Exercise Set 6.2: Double-Angle and Half-Angle Formulas

Size: px
Start display at page:

Download "Exercise Set 6.2: Double-Angle and Half-Angle Formulas"

Transcription

1 Exercise Set : Double-Angle and Half-Angle Formulas Answer the following π 1 (a Evaluate sin π (b Evaluate π π (c Is sin = (d Graph f ( x = sin ( x and g ( x = sin ( x on the same set of axes (e Is sin ( x sin ( x = π (a Evaluate cos π (b Evaluate π π (c Is cos = (d Graph f ( x cos( x g ( x cos ( x = and = on the same set of axes (e Is cos ( x cos ( x = π 3 (a Evaluate tan π (b Evaluate π π (c Is tan = (d Graph f ( x tan ( x g ( x tan ( x = and = on the same set of axes (e Is tan ( x tan ( x = 4 Derive the formula for sin ( θ by using a sum formula on sin ( θ + θ Derive the formula for cos ( θ by using a sum formula on cos ( θ + θ Derive the formula for tan ( θ by using a sum formula on tan ( θ + θ 7 The sum formula for cosine yields the equation cos θ = cos θ sin θ To write cos( θ strictly in terms of the sine function, (a Using the Pythagorean identity ( θ + ( θ =, solve for cos sin 1 cos θ (b Substitute the result from part (a into the above equation for cos( θ 8 The sum formula for cosine yields the equation cos( θ = cos ( θ sin ( θ To write cos( θ strictly in terms of the cosine function, (a Using the Pythagorean identity ( θ + ( θ =, solve for cos sin 1 sin θ (b Substitute the result from part (a into the above equation for cos( θ Answer the following 9 Suppose that cos (a sin α (b cos α (c tan α 10 Suppose that tan (a sin α (b cos α (c tan α 11 Suppose that sin (a sin α (b cos α (c tan α 1 α = and 3 π < α < π π α = and π < α < 4 π α = and < α < π

2 Exercise Set : Double-Angle and Half-Angle Formulas 1 Suppose that tan 3 (a sin α (b cos α (c tan α α = and 3 π < α < π 4 sin 7 cos ( 7 tan 41 tan 41 cos ( Simplify each of the following expressions as much as possible without a calculator 13 sin ( 1 cos( β cos 1 ( α ( α tan 3 tan cos β β sin 1 cos 34 1 π 1 sin 1 tan ( tan sin ( x 7π 7π 19 0 sin ( 3 cos( 3 The formulas for sin x and x cos both contain a ± sign, meaning that a choice must be made as to whether or not the sign is positive or negative For each of the following examples, first state the quadrant in which the angle lies Then state whether the given expression is positive or negative (Do not evaluate the expression 9 (a cos( 10 (b sin ( 7 30 (a sin ( 1 (b cos( cos sin 1 tan 1 π sin (a (b 3 (a (b 1π 1 7π 19π 1

3 Exercise Set : Double-Angle and Half-Angle Formulas In the text, tan is defined as: ( s sin s tan = 1 + cos The following exercises can be used to derive this formula along with two additional formulas for tan 33 (a Write the formula for (b Write the formula for (c Derive a new formula for ` using the sin ( θ s identity tan ( θ =, where θ = cos θ Leave both the numerator and denominator in radical form Show all work 34 (a This exercise will outline the derivation for: sin ( s = In exercise 33, it was 1 + cos ( s discovered that ( s cos s = ± 1 + cos Rationalize the denominator by multiplying both the numerator and denominator by 1+ cos( s Simplify the expression and write the result for (b A detailed analysis of the signs of the trigonometric functions of s and s in various quadrants reveals that the ± symbol in part (a is unnecessary (This analysis is lengthy and will not be shown here Given this fact, rewrite the formula from part (a without the ± symbol (c How does this result from part (b compare with the formula given in the text for 3 (a In exercise 33, it was discovered that ( s cos s = ± 1 + cos Rationalize the numerator by multiplying both the numerator and denominator by cos ( s Simplify the expression and write the new result for (b A detailed analysis of the signs of the trigonometric functions of s and s in various quadrants reveals that the ± symbol in part (a is unnecessary (This analysis is lengthy and will not be shown here Given this fact, rewrite the formula from part (a without the ± symbol This gives yet another formula which can be used for (c Use the results from Exercises 33-3 to write the three formulas for Which formula seems easiest to use and why Which formula seems hardest to use and why 3 (a In the text, is defined as: ( s sin s = 1 + cos Multiply both the numerator and denominator of the right-hand side of the Then simplify to obtain a formula for Show all work equation by 1 cos( s (b How does the result from part (a compare to the identity obtained in part (b of Exercise 39

4 Exercise Set : Double-Angle and Half-Angle Formulas Answer the following SHOW ALL WORK Do not leave any radicals in the denominator, ie rationalize the denominator whenever appropriate 37 (a Find cos( 7 by using a sum or difference (b Find cos( 7 by using a half-angle (c Enter the results from parts (a and (b into a calculator and round each one to the nearest hundredth Are they the same 38 (a Find sin ( 1 by using a sum or difference (b Find sin ( 1 by using a half-angle (c Enter the results from parts (a and (b into a calculator and round each one to the nearest hundredth Are they the same 39 (a Find sin ( 11 by using a half-angle (b Find cos( 11 by using a half-angle (c Find tan ( 11 by computing sin ( 11 cos ( 11 (d Find tan ( 11 by using a half-angle 40 (a Find sin ( 10 by using a half-angle (b Find cos( 10 by using a half-angle (c Find tan ( 10 by computing sin 10 cos 10 (d Find tan ( 10 by using a half-angle Find the exact value of each of the following by using a half-angle Do not leave any radicals in the denominator, ie rationalize the denominator whenever appropriate 41 (a (b (c 4 (a (b (c 43 (a (b (c (a sin ( 17 (b cos( 17 (c tan ( 17 4 (a sin ( 8 (b cos( 8 (c tan ( 8 4 (a (b (c 1 1 1

5 Exercise Set : Double-Angle and Half-Angle Formulas Answer the following 47 If cos θ = and 3 π < θ < π, 9 (a Determine the quadrant of the terminal side of θ (b Complete the following: θ < < (c Determine the quadrant of the terminal side of θ (d Based on the answer to part (c, determine the sign of (e Based on the answer to part (c, determine the sign of (f Find the exact value of (g Find the exact value of (h Find the exact value of 48 If sin 1 3π θ = and π < θ <, (a Determine the quadrant of the terminal side of θ (b Complete the following: θ < < (c Determine the quadrant of the terminal side of θ (d Based on the answer to part (c, determine the sign of (e Based on the answer to part (c, determine the sign of (f Find the exact value of (g Find the exact value of (h Find the exact value of 49 If tan 7 π θ = and < θ < π, 3 (a Find the exact value of (b Find the exact value of (c Find the exact value of 0 If cos θ = and 3 π < θ < π, (a Find the exact value of (b Find the exact value of (c Find the exact value of Prove the following 1 ( x ( x cos sin ( x ( x = tan ( x ( x cos 3 sin 3 cos sin ( x = 3 1 sin ( x 1 + sin ( x = cos( x 4 cos 4 ( x sin 4 ( x = cos ( x x csc cot = ( x ( x x 1+ tan = x tan sec( θ

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations Pre-Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

6.1 Reciprocal, Quotient, and Pythagorean Identities.notebook. Chapter 6: Trigonometric Identities

6.1 Reciprocal, Quotient, and Pythagorean Identities.notebook. Chapter 6: Trigonometric Identities Chapter 6: Trigonometric Identities 1 Chapter 6 Complete the following table: 6.1 Reciprocal, Quotient, and Pythagorean Identities Pages 290 298 6.3 Proving Identities Pages 309 315 Measure of

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

NAME DATE PERIOD. Trigonometric Identities. Review Vocabulary Complete each identity. (Lesson 4-1) 1 csc θ = 1. 1 tan θ = cos θ sin θ = 1

NAME DATE PERIOD. Trigonometric Identities. Review Vocabulary Complete each identity. (Lesson 4-1) 1 csc θ = 1. 1 tan θ = cos θ sin θ = 1 5-1 Trigonometric Identities What You ll Learn Scan the text under the Now heading. List two things that you will learn in the lesson. 1. 2. Lesson 5-1 Active Vocabulary Review Vocabulary Complete each

More information

Trigonometry 1st Semester Review Packet (#2) C) 3 D) 2

Trigonometry 1st Semester Review Packet (#2) C) 3 D) 2 Trigonometry 1st Semester Review Packet (#) Name Find the exact value of the trigonometric function. Do not use a calculator. 1) sec A) B) D) ) tan - 5 A) -1 B) - 1 D) - Find the indicated trigonometric

More information

Algebra II B Review 5

Algebra II B Review 5 Algebra II B Review 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the measure of the angle below. y x 40 ο a. 135º b. 50º c. 310º d. 270º Sketch

More information

4-3 Trigonometric Functions on the Unit Circle

4-3 Trigonometric Functions on the Unit Circle Find the exact value of each trigonometric function, if defined. If not defined, write undefined. 9. sin The terminal side of in standard position lies on the positive y-axis. Choose a point P(0, 1) on

More information

Lesson 7.3 Exercises, pages

Lesson 7.3 Exercises, pages Lesson 7. Exercises, pages 8 A. Write each expression in terms of a single trigonometric function. cos u a) b) sin u cos u cot U tan U P DO NOT COPY. 7. Reciprocal and Quotient Identities Solutions 7 c)

More information

DISCOVERING THE PYTHAGOREAN IDENTITIES LEARNING TASK:

DISCOVERING THE PYTHAGOREAN IDENTITIES LEARNING TASK: Name: Class Period: DISCOVERING THE PYTHAGOREAN IDENTITIES LEARNING TASK: An identity is an equation that is valid for all values of the variable for which the epressions in the equation are defined. You

More information

Using the Definitions of the Trigonometric Functions

Using the Definitions of the Trigonometric Functions 1.4 Using the Definitions of the Trigonometric Functions Reciprocal Identities Signs and Ranges of Function Values Pythagorean Identities Quotient Identities February 1, 2013 Mrs. Poland Objectives Objective

More information

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically 1 MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically Definition Trigonometric identity Investigate 1. Using the diagram

More information

Ch 5 and 6 Exam Review

Ch 5 and 6 Exam Review Ch 5 and 6 Exam Review Note: These are only a sample of the type of exerices that may appear on the exam. Anything covered in class or in homework may appear on the exam. Use the fundamental identities

More information

Pre- Calculus Mathematics Trigonometric Identities and Equations

Pre- Calculus Mathematics Trigonometric Identities and Equations Pre- Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

Practice Test - Chapter 4

Practice Test - Chapter 4 Find the value of x. Round to the nearest tenth, if necessary. Find the measure of angle θ. Round to the nearest degree, if necessary. 1. An acute angle measure and the length of the hypotenuse are given,

More information

12) y = -2 sin 1 2 x - 2

12) y = -2 sin 1 2 x - 2 Review -Test 1 - Unit 1 and - Math 41 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find and simplify the difference quotient f(x + h) - f(x),

More information

Find: sinθ. Name: Date:

Find: sinθ. Name: Date: Name: Date: 1. Find the exact value of the given trigonometric function of the angle θ shown in the figure. (Use the Pythagorean Theorem to find the third side of the triangle.) Find: sinθ c a θ a a =

More information

Trigonometric Identities Exam Questions

Trigonometric Identities Exam Questions Trigonometric Identities Exam Questions Name: ANSWERS January 01 January 017 Multiple Choice 1. Simplify the following expression: cos x 1 cot x a. sin x b. cos x c. cot x d. sec x. Identify a non-permissible

More information

Section 6.2 Notes Page Trigonometric Functions; Unit Circle Approach

Section 6.2 Notes Page Trigonometric Functions; Unit Circle Approach Section Notes Page Trigonometric Functions; Unit Circle Approach A unit circle is a circle centered at the origin with a radius of Its equation is x y = as shown in the drawing below Here the letter t

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.1 Trigonometric Identities Copyright Cengage Learning. All rights reserved. Objectives Simplifying Trigonometric Expressions Proving

More information

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive)

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive) SESSION 6 Trig. Equations and Identities Math 30-1 R 3 (Revisit, Review and Revive) 1 P a g e 2 P a g e Mathematics 30-1 Learning Outcomes Specific Outcome 5: Solve, algebraically and graphically, first

More information

(C), 5 5, (B) 5, (C) (D), 20 20,

(C), 5 5, (B) 5, (C) (D), 20 20, Reg. Pre-Calculus Multiple Choice. An epression is given. Evaluate it at the given value, (A) 0 (B) 9 9 (D) 0 (E). Simplif the epression. (A) (B) (D) (E) 0. Simplif the epression. (A) (B) (D) ( + ) (E).

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 116 Test Review sheet SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. 1) Find the complement of an angle whose measure

More information

Chapter 5 Analytic Trigonometry

Chapter 5 Analytic Trigonometry Chapter 5 Analytic Trigonometry Section 1 Section 2 Section 3 Section 4 Section 5 Using Fundamental Identities Verifying Trigonometric Identities Solving Trigonometric Equations Sum and Difference Formulas

More information

A. Incorrect! This equality is true for all values of x. Therefore, this is an identity and not a conditional equation.

A. Incorrect! This equality is true for all values of x. Therefore, this is an identity and not a conditional equation. CLEP-Precalculus - Problem Drill : Trigonometric Identities No. of 0 Instructions: () Read the problem and answer choices carefully () Work the problems on paper as. Which of the following equalities is

More information

1 The six trigonometric functions

1 The six trigonometric functions Spring 017 Nikos Apostolakis 1 The six trigonometric functions Given a right triangle, once we select one of its acute angles, we can describe the sides as O (opposite of ), A (adjacent to ), and H ().

More information

Lesson 7.6 Exercises, pages

Lesson 7.6 Exercises, pages Lesson 7.6 Exercises, pages 658 665 A. Write each expression as a single trigonometric ratio. a) sin (u u) b) sin u sin u c) sin u sin u d) cos u cos u sin U cos U e) sin u sin u f) sin u sin u sin U 5.

More information

MTH 133: Plane Trigonometry

MTH 133: Plane Trigonometry MTH 133: Plane Trigonometry The Trigonometric Functions Right Angle Trigonometry Thomas W. Judson Department of Mathematics & Statistics Stephen F. Austin State University Fall 2017 Plane Trigonometry

More information

Section 7.3 Double Angle Identities

Section 7.3 Double Angle Identities Section 7.3 Double Angle Identities 3 Section 7.3 Double Angle Identities Two special cases of the sum of angles identities arise often enough that we choose to state these identities separately. Identities

More information

( ) + ( ) ( ) ( ) Exercise Set 6.1: Sum and Difference Formulas. β =, π π. π π. β =, evaluate tan β. Simplify each of the following expressions.

( ) + ( ) ( ) ( ) Exercise Set 6.1: Sum and Difference Formulas. β =, π π. π π. β =, evaluate tan β. Simplify each of the following expressions. Simplify each of the following expressions ( x cosx + cosx ( + x ( 60 θ + ( 60 + θ 6 cos( 60 θ + cos( 60 + θ 7 cosx + cosx+ 8 x+ + x 6 6 9 ( θ 80 + ( θ + 80 0 cos( 90 + θ + cos( 90 θ 7 Given that tan (

More information

CK- 12 Algebra II with Trigonometry Concepts 1

CK- 12 Algebra II with Trigonometry Concepts 1 14.1 Graphing Sine and Cosine 1. A.,1 B. (, 1) C. 3,0 D. 11 1, 6 E. (, 1) F. G. H. 11, 4 7, 1 11, 3. 3. 5 9,,,,,,, 4 4 4 4 3 5 3, and, 3 3 CK- 1 Algebra II with Trigonometry Concepts 1 4.ans-1401-01 5.

More information

Section 6.2 Trigonometric Functions: Unit Circle Approach

Section 6.2 Trigonometric Functions: Unit Circle Approach Section. Trigonometric Functions: Unit Circle Approach The unit circle is a circle of radius centered at the origin. If we have an angle in standard position superimposed on the unit circle, the terminal

More information

2.Draw each angle in standard position. Name the quadrant in which the angle lies. 2. Which point(s) lies on the unit circle? Explain how you know.

2.Draw each angle in standard position. Name the quadrant in which the angle lies. 2. Which point(s) lies on the unit circle? Explain how you know. Chapter Review Section.1 Extra Practice 1.Draw each angle in standard position. In what quadrant does each angle lie? a) 1 b) 70 c) 110 d) 00.Draw each angle in standard position. Name the quadrant in

More information

As we know, the three basic trigonometric functions are as follows: Figure 1

As we know, the three basic trigonometric functions are as follows: Figure 1 Trigonometry Basic Functions As we know, the three basic trigonometric functions are as follows: sin θ = cos θ = opposite hypotenuse adjacent hypotenuse tan θ = opposite adjacent Where θ represents an

More information

Inverse Circular Functions and Trigonometric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Inverse Circular Functions and Trigonometric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc. 6 Inverse Circular Functions and Trigonometric Equations Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 6.2 Trigonometric Equations Linear Methods Zero-Factor Property Quadratic Methods Trigonometric

More information

CHAPTERS 5-7 TRIG. FORMULAS PACKET

CHAPTERS 5-7 TRIG. FORMULAS PACKET CHAPTERS 5-7 TRIG. FORMULAS PACKET PRE-CALCULUS SECTION 5-2 IDENTITIES Reciprocal Identities sin x = ( 1 / csc x ) csc x = ( 1 / sin x ) cos x = ( 1 / sec x ) sec x = ( 1 / cos x ) tan x = ( 1 / cot x

More information

4.3 TRIGONOMETRY EXTENDED: THE CIRCULAR FUNCTIONS

4.3 TRIGONOMETRY EXTENDED: THE CIRCULAR FUNCTIONS 4.3 TRIGONOMETRY EXTENDED: THE CIRCULAR FUNCTIONS MR. FORTIER 1. Trig Functions of Any Angle We now extend the definitions of the six basic trig functions beyond triangles so that we do not have to restrict

More information

Honors Algebra 2 Chapter 14 Page 1

Honors Algebra 2 Chapter 14 Page 1 Section. (Introduction) Graphs of Trig Functions Objectives:. To graph basic trig functions using t-bar method. A. Sine and Cosecant. y = sinθ y y y y 0 --- --- 80 --- --- 30 0 0 300 5 35 5 35 60 50 0

More information

5.2. November 30, 2012 Mrs. Poland. Verifying Trigonometric Identities

5.2. November 30, 2012 Mrs. Poland. Verifying Trigonometric Identities 5.2 Verifying Trigonometric Identities Verifying Identities by Working With One Side Verifying Identities by Working With Both Sides November 30, 2012 Mrs. Poland Objective #4: Students will be able to

More information

A.P. Calculus Summer Assignment

A.P. Calculus Summer Assignment A.P. Calculus Summer Assignment This assignment is due the first day of class at the beginning of the class. It will be graded and counts as your first test grade. This packet contains eight sections and

More information

MIDTERM 4 PART 1 (CHAPTERS 5 AND 6: ANALYTIC & MISC. TRIGONOMETRY) MATH 141 FALL 2018 KUNIYUKI 150 POINTS TOTAL: 47 FOR PART 1, AND 103 FOR PART

MIDTERM 4 PART 1 (CHAPTERS 5 AND 6: ANALYTIC & MISC. TRIGONOMETRY) MATH 141 FALL 2018 KUNIYUKI 150 POINTS TOTAL: 47 FOR PART 1, AND 103 FOR PART Math 141 Name: MIDTERM 4 PART 1 (CHAPTERS 5 AND 6: ANALYTIC & MISC. TRIGONOMETRY) MATH 141 FALL 018 KUNIYUKI 150 POINTS TOTAL: 47 FOR PART 1, AND 103 FOR PART Show all work, simplify as appropriate, and

More information

Exam Review 2 nd Semester 6-1 Operations on Functions

Exam Review 2 nd Semester 6-1 Operations on Functions NAME DATE PERIOD Exam Review 2 nd Semester 6-1 Operations on Functions Find (f + g)(x), (f g)(x), (f g)(x), and (x) for each f(x) and g(x). 1. f(x) = 8x 3; g(x) = 4x + 5 2. f(x) = + x 6; g(x) = x 2 If

More information

A2T Trig Packet Unit 1

A2T Trig Packet Unit 1 A2T Trig Packet Unit 1 Name: Teacher: Pd: Table of Contents Day 1: Right Triangle Trigonometry SWBAT: Solve for missing sides and angles of right triangles Pages 1-7 HW: Pages 8 and 9 in Packet Day 2:

More information

1 Chapter 2 Perform arithmetic operations with polynomial expressions containing rational coefficients 2-2, 2-3, 2-4

1 Chapter 2 Perform arithmetic operations with polynomial expressions containing rational coefficients 2-2, 2-3, 2-4 NYS Performance Indicators Chapter Learning Objectives Text Sections Days A.N. Perform arithmetic operations with polynomial expressions containing rational coefficients. -, -5 A.A. Solve absolute value

More information

Jim Lambers Math 1B Fall Quarter Final Exam Solution (Version A)

Jim Lambers Math 1B Fall Quarter Final Exam Solution (Version A) Jim Lambers Math 1B Fall Quarter 004-05 Final Exam Solution (Version A) 1. Suppose that a culture initially contains 500 bacteria, and that the population doubles every hours. What is the population after

More information

Analytic Trigonometry

Analytic Trigonometry Chapter 5 Analytic Trigonometry Course Number Section 5.1 Using Fundamental Identities Objective: In this lesson you learned how to use fundamental trigonometric identities to evaluate trigonometric functions

More information

Notes on Radian Measure

Notes on Radian Measure MAT 170 Pre-Calculus Notes on Radian Measure Radian Angles Terri L. Miller Spring 009 revised April 17, 009 1. Radian Measure Recall that a unit circle is the circle centered at the origin with a radius

More information

PART I: NO CALCULATOR (144 points)

PART I: NO CALCULATOR (144 points) Math 10 Practice Final Trigonometry 11 th edition Lial, Hornsby, Schneider, and Daniels (Ch. 1-8) PART I: NO CALCULATOR (1 points) (.1,.,.,.) For the following functions: a) Find the amplitude, the period,

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1) Chapter 5-6 Review Math 116 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Use the fundamental identities to find the value of the trigonometric

More information

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear.

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear. Precalculus Review Functions to KNOW! 1. Polynomial Functions Types: General form Generic Graph and unique properties Constants Linear Quadratic Cubic Generalizations for Polynomial Functions - The domain

More information

Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r :

Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r : Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r : To convert from radians (rad) to degrees ( ) and vice versa, use the

More information

Math 1060 Midterm 2 Review Dugopolski Trigonometry Edition 3, Chapter 3 and 4

Math 1060 Midterm 2 Review Dugopolski Trigonometry Edition 3, Chapter 3 and 4 Math 1060 Midterm Review Dugopolski Trigonometry Edition, Chapter and.1 Use identities to find the exact value of the function for the given value. 1) sin α = and α is in quadrant II; Find tan α. Simplify

More information

Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r :

Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r : Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r : To convert from radians (rad) to degrees ( ) and vice versa, use the

More information

Practice Test - Chapter 4

Practice Test - Chapter 4 Find the value of x. Round to the nearest tenth, if necessary. 1. An acute angle measure and the length of the hypotenuse are given, so the sine function can be used to find the length of the side opposite.

More information

CHAPTER 5: Analytic Trigonometry

CHAPTER 5: Analytic Trigonometry ) (Answers for Chapter 5: Analytic Trigonometry) A.5. CHAPTER 5: Analytic Trigonometry SECTION 5.: FUNDAMENTAL TRIGONOMETRIC IDENTITIES Left Side Right Side Type of Identity (ID) csc( x) sin x Reciprocal

More information

5-3 Solving Trigonometric Equations

5-3 Solving Trigonometric Equations Solve each equation for all values of x. 1. 5 sin x + 2 = sin x The period of sine is 2π, so you only need to find solutions on the interval. The solutions on this interval are and. Solutions on the interval

More information

Lesson 5.3. Solving Trigonometric Equations

Lesson 5.3. Solving Trigonometric Equations Lesson 5.3 Solving To solve trigonometric equations: Use standard algebraic techniques learned in Algebra II. Look for factoring and collecting like terms. Isolate the trig function in the equation. Use

More information

6.1: Reciprocal, Quotient & Pythagorean Identities

6.1: Reciprocal, Quotient & Pythagorean Identities Math Pre-Calculus 6.: Reciprocal, Quotient & Pythagorean Identities A trigonometric identity is an equation that is valid for all values of the variable(s) for which the equation is defined. In this chapter

More information

5.3 Properties of Trigonometric Functions Objectives

5.3 Properties of Trigonometric Functions Objectives Objectives. Determine the Domain and Range of the Trigonometric Functions. 2. Determine the Period of the Trigonometric Functions. 3. Determine the Signs of the Trigonometric Functions in a Given Quadrant.

More information

Solve the problem. 2) If tan = 3.7, find the value of tan + tan ( + ) + tan ( + 2 ). A) 11.1 B) 13.1 C) D) undefined

Solve the problem. 2) If tan = 3.7, find the value of tan + tan ( + ) + tan ( + 2 ). A) 11.1 B) 13.1 C) D) undefined Assignment Bonus Chs 6,,8 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. In the problem, t is a real number and P = (x, y) is the point on the

More information

2. Algebraic functions, power functions, exponential functions, trig functions

2. Algebraic functions, power functions, exponential functions, trig functions Math, Prep: Familiar Functions (.,.,.5, Appendix D) Name: Names of collaborators: Main Points to Review:. Functions, models, graphs, tables, domain and range. Algebraic functions, power functions, exponential

More information

(Section 4.7: Inverse Trig Functions) 4.82 PART F: EVALUATING INVERSE TRIG FUNCTIONS. Think:

(Section 4.7: Inverse Trig Functions) 4.82 PART F: EVALUATING INVERSE TRIG FUNCTIONS. Think: PART F: EVALUATING INVERSE TRIG FUNCTIONS Think: (Section 4.7: Inverse Trig Functions) 4.82 A trig function such as sin takes in angles (i.e., real numbers in its domain) as inputs and spits out outputs

More information

C) ) cos (cos-1 0.4) 5) A) 0.4 B) 2.7 C) 0.9 D) 3.5 C) - 4 5

C) ) cos (cos-1 0.4) 5) A) 0.4 B) 2.7 C) 0.9 D) 3.5 C) - 4 5 Precalculus B Name Please do NOT write on this packet. Put all work and answers on a separate piece of paper. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

More information

Math 5 Trigonometry Chapter 4 Test Fall 08 Name Show work for credit. Write all responses on separate paper. Do not use a calculator.

Math 5 Trigonometry Chapter 4 Test Fall 08 Name Show work for credit. Write all responses on separate paper. Do not use a calculator. Math 5 Trigonometry Chapter Test Fall 08 Name Show work for credit. Write all responses on separate paper. Do not use a calculator. 23 1. Consider an arclength of t = travelled counter-clockwise around

More information

Trigonometric Identity Practice

Trigonometric Identity Practice Trigonometric Identity Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Identify the expression that completes the equation so that it is an identity.

More information

MTH30 Review Sheet. y = g(x) BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE

MTH30 Review Sheet. y = g(x) BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE MTH0 Review Sheet. Given the functions f and g described by the graphs below: y = f(x) y = g(x) (a)

More information

Date Period In each problem, angle C is a right angle. Solve each triangle rounding answers to the nearest tenth. 12) sec 29p 6

Date Period In each problem, angle C is a right angle. Solve each triangle rounding answers to the nearest tenth. 12) sec 29p 6 Pre Calc T YV0X1^S IKQuZtIal ]SEoofttCwIa_rZeq oltlaci.n T gaolslu ErEi]gjhkt[s\ Ar\efsQe_rsvoeXdM. Trig Review Name Date Period In each problem, angle C is a right angle. Solve each triangle rounding

More information

The Other Trigonometric

The Other Trigonometric The Other Trigonometric Functions By: OpenStaxCollege A wheelchair ramp that meets the standards of the Americans with Disabilities Act must make an angle with the ground whose tangent is or less, regardless

More information

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis.

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis. Learning Goals 1. To understand what standard position represents. 2. To understand what a principal and related acute angle are. 3. To understand that positive angles are measured by a counter-clockwise

More information

PART 1: USING SCIENTIFIC CALCULATORS (50 PTS.)

PART 1: USING SCIENTIFIC CALCULATORS (50 PTS.) Math 141 Name: MIDTERM 4 PART 1 (CHAPTERS 5 AND 6: ANALYTIC & MISC. TRIGONOMETRY) MATH 141 SPRING 2018 KUNIYUKI 150 POINTS TOTAL: 50 FOR PART 1, AND 100 FOR PART 2 Show all work, simplify as appropriate,

More information

Ê 7, 45 Ê 7 Ë 7 Ë. Time: 100 minutes. Name: Class: Date:

Ê 7, 45 Ê 7 Ë 7 Ë. Time: 100 minutes. Name: Class: Date: Class: Date: Time: 100 minutes Test1 (100 Trigonometry) Instructor: Koshal Dahal SHOW ALL WORK, EVEN FOR MULTIPLE CHOICE QUESTIONS, TO RECEIVE FULL CREDIT. 1. Find the terminal point P (x, y) on the unit

More information

NYS Algebra II and Trigonometry Suggested Sequence of Units (P.I's within each unit are NOT in any suggested order)

NYS Algebra II and Trigonometry Suggested Sequence of Units (P.I's within each unit are NOT in any suggested order) 1 of 6 UNIT P.I. 1 - INTEGERS 1 A2.A.1 Solve absolute value equations and inequalities involving linear expressions in one variable 1 A2.A.4 * Solve quadratic inequalities in one and two variables, algebraically

More information

Exercise Set 4.3: Unit Circle Trigonometry

Exercise Set 4.3: Unit Circle Trigonometry Eercise Set.: Unit Circle Trigonometr Sketch each of the following angles in standard position. (Do not use a protractor; just draw a quick sketch of each angle. Sketch each of the following angles in

More information

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters α( alpha), β ( beta), θ ( theta) as well as upper case letters A,B,

More information

Precalculus Table of Contents Unit 1 : Algebra Review Lesson 1: (For worksheet #1) Factoring Review Factoring Using the Distributive Laws Factoring

Precalculus Table of Contents Unit 1 : Algebra Review Lesson 1: (For worksheet #1) Factoring Review Factoring Using the Distributive Laws Factoring Unit 1 : Algebra Review Factoring Review Factoring Using the Distributive Laws Factoring Trinomials Factoring the Difference of Two Squares Factoring Perfect Square Trinomials Factoring the Sum and Difference

More information

A. Incorrect! For a point to lie on the unit circle, the sum of the squares of its coordinates must be equal to 1.

A. Incorrect! For a point to lie on the unit circle, the sum of the squares of its coordinates must be equal to 1. Algebra - Problem Drill 19: Basic Trigonometry - Right Triangle No. 1 of 10 1. Which of the following points lies on the unit circle? (A) 1, 1 (B) 1, (C) (D) (E), 3, 3, For a point to lie on the unit circle,

More information

Irrational Numbers Study Guide

Irrational Numbers Study Guide Square Roots and Cube Roots Positive Square Roots A positive number whose square is equal to a positive number b is denoted by the symbol b. The symbol b is automatically denotes a positive number. The

More information

Trigonometric Functions. Section 1.6

Trigonometric Functions. Section 1.6 Trigonometric Functions Section 1.6 Quick Review Radian Measure The radian measure of the angle ACB at the center of the unit circle equals the length of the arc that ACB cuts from the unit circle. Radian

More information

Fundamental Trigonometric Identities

Fundamental Trigonometric Identities Fundamental Trigonometric Identities MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: recognize and write the fundamental trigonometric

More information

Group/In-Class Exercises 8/18/09 g0401larson8etrig.tst 4.1 Radian and Degree Measure

Group/In-Class Exercises 8/18/09 g0401larson8etrig.tst 4.1 Radian and Degree Measure Group/In-Class Exercises 8/8/09 g040larson8etrig.tst 4. Radian and Degree Measure Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. The given angle

More information

How to use this Algebra II - Semester 2 Study Packet

How to use this Algebra II - Semester 2 Study Packet Excellence is not an act, but a habit. Aristotle Dear Algebra II Student, First of all, Congrats! for making it this far in your math career. Passing Algebra II is a huge mile-stone Give yourself a pat

More information

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained.

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained. Angle in Standard Position With the Cartesian plane, we define an angle in Standard Position if it has its vertex on the origin and one of its sides ( called the initial side ) is always on the positive

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Complete the identity. 1 1) sec - sec =? 1) ) csc (sin + cos ) =? ) 3) sin 1 + sin - sin 1 - sin =? 3)

More information

Section 7.2 Addition and Subtraction Identities. In this section, we begin expanding our repertoire of trigonometric identities.

Section 7.2 Addition and Subtraction Identities. In this section, we begin expanding our repertoire of trigonometric identities. Section 7. Addition and Subtraction Identities 47 Section 7. Addition and Subtraction Identities In this section, we begin expanding our repertoire of trigonometric identities. Identities The sum and difference

More information

Chapter 5 Analytic Trigonometry

Chapter 5 Analytic Trigonometry Chapter 5 Analytic Trigonometry Overview: 5.1 Using Fundamental Identities 5.2 Verifying Trigonometric Identities 5.3 Solving Trig Equations 5.4 Sum and Difference Formulas 5.5 Multiple-Angle and Product-to-sum

More information

Lesson 10.2 Radian Measure and Arc Length

Lesson 10.2 Radian Measure and Arc Length Lesson 10.1 Defining the Circular Functions 1. Find the eact value of each epression. a. sin 0 b. cos 5 c. sin 150 d. cos 5 e. sin(0 ) f. sin(10 ) g. sin 15 h. cos 0 i. sin(0 ) j. sin 90 k. sin 70 l. sin

More information

Trigonometric Functions. Concept Category 3

Trigonometric Functions. Concept Category 3 Trigonometric Functions Concept Category 3 Goals 6 basic trig functions (geometry) Special triangles Inverse trig functions (to find the angles) Unit Circle: Trig identities a b c The Six Basic Trig functions

More information

(ii) y = ln 1 ] t 3 t x x2 9

(ii) y = ln 1 ] t 3 t x x2 9 Study Guide for Eam 1 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its epression to be well-defined. Some eamples of the conditions are: What is inside

More information

MTH 121 Fall 2007 Essex County College Division of Mathematics and Physics Worksheet #1 1

MTH 121 Fall 2007 Essex County College Division of Mathematics and Physics Worksheet #1 1 MTH Fall 007 Essex County College Division of Mathematics and Physics Worksheet # Preamble It is extremely important that you complete the following two items as soon as possible. Please send an email

More information

0615a2. Algebra 2/Trigonometry Regents Exam x 2 y? 4 x. y 2. x 3 y

0615a2. Algebra 2/Trigonometry Regents Exam x 2 y? 4 x. y 2. x 3 y Algebra /Trigonometry Regents Exam 065 www.jmap.org 065a Which list of ordered pairs does not represent a one-to-one function? ) (, ),(,0),(,),(4,) ) (,),(,),(,4),(4,6) ) (,),(,4),(,),(4,) 4) (,5),(,4),(,),(4,0)

More information

3.1 Fundamental Identities

3.1 Fundamental Identities www.ck.org Chapter. Trigonometric Identities and Equations. Fundamental Identities Introduction We now enter into the proof portion of trigonometry. Starting with the basic definitions of sine, cosine,

More information

MATHEMATICS Lecture. 4 Chapter.8 TECHNIQUES OF INTEGRATION By Dr. Mohammed Ramidh

MATHEMATICS Lecture. 4 Chapter.8 TECHNIQUES OF INTEGRATION By Dr. Mohammed Ramidh MATHEMATICS Lecture. 4 Chapter.8 TECHNIQUES OF INTEGRATION By TECHNIQUES OF INTEGRATION OVERVIEW The Fundamental Theorem connects antiderivatives and the definite integral. Evaluating the indefinite integral,

More information

Troy High School AP Calculus Summer Packet

Troy High School AP Calculus Summer Packet Troy High School AP Calculus Summer Packet As instructors of AP Calculus, we have etremely high epectations of students taking our courses. We epect a certain level of independence to be demonstrated by

More information

Chapter 5 Trigonometric Functions of Angles

Chapter 5 Trigonometric Functions of Angles Chapter 5 Trigonometric Functions of Angles Section 3 Points on Circles Using Sine and Cosine Signs Signs I Signs (+, +) I Signs II (+, +) I Signs II (, +) (+, +) I Signs II (, +) (+, +) I III Signs II

More information

3) sin 265 cos 25 - cos 265 sin 25 C) Find the exact value by using a sum or difference identity. 4) sin 165 C) - 627

3) sin 265 cos 25 - cos 265 sin 25 C) Find the exact value by using a sum or difference identity. 4) sin 165 C) - 627 Bonus Assignment Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use the given information to find the exact value of the expression. 1) sin

More information

Trigonometry LESSON SIX - Trigonometric Identities I Lesson Notes

Trigonometry LESSON SIX - Trigonometric Identities I Lesson Notes LESSON SIX - Trigonometric Identities I Example Understanding Trigonometric Identities. a) Why are trigonometric identities considered to be a special type of trigonometric equation? Trigonometric Identities

More information

Unit 6 Trigonometric Identities

Unit 6 Trigonometric Identities Unit 6 Trigonometric Identities Prove trigonometric identities Solve trigonometric equations Prove trigonometric identities, using: Reciprocal identities Quotient identities Pythagorean identities Sum

More information

Chapter 8 Integration Techniques and Improper Integrals

Chapter 8 Integration Techniques and Improper Integrals Chapter 8 Integration Techniques and Improper Integrals 8.1 Basic Integration Rules 8.2 Integration by Parts 8.4 Trigonometric Substitutions 8.5 Partial Fractions 8.6 Numerical Integration 8.7 Integration

More information

Practice 14. imathesis.com By Carlos Sotuyo

Practice 14. imathesis.com By Carlos Sotuyo Practice 4 imathesis.com By Carlos Sotuyo Suggested solutions for Miscellaneous exercises 0, problems 5-0, pages 53 to 55 from Pure Mathematics, by Hugh Neil and Douglas Quailing, Cambridge University

More information