, 10/5/6

Matrix Theory and Differential Equations Homework 6 Solutions, 10/5/6 Matrix Theory and Differential Equations Homework 6 Solutions, 0/5/6 Question Find the general solution of the matrix system: x 3y + 5z 8t 5 x + 4y z + t Express your answer in the form of a particulaolution

More information

Improved modeling of spherical-wave AVO

Improved modeling of spherical-wave AVO Improved modeling of spherical-wave AVO Charles P. Ursenbach, Arnim B. Haase, and Jonathan E. Downton ABSTRACT Spherical-wave reection coefcients, which are vital in modeling supercritical reections, are

More information

Frequency Response of Linear Time Invariant Systems

Frequency Response of Linear Time Invariant Systems ME 328, Spring 203, Prof. Rajamani, University of Minnesota Frequency Response of Linear Time Invariant Systems Complex Numbers: Recall that every complex number has a magnitude and a phase. Example: z

More information

Relationships among elastic-wave values (R pp, R ps, R ss, Vp, Vs, ρ, σ, κ)

Relationships among elastic-wave values (R pp, R ps, R ss, Vp, Vs, ρ, σ, κ) Relationships among elastic-wave values (R pp, R ps, R ss, Vp, Vs, ρ, σ, κ) Robert R. Stewart, Qi Zhang, Felix Guthoff * ABSTRACT The average Vp/Vs value of a set of layers is a weighted sum of the interval

More information

OPAC102. The Acoustic Wave Equation

OPAC102. The Acoustic Wave Equation OPAC102 The Acoustic Wave Equation Acoustic waves in fluid Acoustic waves constitute one kind of pressure fluctuation that can exist in a compressible fluid. The restoring forces responsible for propagating

More information

Singular value decomposition. If only the first p singular values are nonzero we write. U T o U p =0

Singular value decomposition. If only the first p singular values are nonzero we write. U T o U p =0 Singular value decomposition If only the first p singular values are nonzero we write G =[U p U o ] " Sp 0 0 0 # [V p V o ] T U p represents the first p columns of U U o represents the last N-p columns

More information

9231 FURTHER MATHEMATICS

9231 FURTHER MATHEMATICS CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level MARK SCHEME for the May/June 201 series 921 FURTHER MATHEMATICS 921/21 Paper 2, maximum raw mark 100 This mark scheme is published as an aid to teachers

More information

Stochastic vs Deterministic Pre-stack Inversion Methods. Brian Russell

Stochastic vs Deterministic Pre-stack Inversion Methods. Brian Russell Stochastic vs Deterministic Pre-stack Inversion Methods Brian Russell Introduction Seismic reservoir analysis techniques utilize the fact that seismic amplitudes contain information about the geological

More information

4) If ax 2 + bx + c = 0 has equal roots, then c is equal. b) b 2. a) b 2

4) If ax 2 + bx + c = 0 has equal roots, then c is equal. b) b 2. a) b 2 Karapettai Nadar Boys Hr. Sec. School One Word Test No 1 Standard X Time: 20 Minutes Marks: (15 1 = 15) Answer all the 15 questions. Choose the orrect answer from the given four alternatives and write

More information

or i 2 = -1 i 4 = 1 Example : ( i ),, 7 i and 0 are complex numbers. and Imaginary part of z = b or img z = b

or i 2 = -1 i 4 = 1 Example : ( i ),, 7 i and 0 are complex numbers. and Imaginary part of z = b or img z = b 1 A- LEVEL MATHEMATICS P 3 Complex Numbers (NOTES) 1. Given a quadratic equation : x 2 + 1 = 0 or ( x 2 = -1 ) has no solution in the set of real numbers, as there does not exist any real number whose

More information