Motion in Three Dimensions

Size: px
Start display at page:

Download "Motion in Three Dimensions"

Transcription

1 Motion in Three Dimensions We ve learned about the relationship between position, velocity and acceleration in one dimension Now we need to extend those ideas to the three-dimensional world In the 1-D case, we described x, v, and a with simple numbers Sign indicated direction In three dimensions, there are an infinite number of possible directions, so We represent position, velocity, and acceleration with vectors A vector can be represented by an arrow: Tail Length indicates magnitude Head

2 ector Basics The arrow picture of a vector embodies the concepts we need Size and direction But we still need to treat these object mathematically Symbol for a vector is or Length is written as Can start by looking at components of the vector 2-D case: x y θ ( x, y ) Can choose x and y axes at our convenience y x x = cosθ y = sinθ

3 3-D case (see diagram on next page): 1. Choose one of the axes, and find the angle between the vector and that axis We typically choose the z axis, and call the angle θ 2. The vector and the axis chosen above form a plane. Find the angle between that plane and one of the other two axes We typically choose the x axis, and call this angle φ 3. The components of a 3-D vector are: x = sinθ cosϕ y = sinθ sinϕ z = cosθ

4 z xz θ y x φ y x

5 ector Component Relations The magnitude of the vector is given by the sum, in quadrature, of the components: = v + v + v x y z The direction is also determined uniquely by the components: φ v 1 y = tan v x v + v θ = tan ; 0 < θ < 180 vz x y o Take note of signs of v x and v y to get the correct quadrant

6 ector Addition We say that is the sum of its components: = x + y For this to work, we need to define what + means for vectors Graphical representation: B A + = B A + B A Reasonable? A + B = B + A A + (-A) = A A = 0 Intuitive? If one walks along A, and then along B, one arrives at the position given by A+B

7 One can also add vectors mathematically, using components: Let A = (A x, A y, A z ) and B = (B x, B y, B z ) Then A + B is: (A x + B x )i + (A y + B y )j + (A z + B z )k i,j, and k are vectors of length 1 along the x, y, and z directions -- we call them unit vectors Multiplication: Muliplying a vector by a number is straightforward: ca = ca x i + ca y j + ca z k Simply makes vector longer or shorter (and reverses direction if c < 0) What about multiplying two vectors? We ll get to that later

8 Kinematics with ectors We now consider a particle moving in three dimensions It s location at any time is given by a position vector r: z r(t ) r r(t) x y The average velocity between times t and t is: v avg ( t ) ( t) r r r = = t t t

9 From the definition of vector addition: So, ( ( ) ( )) ( ) ( ) ( ) ( ) ( ) ( ) r = r t r t i + r t r t j + r t r t k x x y y z z = r i + r j + r k x y z r r r r t t t t x y z = i + j+ k But we usually want to know the instantaneous velocity: dr dr dr x y drz v( t) = = i + j + k dt dt dt dt

10 Similarly, acceleration is given by: dv dv dv x y dvz a( t) = = i + j + k dt dt dt dt d r d r x y d rz = i + j+ k dt dt dt In summary, each component of the three-dimensional kinematic vectors follows the rules for one-dimensional motion Can think of it as three sets of 1-dimensional equations

11 Example A particle starts from rest at r = 0, and undergoes an acceleration given by a = Ati + Bcos(Ct)j. Where is the particle at time t? We need to know r(t), and the first step is finding v(t): v ( ) = a( ) t t dt ( ) = Ati + Bsin Ct j dt 1 2 B = At + c1i + sin( Ct) + c2j 2 C From the initial conditions, we know that c 1 = c 2 = 0

12 One more integration gives us: r ( ) = v( ) t t dt 1 B At i sin( Ct) j dt 2 C 2 = + 1 = At 6 3 B i C cos ( Ct) B C 2 2 j

13 With A = 1m/s 3, B = 100m/s 2 and C = 1/s, this motion looks like: 300 y(m) x(m)

14 The Real Definition of a ector ectors are defined by their behavior under a rotation of the coordinate system Magnitude remains constant, but direction changes in response to rotation This implies a linear transformation of the vector components under rotation Any object whose components transform linearly when the coordinate system is changed is called a tensor ectors are a special case of tensors as are scalars, defined as quantities that don t change at all when the coordinate system changes Temperature, for example, is a scalar We ll only deal with scalars and vectors in this course

Vectors in Physics. Topics to review:

Vectors in Physics. Topics to review: Vectors in Physics Topics to review: Scalars Versus Vectors The Components of a Vector Adding and Subtracting Vectors Unit Vectors Position, Displacement, Velocity, and Acceleration Vectors Relative Motion

More information

Chapter 2 A Mathematical Toolbox

Chapter 2 A Mathematical Toolbox Chapter 2 Mathematical Toolbox Vectors and Scalars 1) Scalars have only a magnitude (numerical value) Denoted by a symbol, a 2) Vectors have a magnitude and direction Denoted by a bold symbol (), or symbol

More information

SECTION 6.3: VECTORS IN THE PLANE

SECTION 6.3: VECTORS IN THE PLANE (Section 6.3: Vectors in the Plane) 6.18 SECTION 6.3: VECTORS IN THE PLANE Assume a, b, c, and d are real numbers. PART A: INTRO A scalar has magnitude but not direction. We think of real numbers as scalars,

More information

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics LECTURE OUTLINE CHAPTER 3 Vectors in Physics 3-1 Scalars Versus Vectors Scalar a numerical value (number with units). May be positive or negative. Examples: temperature, speed, height, and mass. Vector

More information

General Physics I, Spring Vectors

General Physics I, Spring Vectors General Physics I, Spring 2011 Vectors 1 Vectors: Introduction A vector quantity in physics is one that has a magnitude (absolute value) and a direction. We have seen three already: displacement, velocity,

More information

Winter 2017 Ma 1b Analytical Problem Set 2 Solutions

Winter 2017 Ma 1b Analytical Problem Set 2 Solutions 1. (5 pts) From Ch. 1.10 in Apostol: Problems 1,3,5,7,9. Also, when appropriate exhibit a basis for S. Solution. (1.10.1) Yes, S is a subspace of V 3 with basis {(0, 0, 1), (0, 1, 0)} and dimension 2.

More information

Unit IV: Introduction to Vector Analysis

Unit IV: Introduction to Vector Analysis Unit IV: Introduction to Vector nalysis s you learned in the last unit, there is a difference between speed and velocity. Speed is an example of a scalar: a quantity that has only magnitude. Velocity is

More information

Chapter 3: 2D Kinematics Tuesday January 20th

Chapter 3: 2D Kinematics Tuesday January 20th Chapter 3: 2D Kinematics Tuesday January 20th Chapter 3: Vectors Review: Properties of vectors Review: Unit vectors Position and displacement Velocity and acceleration vectors Relative motion Constant

More information

Chapter 2 One-Dimensional Kinematics

Chapter 2 One-Dimensional Kinematics Review: Chapter 2 One-Dimensional Kinematics Description of motion in one dimension Copyright 2010 Pearson Education, Inc. Review: Motion with Constant Acceleration Free fall: constant acceleration g =

More information

Mathematical review trigonometry vectors Motion in one dimension

Mathematical review trigonometry vectors Motion in one dimension Mathematical review trigonometry vectors Motion in one dimension Used to describe the position of a point in space Coordinate system (frame) consists of a fixed reference point called the origin specific

More information

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3. Quiz No. 1: Tuesday Jan. 31 Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.20 Chapter 3 Vectors and Two-Dimensional Kinematics Properties of

More information

Vectors. Introduction. Prof Dr Ahmet ATAÇ

Vectors. Introduction. Prof Dr Ahmet ATAÇ Chapter 3 Vectors Vectors Vector quantities Physical quantities that have both n u m e r i c a l a n d d i r e c t i o n a l properties Mathematical operations of vectors in this chapter A d d i t i o

More information

Span and Linear Independence

Span and Linear Independence Span and Linear Independence It is common to confuse span and linear independence, because although they are different concepts, they are related. To see their relationship, let s revisit the previous

More information

Name: Lab Partner: Section: In this experiment vector addition, resolution of vectors into components, force, and equilibrium will be explored.

Name: Lab Partner: Section: In this experiment vector addition, resolution of vectors into components, force, and equilibrium will be explored. Chapter 3 Vectors Name: Lab Partner: Section: 3.1 Purpose In this experiment vector addition, resolution of vectors into components, force, and equilibrium will be explored. 3.2 Introduction A vector is

More information

A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units.

A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units. Vectors and Scalars A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units. Scalar Example Speed Distance Age Heat Number

More information

Demo: x-t, v-t and a-t of a falling basket ball.

Demo: x-t, v-t and a-t of a falling basket ball. Demo: x-t, v-t and a-t of a falling basket ball. I-clicker question 3-1: A particle moves with the position-versus-time graph shown. Which graph best illustrates the velocity of the particle as a function

More information

Vectors. In kinematics, the simplest concept is position, so let s begin with a position vector shown below:

Vectors. In kinematics, the simplest concept is position, so let s begin with a position vector shown below: Vectors Extending the concepts of kinematics into two and three dimensions, the idea of a vector becomes very useful. By definition, a vector is a quantity with both a magnitude and a spatial direction.

More information

1 Matrices and matrix algebra

1 Matrices and matrix algebra 1 Matrices and matrix algebra 1.1 Examples of matrices A matrix is a rectangular array of numbers and/or variables. For instance 4 2 0 3 1 A = 5 1.2 0.7 x 3 π 3 4 6 27 is a matrix with 3 rows and 5 columns

More information

Volume in n Dimensions

Volume in n Dimensions Volume in n Dimensions MA 305 Kurt Bryan Introduction You ve seen that if we have two vectors v and w in two dimensions then the area spanned by these vectors can be computed as v w = v 1 w 2 v 2 w 1 (where

More information

Lecture 3: Vectors. Any set of numbers that transform under a rotation the same way that a point in space does is called a vector.

Lecture 3: Vectors. Any set of numbers that transform under a rotation the same way that a point in space does is called a vector. Lecture 3: Vectors Any set of numbers that transform under a rotation the same way that a point in space does is called a vector i.e., A = λ A i ij j j In earlier courses, you may have learned that a vector

More information

Fact: Every matrix transformation is a linear transformation, and vice versa.

Fact: Every matrix transformation is a linear transformation, and vice versa. Linear Transformations Definition: A transformation (or mapping) T is linear if: (i) T (u + v) = T (u) + T (v) for all u, v in the domain of T ; (ii) T (cu) = ct (u) for all scalars c and all u in the

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 15.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

More information

Vectors and 2D Kinematics. AIT AP Physics C

Vectors and 2D Kinematics. AIT AP Physics C Vectors and 2D Kinematics Coordinate Systems Used to describe the position of a point in space Coordinate system consists of a fixed reference point called the origin specific axes with scales and labels

More information

Lecture 37: Principal Axes, Translations, and Eulerian Angles

Lecture 37: Principal Axes, Translations, and Eulerian Angles Lecture 37: Principal Axes, Translations, and Eulerian Angles When Can We Find Principal Axes? We can always write down the cubic equation that one must solve to determine the principal moments But if

More information

Motion in One Dimension

Motion in One Dimension Motion in One Dimension Much of the physics we ll learn this semester will deal with the motion of objects We start with the simple case of one-dimensional motion Or, motion in x: As always, we begin by

More information

REVIEW - Vectors. Vectors. Vector Algebra. Multiplication by a scalar

REVIEW - Vectors. Vectors. Vector Algebra. Multiplication by a scalar J. Peraire Dynamics 16.07 Fall 2004 Version 1.1 REVIEW - Vectors By using vectors and defining appropriate operations between them, physical laws can often be written in a simple form. Since we will making

More information

2- Scalars and Vectors

2- Scalars and Vectors 2- Scalars and Vectors Scalars : have magnitude only : Length, time, mass, speed and volume is example of scalar. v Vectors : have magnitude and direction. v The magnitude of is written v v Position, displacement,

More information

North by Northwest - An Introduction to Vectors

North by Northwest - An Introduction to Vectors HPP A9 North by Northwest - An Introduction to Vectors Exploration GE 1. Let's suppose you and a friend are standing in the parking lot near the Science Building. Your friend says, "I am going to run at

More information

Kinematics in Two Dimensions; 2D- Vectors

Kinematics in Two Dimensions; 2D- Vectors Kinematics in Two Dimensions; 2D- Vectors Addition of Vectors Graphical Methods Below are two example vector additions of 1-D displacement vectors. For vectors in one dimension, simple addition and subtraction

More information

Vectors and Coordinate Systems

Vectors and Coordinate Systems Vectors and Coordinate Systems In Newtonian mechanics, we want to understand how material bodies interact with each other and how this affects their motion through space. In order to be able to make quantitative

More information

Vectors a vector is a quantity that has both a magnitude (size) and a direction

Vectors a vector is a quantity that has both a magnitude (size) and a direction Vectors In physics, a vector is a quantity that has both a magnitude (size) and a direction. Familiar examples of vectors include velocity, force, and electric field. For any applications beyond one dimension,

More information

Clarifications. 1/31/2007 Physics 253

Clarifications. 1/31/2007 Physics 253 1 Clarifications Extra Credit There are two assignments for each unit. The total credit is 10 points/ unit To be precise the score for each unit equals the number of questions answered correctly divided

More information

VECTORS REVIEW. ii. How large is the angle between lines A and B? b. What is angle C? 45 o. 30 o. c. What is angle θ? d. How large is θ?

VECTORS REVIEW. ii. How large is the angle between lines A and B? b. What is angle C? 45 o. 30 o. c. What is angle θ? d. How large is θ? VECTOS EVIEW Solve the following geometric problems. a. Line touches the circle at a single point. Line etends through the center of the circle. i. What is line in reference to the circle? ii. How large

More information

Chapter 3 Vectors in Physics. Copyright 2010 Pearson Education, Inc.

Chapter 3 Vectors in Physics. Copyright 2010 Pearson Education, Inc. Chapter 3 Vectors in Physics Units of Chapter 3 Scalars Versus Vectors The Components of a Vector Adding and Subtracting Vectors Unit Vectors Position, Displacement, Velocity, and Acceleration Vectors

More information

(arrows denote positive direction)

(arrows denote positive direction) 12 Chapter 12 12.1 3-dimensional Coordinate System The 3-dimensional coordinate system we use are coordinates on R 3. The coordinate is presented as a triple of numbers: (a,b,c). In the Cartesian coordinate

More information

Physics 1A. Lecture 1B

Physics 1A. Lecture 1B Physics 1A Lecture 1B Angles: a Tricky Unit θ Angles are formally defined as a ratio of lengths; e.g. θ = Arclength/Radius [θ] = L/L = 1 This makes the angle unitless! The fundamental unit of angle is

More information

Chapter 4. Motion in Two Dimensions. Professor Wa el Salah

Chapter 4. Motion in Two Dimensions. Professor Wa el Salah Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail. Will treat projectile motion and uniform circular

More information

2. Two Dimensional Kinematics

2. Two Dimensional Kinematics . Two Dimensional Kinematics A) Overview We will begin by introducing the concept of vectors that will allow us to generalize what we learned last time in one dimension to two and three dimensions. In

More information

Chapter 5 Trigonometric Functions of Angles

Chapter 5 Trigonometric Functions of Angles Chapter 5 Trigonometric Functions of Angles Section 3 Points on Circles Using Sine and Cosine Signs Signs I Signs (+, +) I Signs II (+, +) I Signs II (, +) (+, +) I Signs II (, +) (+, +) I III Signs II

More information

3 Vectors and Two- Dimensional Motion

3 Vectors and Two- Dimensional Motion May 25, 1998 3 Vectors and Two- Dimensional Motion Kinematics of a Particle Moving in a Plane Motion in two dimensions is easily comprehended if one thinks of the motion as being made up of two independent

More information

In the real world, objects don t just move back and forth in 1-D! Projectile

In the real world, objects don t just move back and forth in 1-D! Projectile Phys 1110, 3-1 CH. 3: Vectors In the real world, objects don t just move back and forth in 1-D In principle, the world is really 3-dimensional (3-D), but in practice, lots of realistic motion is 2-D (like

More information

MAT 211 Final Exam. Spring Jennings. Show your work!

MAT 211 Final Exam. Spring Jennings. Show your work! MAT 211 Final Exam. pring 215. Jennings. how your work! Hessian D = f xx f yy (f xy ) 2 (for optimization). Polar coordinates x = r cos(θ), y = r sin(θ), da = r dr dθ. ylindrical coordinates x = r cos(θ),

More information

Vectors for Physics. AP Physics C

Vectors for Physics. AP Physics C Vectors for Physics AP Physics C A Vector is a quantity that has a magnitude (size) AND a direction. can be in one-dimension, two-dimensions, or even three-dimensions can be represented using a magnitude

More information

Adding Vectors in Two Dimensions

Adding Vectors in Two Dimensions Slide 37 / 125 Adding Vectors in Two Dimensions Return to Table of Contents Last year, we learned how to add vectors along a single axis. The example we used was for adding two displacements. Slide 38

More information

Notes on multivariable calculus

Notes on multivariable calculus Notes on multivariable calculus Jonathan Wise February 2, 2010 1 Review of trigonometry Trigonometry is essentially the study of the relationship between polar coordinates and Cartesian coordinates in

More information

Worksheet 1.8: Geometry of Vector Derivatives

Worksheet 1.8: Geometry of Vector Derivatives Boise State Math 275 (Ultman) Worksheet 1.8: Geometry of Vector Derivatives From the Toolbox (what you need from previous classes): Calc I: Computing derivatives of single-variable functions y = f (t).

More information

New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product. reading assignment read chap 3

New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product. reading assignment read chap 3 New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product reading assignment read chap 3 Most physical quantities are described by a single number or variable examples:

More information

Mathematics for Graphics and Vision

Mathematics for Graphics and Vision Mathematics for Graphics and Vision Steven Mills March 3, 06 Contents Introduction 5 Scalars 6. Visualising Scalars........................ 6. Operations on Scalars...................... 6.3 A Note on

More information

Phys 221. Chapter 3. Vectors A. Dzyubenko Brooks/Cole

Phys 221. Chapter 3. Vectors A. Dzyubenko Brooks/Cole Phs 221 Chapter 3 Vectors adzubenko@csub.edu http://www.csub.edu/~adzubenko 2014. Dzubenko 2014 rooks/cole 1 Coordinate Sstems Used to describe the position of a point in space Coordinate sstem consists

More information

Tensor Analysis in Euclidean Space

Tensor Analysis in Euclidean Space Tensor Analysis in Euclidean Space James Emery Edited: 8/5/2016 Contents 1 Classical Tensor Notation 2 2 Multilinear Functionals 4 3 Operations With Tensors 5 4 The Directional Derivative 5 5 Curvilinear

More information

Physics for Scientists and Engineers. Chapter 3 Vectors and Coordinate Systems

Physics for Scientists and Engineers. Chapter 3 Vectors and Coordinate Systems Phsics for Scientists and Engineers Chapter 3 Vectors and Coordinate Sstems Spring, 2008 Ho Jung Paik Coordinate Sstems Used to describe the position of a point in space Coordinate sstem consists of a

More information

One Dimensional Motion (Motion in a Straight Line)

One Dimensional Motion (Motion in a Straight Line) One Dimensional Motion (Motion in a Straight Line) Chapter MOTION QUANTITIES 1 Kinematics - Intro Mechanics generally consists of two parts: Kinematics and Dynamics. Mechanics Kinematics Description of

More information

PES 1110 Fall 2013, Spendier Lecture 5/Page 1

PES 1110 Fall 2013, Spendier Lecture 5/Page 1 PES 1110 Fall 2013, Spendier Lecture 5/Page 1 Toda: - Announcements: Quiz moved to net Monda, Sept 9th due to website glitch! - Finish chapter 3: Vectors - Chapter 4: Motion in 2D and 3D (sections 4.1-4.4)

More information

OLLSCOIL NA heireann MA NUAD THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH MATHEMATICAL PHYSICS EE112. Engineering Mathematics II

OLLSCOIL NA heireann MA NUAD THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH MATHEMATICAL PHYSICS EE112. Engineering Mathematics II OLLSCOIL N heirenn M NUD THE NTIONL UNIVERSITY OF IRELND MYNOOTH MTHEMTICL PHYSICS EE112 Engineering Mathematics II Prof. D. M. Heffernan and Mr. S. Pouryahya 1 5 Scalars and Vectors 5.1 The Scalar Quantities

More information

Scalar & Vector tutorial

Scalar & Vector tutorial Scalar & Vector tutorial scalar vector only magnitude, no direction both magnitude and direction 1-dimensional measurement of quantity not 1-dimensional time, mass, volume, speed temperature and so on

More information

Rotational motion of a rigid body spinning around a rotational axis ˆn;

Rotational motion of a rigid body spinning around a rotational axis ˆn; Physics 106a, Caltech 15 November, 2018 Lecture 14: Rotations The motion of solid bodies So far, we have been studying the motion of point particles, which are essentially just translational. Bodies with

More information

Chapter 4. Motion in Two Dimensions. With modifications by Pinkney

Chapter 4. Motion in Two Dimensions. With modifications by Pinkney Chapter 4 Motion in Two Dimensions With modifications by Pinkney Kinematics in Two Dimensions covers: the vector nature of position, velocity and acceleration in greater detail projectile motion a special

More information

PART ONE DYNAMICS OF A SINGLE PARTICLE

PART ONE DYNAMICS OF A SINGLE PARTICLE PART ONE DYNAMICS OF A SINGLE PARTICLE 1 Kinematics of a Particle 1.1 Introduction One of the main goals of this book is to enable the reader to take a physical system, model it by using particles or rigid

More information

Designing Information Devices and Systems I Discussion 2A

Designing Information Devices and Systems I Discussion 2A EECS 16A Spring 218 Designing Information Devices and Systems I Discussion 2A 1. Visualizing Matrices as Operations This problem is going to help you visualize matrices as operations. For example, when

More information

Leaving Cert Differentiation

Leaving Cert Differentiation Leaving Cert Differentiation Types of Differentiation 1. From First Principles 2. Using the Rules From First Principles You will be told when to use this, the question will say differentiate with respect

More information

Chapter 3. Vectors and Two-Dimensional Motion

Chapter 3. Vectors and Two-Dimensional Motion Chapter 3 Vectors and Two-Dimensional Motion 1 Vector vs. Scalar Review All physical quantities encountered in this text will be either a scalar or a vector A vector quantity has both magnitude (size)

More information

FORCE TABLE INTRODUCTION

FORCE TABLE INTRODUCTION FORCE TABLE INTRODUCTION All measurable quantities can be classified as either a scalar 1 or a vector 2. A scalar has only magnitude while a vector has both magnitude and direction. Examples of scalar

More information

Chapter 3: Kinematics in Two Dimensions

Chapter 3: Kinematics in Two Dimensions Chapter 3: Kinematics in Two Dimensions Vectors and Scalars A scalar is a number with units. It can be positive, negative, or zero. Time: 100 s Distance and speed are scalars, although they cannot be negative

More information

Lesson 7. Chapter 3: Two-Dimensional Kinematics COLLEGE PHYSICS VECTORS. Video Narrated by Jason Harlow, Physics Department, University of Toronto

Lesson 7. Chapter 3: Two-Dimensional Kinematics COLLEGE PHYSICS VECTORS. Video Narrated by Jason Harlow, Physics Department, University of Toronto COLLEGE PHYSICS Chapter 3: Two-Dimensional Kinematics Lesson 7 Video Narrated by Jason Harlow, Physics Department, University of Toronto VECTORS A quantity having both a magnitude and a direction is called

More information

Matrix Calculations: Linear maps, bases, and matrices

Matrix Calculations: Linear maps, bases, and matrices Matrix Calculations: Linear maps, bases, and matrices A Kissinger Institute for Computing and Information Sciences Version: autumn 2017 A Kissinger Version: autumn 2017 Matrix Calculations 1 / 37 Outline

More information

Chapter 2: Motion a Straight Line

Chapter 2: Motion a Straight Line Formula Memorization: Displacement What is a vector? Average Velocity Average Speed Instanteous Velocity Average Acceleration Instantaneous Acceleration Constant Acceleration Equation (List all five of

More information

Section 1.8/1.9. Linear Transformations

Section 1.8/1.9. Linear Transformations Section 1.8/1.9 Linear Transformations Motivation Let A be a matrix, and consider the matrix equation b = Ax. If we vary x, we can think of this as a function of x. Many functions in real life the linear

More information

Kinematics Varying Accelerations (1D) Vectors (2D)

Kinematics Varying Accelerations (1D) Vectors (2D) Kinematics Varying Accelerations (1D) Vectors (2D) Lana heridan De Anza College ept 29, 2017 Last time kinematic equations using kinematic equations Overview falling objects and g varying acceleration

More information

r y The angle theta defines a vector that points from the boat to the top of the cliff where rock breaks off. That angle is given as 30 0

r y The angle theta defines a vector that points from the boat to the top of the cliff where rock breaks off. That angle is given as 30 0 From a boat in the English Channel, you slowly approach the White Cliffs of Dover. You want to know how far you are from the base of the cliff. Then suddenly you see a rock break off from the top and hit

More information

PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM (Section 15.1)

PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM (Section 15.1) PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM (Section 15.1) Linear momentum: L = mv vector mv is called the linear momentum denoted as L (P in 1120) vector has the same direction as v. units of (kg m)/s or

More information

Introduction to Vectors

Introduction to Vectors Introduction to Vectors Why Vectors? Say you wanted to tell your friend that you re running late and will be there in five minutes. That s precisely enough information for your friend to know when you

More information

Phy 211: General Physics I. Chapter 3: Vectors Lecture Notes

Phy 211: General Physics I. Chapter 3: Vectors Lecture Notes Phy 211: General Physics I Chapter 3: Vectors Lecture Notes Vectors & Scalars Most physical quantities can categorized as one of 2 types (tensors notwithstanding): 1. Scalar Quantities: described by a

More information

There seems to be three different groups of students: A group around 6 A group around 12 A group around 16

There seems to be three different groups of students: A group around 6 A group around 12 A group around 16 10 5 0 0 5 10 15 20 25 30 There seems to be three different groups of students: A group around 6 A group around 12 A group around 16 Altuğ Özpineci ( METU ) Phys109-MECHANICS PHYS109 55 / 67 10 5 0 0 5

More information

A basic trigonometric equation asks what values of the trig function have a specific value.

A basic trigonometric equation asks what values of the trig function have a specific value. Lecture 3A: Solving Basic Trig Equations A basic trigonometric equation asks what values of the trig function have a specific value. The equation sinθ = 1 asks for what vales of θ is the equation true.

More information

Math 234 Exam 3 Review Sheet

Math 234 Exam 3 Review Sheet Math 234 Exam 3 Review Sheet Jim Brunner LIST OF TOPIS TO KNOW Vector Fields lairaut s Theorem & onservative Vector Fields url Divergence Area & Volume Integrals Using oordinate Transforms hanging the

More information

Kinematics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Kinematics Semester 1, / 15

Kinematics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Kinematics Semester 1, / 15 Kinematics Basilio Bona DAUIN Politecnico di Torino Semester 1, 2014-15 B. Bona (DAUIN) Kinematics Semester 1, 2014-15 1 / 15 Introduction The kinematic quantities used are: position r, linear velocity

More information

THE COMPOUND ANGLE IDENTITIES

THE COMPOUND ANGLE IDENTITIES TRIGONOMETRY THE COMPOUND ANGLE IDENTITIES Question 1 Prove the validity of each of the following trigonometric identities. a) sin x + cos x 4 4 b) cos x + + 3 sin x + 2cos x 3 3 c) cos 2x + + cos 2x cos

More information

Math 20C Homework 2 Partial Solutions

Math 20C Homework 2 Partial Solutions Math 2C Homework 2 Partial Solutions Problem 1 (12.4.14). Calculate (j k) (j + k). Solution. The basic properties of the cross product are found in Theorem 2 of Section 12.4. From these properties, we

More information

Chapter 3 Vectors. 3.1 Vector Analysis

Chapter 3 Vectors. 3.1 Vector Analysis Chapter 3 Vectors 3.1 Vector nalysis... 1 3.1.1 Introduction to Vectors... 1 3.1.2 Properties of Vectors... 1 3.2 Coordinate Systems... 6 3.2.1 Cartesian Coordinate System... 6 3.2.2 Cylindrical Coordinate

More information

Kinematics. Vector solutions. Vectors

Kinematics. Vector solutions. Vectors Kinematics Study of motion Accelerated vs unaccelerated motion Translational vs Rotational motion Vector solutions required for problems of 2- directional motion Vector solutions Possible solution sets

More information

Physics 1-2 Mr. Chumbley

Physics 1-2 Mr. Chumbley Physics 1-2 Mr. Chumbley Physical quantities can be categorized into one of two types of quantities A scalar is a physical quantity that has magnitude, but no direction A vector is a physical quantity

More information

WORKSHEET #13 MATH 1260 FALL 2014

WORKSHEET #13 MATH 1260 FALL 2014 WORKSHEET #3 MATH 26 FALL 24 NOT DUE. Short answer: (a) Find the equation of the tangent plane to z = x 2 + y 2 at the point,, 2. z x (, ) = 2x = 2, z y (, ) = 2y = 2. So then the tangent plane equation

More information

Kinematics. Basilio Bona. October DAUIN - Politecnico di Torino. Basilio Bona (DAUIN - Politecnico di Torino) Kinematics October / 15

Kinematics. Basilio Bona. October DAUIN - Politecnico di Torino. Basilio Bona (DAUIN - Politecnico di Torino) Kinematics October / 15 Kinematics Basilio Bona DAUIN - Politecnico di Torino October 2013 Basilio Bona (DAUIN - Politecnico di Torino) Kinematics October 2013 1 / 15 Introduction The kinematic quantities used are: position r,

More information

n=0 ( 1)n /(n + 1) converges, but not

n=0 ( 1)n /(n + 1) converges, but not Math 07H Topics for the third exam (and beyond) (Technically, everything covered on the first two exams plus...) Absolute convergence and alternating series A series a n converges absolutely if a n converges.

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.1 Trigonometric Identities Copyright Cengage Learning. All rights reserved. Objectives Simplifying Trigonometric Expressions Proving

More information

Physics I Exam 1 Spring 2015 (version A)

Physics I Exam 1 Spring 2015 (version A) 95.141 Physics I Exam 1 Spring 015 (version A) Section Number Section instructor Last/First Name (PRINT) / Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space

More information

Chapter 8: Polar Coordinates and Vectors

Chapter 8: Polar Coordinates and Vectors Chapter 8: Polar Coordinates and Vectors 8.1 Polar Coordinates This is another way (in addition to the x-y system) of specifying the position of a point in the plane. We give the distance r of the point

More information

Calculus Vector Principia Mathematica. Lynne Ryan Associate Professor Mathematics Blue Ridge Community College

Calculus Vector Principia Mathematica. Lynne Ryan Associate Professor Mathematics Blue Ridge Community College Calculus Vector Principia Mathematica Lynne Ryan Associate Professor Mathematics Blue Ridge Community College Defining a vector Vectors in the plane A scalar is a quantity that can be represented by a

More information

= v 0 x. / t = 1.75m / s 2.25s = 0.778m / s 2 nd law taking left as positive. net. F x ! F

= v 0 x. / t = 1.75m / s 2.25s = 0.778m / s 2 nd law taking left as positive. net. F x ! F Multiple choice Problem 1 A 5.-N bos sliding on a rough horizontal floor, and the only horizontal force acting on it is friction. You observe that at one instant the bos sliding to the right at 1.75 m/s

More information

Scalars distance speed mass time volume temperature work and energy

Scalars distance speed mass time volume temperature work and energy Scalars and Vectors scalar is a quantit which has no direction associated with it, such as mass, volume, time, and temperature. We sa that scalars have onl magnitude, or size. mass ma have a magnitude

More information

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections 12.1-12.2) Today s Objectives: Students will be able to find the kinematic quantities (position, displacement, velocity, and acceleration)

More information

CHAPTER 4 Stress Transformation

CHAPTER 4 Stress Transformation CHAPTER 4 Stress Transformation ANALYSIS OF STRESS For this topic, the stresses to be considered are not on the perpendicular and parallel planes only but also on other inclined planes. A P a a b b P z

More information

CHAPTER 3 MOTION IN TWO AND THREE DIMENSIONS

CHAPTER 3 MOTION IN TWO AND THREE DIMENSIONS CHAPTER 3 MOTION IN TWO AND THREE DIMENSIONS General properties of vectors displacement vector position and velocity vectors acceleration vector equations of motion in 2- and 3-dimensions Projectile motion

More information

Physics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN

Physics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN Phsics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN EMU Phsics Department www.aovgun.com Coordinate Sstems qcartesian coordinate sstem qpolar coordinate sstem Januar 21, 2015 qfrom Cartesian to Polar coordinate

More information

( ) Trigonometric identities and equations, Mixed exercise 10

( ) Trigonometric identities and equations, Mixed exercise 10 Trigonometric identities and equations, Mixed exercise 0 a is in the third quadrant, so cos is ve. The angle made with the horizontal is. So cos cos a cos 0 0 b sin sin ( 80 + 4) sin 4 b is in the fourth

More information

Kinematics 1D Kinematics 2D Dynamics Work and Energy

Kinematics 1D Kinematics 2D Dynamics Work and Energy Kinematics 1D Kinematics 2D Dynamics Work and Energy Kinematics 1 Dimension Kinematics 1 Dimension All about motion problems Frame of Reference orientation of an object s motion Used to anchor coordinate

More information

Announcements September 19

Announcements September 19 Announcements September 19 Please complete the mid-semester CIOS survey this week The first midterm will take place during recitation a week from Friday, September 3 It covers Chapter 1, sections 1 5 and

More information

2.2 Average vs. Instantaneous Description

2.2 Average vs. Instantaneous Description 2 KINEMATICS 2.2 Average vs. Instantaneous Description Name: 2.2 Average vs. Instantaneous Description 2.2.1 Average vs. Instantaneous Velocity In the previous activity, you figured out that you can calculate

More information

KINEMATICS IN ONE DIMENSION p. 1

KINEMATICS IN ONE DIMENSION p. 1 KINEMATICS IN ONE DIMENSION p. 1 Motion involves a change in position. Position can be indicated by an x-coordinate on a number line. ex/ A bumblebee flies along a number line... x = 2 when t = 1 sec 2

More information