Constraints on matter from asymptotic safety

Size: px
Start display at page:

Download "Constraints on matter from asymptotic safety"

Transcription

1 Constraints on matter from asymptotic safety Roberto Percacci SISSA, Trieste Padova, February 19, 2014

2 Fixed points Γ k (φ) = i λ i (k)o i (φ) β i (λ j,k) = dλ i dt, t = log(k/k 0) λ i = k d iλ i β i = d λ j dt = d i λi +k d iβ i Fixed point: βi ( λ j ) = 0 Asymptotically safe RG trajectory: λ i λ i UV attractive=ir repulsive=relevant UV-repulsive=IR attractive=irrelevant predictivity demands finitely many relevant directions

3 General picture

4 Examples Gaußian Fixed Point at λ i = 0. M ij = β i λ j = d i δ ij relevant=renormalizable - QCD - non-af examples: 4-Fermi interactions in d = 3 - maybe gravity?

5 Outline 1 Asymptotic safety 2 1-loop 3 FRGE 4 Matter 5 Conclusions

6 One Loop Corrections in Einstein s Theory k d dk 1 16πG(k) = ck2 k dg dk = 16πcG2 k 2 G = Gk 2 k d G dk = 2 G 16πc G 2 if c > 0 fixed point at G = 1/8πc one calculation: c = 23/48π 2

7 Perturbative beta functions β G = 2 G 46 G 2 6π, β Λ = 2 Λ+ 2 G 4π 16 G Λ 6π Λ = 3 62 G = 12π 46

8 Perturbative flow G

9 Higher derivative gravity Γ k = d 4 x g [ 2ZΛ ZR + 1 ( C 2 2ω )] 2λ 3 R2 + 2θE Z = 1 16πG K.S. Stelle, Phys. Rev. D16, 953 (1977). J. Julve, M. Tonin, Nuovo Cim. 46B, 137 (1978). E.S. Fradkin, A.A. Tseytlin,Phys. Lett. 104 B, 377 (1981). I.G. Avramidi, A.O. Barvinski,Phys. Lett. 159 B, 269 (1985). G. de Berredo Peixoto and I. Shapiro, Phys.Rev. D (2005). A. Codello and R. P., Phys.Rev.Lett (2006) N. Ohta and R.P. Class. Quant. Grav (2014); arxiv:

10 Beta functions I β λ = 1 (4π) λ2 β ω = ω + 200ω 2 (4π) 2 λ 60 β θ = 1 7(56 171θ) (4π) 2 λ 90 λ(k) = λ 0 1+λ 0 1 (4π) log ( k k 0 ) ω(k) ω θ(k) θ 0.327

11 Beta functions II β Λ = 2 Λ+ 1 [ 1+20ω 2 (4π) 2 256π Gω + 2λ2 ] 1+86ω + 40ω2 λ Λ 12ω 1+10ω2 64π 2 ω λ+ 2 G q(ω) G Λ π β G = 2 G ω 40ω 2 (4π) 2 λ G q(ω) G 2 12ω where q(ω) = (83+70ω + 8ω 2 )/18π

12 Flow in Λ G plane I where q = q(ω ) β Λ = 2 Λ+ 2 G π q G Λ β G = 2 G q G2 Λ = 1 πq 0.221, G = 2 q

13 Flow in Λ G plane II 2.0 G

14 Topologically massive gravity Action S(g)= 1 16πG d 3 x g Dimensionless combinations of couplings ( 2Λ R + 1 2µ ελµν Γ ρ ( λσ µ Γ σ νρ Γσ µτγ τ νρ) ) ν = µg ; τ = ΛG 2 ; φ = µ/ Λ R.P., E. Sezgin, Class.Quant.Grav. 27 (2010) , arxiv: [hep-th] Recently extended to TM SUGRA: R.P., M. Perry, C. Pope, E. Sezgin, arxiv

15 Beta functions of β ν = 0, β G = G +B( µ) G 2, β Λ = 2 Λ+ 1 2 G ( ) A( µ, Λ)+2B( µ) Λ Since ν = µg = µ G is constant can replace µ by ν/ G

16 G G Figure : The flow in the Λ- G plane for α = 0, ν = 5. Right: enlargement of the region around the origin, showing the Gaussian FP. The beta functions become singular at G =

17 G G Figure : The flow in the Λ- G plane for α = 0, ν = 0.1. Right: enlargement of the region around the origin, showing that there is no Gaussian FP. The beta functions diverge on the Λ axis.

18 Functional renormalization Define Γ k (φ). lim k 0 Γ k (φ) = Γ(φ). It satisfies a FRGE k dγ k(φ) dk = β(φ) The quantity β is UV and IR finite. Use FRGE to calculate the effective action.

19 Application to gravity Background field method: q µν = g µν +h µν FRGE can only be defined for Γ k (g,h). Expand Γ k (g,h) = Γ k (g)+γ (1) k (g,h)+γ(2) k (g,h)+... Γ k (g) = Γ k (g,0) Single-field truncations: neglect Γ (n) k (g,h), n > 0. [M. Reuter, Phys. Rev. D (1998)] [D. Dou and R. Percacci, Class. and Quantum Grav (1998)]

20 Single-field truncation 1 In the FRGE identify Z h with 16πG. Consequently identify with η h = k d logz h dk η h = k d logg dk

21 Einstein Hilbert truncation I Γ k (ḡ,h) = S EH (ḡ µν +h)+s GF (ḡ,h)+s ghost (ḡ, C µ,c ν ) S EH (g µν ) = dx gz(2λ R) ; Z = 1 16πG β Λ = 2(1 2 Λ) 2 Λ Λ+42 Λ Λ 3 72π G Λ 288π 2 (1 2 Λ) Λ 72π G β =2(1 2 Λ) 2 G Λ+600 Λ 2 72π G 2 G (1 2 Λ) Λ 72π G G2

22 Einstein Hilbert truncation II G Cutoff type Ia G Cutoff type II

23 Fourth order gravity R 2 O.Lauscher, M. Reuter, Phys. Rev. D 66, (2002) arxiv:hep-th/ R 2 +C 2 D. Benedetti, P.F. Machado, F. Saueressig, Mod. Phys. Lett. A24, (2009) arxiv: [hep-th] Nucl. Phys. B824, (2010), arxiv: [hep-th] M. Niedermaier, Nucl. Phys. B833, (2010)

24 f(r) gravity Γ k (g µν ) = d 4 x gf(r) f(r) = n g i (k)r i i=0 n=6 A. Codello, R.P. and C. Rahmede Int.J.Mod.Phys.A23: arxiv: [hep-th]; n=8 A. Codello, R.P. and C. Rahmede Annals Phys (2009) arxiv: arxiv: ; P.F. Machado, F. Saueressig, Phys. Rev. D arxiv: arxiv: [hep-th] n=35 K. Falls, D.F. Litim, K. Nikolakopoulos, C. Rahmede, arxiv: [hep-th] n= Dario Benedetti, Francesco Caravelli, JHEP 1206 (2012) 017, Erratum-ibid (2012) 157 arxiv: [hep-th] Juergen A. Dietz, Tim R. Morris, JHEP 1301 (2013) 108 arxiv: [hep-th] Dario Benedetti, arxiv: [hep-th]

25 Enter matter because it s there because it may help (large N limit) because pure gravity has no local observables because experimental constraints more likely e.g. M. Shaposhnikov and C. Wetterich, Phys.Lett. B683, 196 (2010) [L. Griguolo, R.P. Phys. Rev. D 52, 5787 (1995)] [R.P., D.Perini, Phys.Rev. D (2003)] [R.P., D.Perini, Phys. Rev. D68, (2004)] [G. Narain. R.P. Class. Quant. Grav (2010)] [P. Donà, A. Eichhorn, R.P. arxiv: [hep-th](2013)]

26 Perturbative beta functions with matter β G = 2 G + G 2 6π (N S + 2N D 4N V 46), β Λ = 2 Λ+ G 4π (N S 4N D + 2N V + 2) + G Λ 6π (N S + 2N D 4N V 16) Λ = 3 N S 4N D + 2N V + 2 4N S + 2N D 4N V 31, 12π G = N S + 2N D 4N V 46.

27 Exclusion plots N V = 0,6,12,24,

28 Position of FP for N V =

29 Truncated FRGE, bimetric formalism Γ k (ḡ,h) = + Z h 2 2Z c 1 16πG d d x ḡ ( R + 2Λ ) d d x ḡ h µν K µναβ (( D 2 2Λ)1 ρσ αβ +Wρσ αβ )h ρσ d d x ḡ c µ ( Dρḡ µκ g κν D ρ + D ρ ḡ µκ g ρν D κ D µ ḡ ρσ g ρν D σ ) c ν S S = Z S 2 S D = iz D S V = Z V 4 d d x N S g g µν µ φ i ν φ i d d x g N D i=1 N V i=1 ψ i / ψ i, d d x g g µν g κλ Fµκ i Fi νλ +... i=1

30 Gravitational beta functions d Λ dt [ 8π G d(d + 1)(d + 2 ηh ) = 2 Λ + (4π) d/2 4d(d + 2 η c) d(d + 2)Γ[d/2] 1 2 Λ ] +2N S (2 + d η S ) 2N D 2 [d/2] (2 + d η D ) + 2N V (d 2 4 d η V ) [ 4π G Λ d(5d 7)(d ηh ) 3d(4π) d/2 + 4(d + 6)(d η c) Γ[d/2] 1 2 Λ ] 2N S (d η S ) N D 2 [d/2] (d η D ) + 2N V (d (8 d) (6 d)η V ) d G dt 4π G = (d 2) G 2 [ d(5d 7)(d ηh ) 3d(4π) d/2 + 4(d + 6)(d η c) Γ(d/2) 1 2 Λ ] 2N S (d η S ) N D 2 [d/2] (d η D ) + 2N V (d(8 d) (6 d)η V )

31 Graviton+ghost contributions to graviton η t γ (2,0,0;0) k =

32 Graviton contributions to η h η h = η h gravity + η h matter [ ] gravity η h = a( Λ k ) + c( Λ k )η h + e( Λ k )η c G k a( Λ) = a 0 + a 1 Λ + a 2 Λ 2 + a 3 Λ 3 + a 4 Λ 4 (4π) d/2 Γ(d/2)d 2 (d 2 4)(3d 2)(1 2 Λ) 4, a 0 = 4π (d 2)( d d 2 434d d 4 + d 5 ), a 1 = 16π (d 2)( d 318d 2 125d 3 + 2d 4 + d 5 ), a 2 = 16π( d d d d 4 17d 5 + d 6 ), a 3 = 4096π(d 2)( d 19d 2 + 2d 3 ), a 4 = 2048π(d 2)( d 19d 2 + 2d 3 ) ; [ ] 8π(d 1) d 350d d (d 2)(d + 4) Λ c( Λ) = (4π) d/2 Γ(d/2)d 2 (d + 2)(d + 4)(3d 2)(1 2 Λ) 3 128π (32 50d + 23d 2) e( Λ) = (4π) d/2 Γ(d/2)d 2 (d + 2)(d + 4)(3d 2)

33 Matter contribution to graviton η

34 Matter contributions to η h η h matter = N S 32π G (4π) d/2 Γ(d/2) [ ] 1 d 2 (d 2) d + d2 + 2 η S (d + 2)(3d 2) d + 4 [ 2 + d 2 ] d + 1 η D +N D 2 [d/2] 16π G (d 1)(d 2) (4π) d/2 Γ(d/2) d 3 (3d 2) 32π G (d 1)(d 2) N V (4π) d/2 Γ(d/2) d 2 (d + 2)(3d 2) [ d 2 12d d d + 4 η V ]

35 Graviton+ghost contributions to ghost η t γ (0,1,1;0) k = +

36 Ghost η c η c = [ b( Λ k )+d( Λ k )η h +f( Λ k )η c ] Gk with b( Λ) = d( Λ) = f( Λ) = [ ] 64π 8+4d + 18d 2 7d 3 + 2(4 9d 2 + 3d 3 ) Λ (4π) d/2 Γ(d/2)d 2 (d 2 4)(d + 4)(1 2 Λ) 2 64π(4 4d 9d 2 + 4d 3 ) (4π) d/2 Γ(d/2)d 2 (d 2 4)(d + 4)(1 2 Λ) 2 64π(4 9d 2 + 3d 3 ) (4π) d/2 Γ(d/2)d 2 (d 2 4)(d + 4)(1 2 Λ) 2

37 Graviton contribution to matter η

38 Matter anomalous dimensions [ 32π G 2 1 η S = (4π) d/2 Γ(d/2) d + 2 (1 2 Λ) 2 η D = [ (d + 1)(d 4) + 2d(1 2 Λ) 2 ( 1 η ) h + 2 d + 4 ( 1 η h d d Λ ) ], ( 1 η ) S d π G (d 1)(d 2 ( + 9d 8) (4π) d/2 Γ(d/2) 8d (d 2)(d + 1)(1 2 Λ) 2 1 η ) h d + 3 (d 1) 2 ( η ) D (d 1)(2d2 ( 3d 4) 2d(d + 1)(d 2) 1 2 Λ d + 2 4d(d 2)(1 2 Λ) 2 1 η ) ] h d + 2 [ 32π G (d 1)( d 9d 2 + d 3 ) η V = (4π) d/2 Γ(d/2) 2d 2 (d 2)(1 2 Λ) 2 ( 4(d 1)(2d 5) + d(d 2 1 η ) V + 4)(1 2 Λ) d + 4 ( 1 η ) h d + 2 4(d 1)(2d 5) d(d 2 4)(1 2 Λ) 2 ( 1 η ) ] h d + 4

39 General structure of anomalous dimensions For Ψ = h,c,s,d,v, η Ψ = 1 k dz Ψ Z Ψ dk η = (η h,η c,η S,η D,η V ) η = η 1 ( G, Λ)+A( G, Λ) η one loop anomalous dimensions η = η 1 RG improved anomalous dimensions η = (1 A) 1 η 1

40 Gravity+scalars G NS NS ReΘ NS Ηh Ηc ΗS NS NS NS

41 Gravity+fermions G, Θ1,Θ ND ND 2.5 Ηh Ηc ΗD ND ND ND

42 Gravity+vectors G NV NV Θ1,Θ NV Ηh NV Ηc NV ΗV NV

43 Exclusion plot N V = 0 N D N S

44 Exclusion plot N V = 12 N D N S

45 Exclusion plot N D = 0 N V 50 N V N S N S

46 Exclusion plot N S = 0 N V N D

47 Standard model matter 1L-II full-ii 1L-Ia full-ia Λ G θ θ η h η c η S η D η V

48 Specific models model N S N D N V G Λ θ 1 θ 2 η h no matter SM 4 45/ SM +dm scalar 5 45/ SM+ 3 ν s SM+3ν s + axion+dm MSSM 49 61/ SU(5) GUT SO(10) GUT

49 Exclusion plot N V = 12, d = 5 N D N S

50 Exclusion plot N V = 12, d = 6 10 N D N S

51 Gravity+scalar Γ k [g,φ] = d d x g ( V(φ 2 ) F(φ 2 )R + 1 ) 2 gµν µ φ ν φ [R.P., D.Perini, Phys. Rev. D68, (2004)] [G. Narain, R.P., Class. and Quantum Grav. 27, (2010)]

52 Functional flow of F, V { tv = k4 192π V Ψ + 6(k ( 2 Ψ + 24φ 2 k 2 F Ψ + k 2 FΣ1 ) 4 + F + 5k 2 Ψ + k ) 2 Σ1 tf + 24φ2 k 2 Ψ } tf, k 2 { tf = 2304π k2 F (3k 2 F V) Ψ 2 24 (24φ 2 k 2 F Ψ + k 2 Ψ + k 2 ) FΣ 1 36 [ 2 4φ 2 (6k 4 F 2 + Ψ 2 ) + 4φ 2 ΨΨ (7k 2 F V )(Σ 1 k 2 ) + 4φ 2 Σ 1 (7k 2 F V )(2ΨV V Ψ ) ] +2k 4 Ψ 2 Σ k 4 F φ 2 ΨΨ Σ 2 24k 4 F φ 2 Ψ 2 Σ 2 tf [ 30 10k2 F (7Ψ + 4V) F Ψ ( 2 k 2 F Σ 1 + 4φ 2 V Ψ 24k 4 F φ 2 Ψ 2 Σ 2 )] 4φ 2 k 2 F Ψ Σ 1 (7k 2 F V ) + tf 24k2 φ 2 ]} [(k 2 2 F + 5V ) 12k 2 ΨΨ Σ 2 2(7k 2 F V )ΨΣ 1 where we have defined the shorthands: Ψ = k 2 F V ; Σ 1 = k 2 + 2V + 4φ 2 V ; Σ 2 = 2F + 4φ 2 F ; = (12φ 2 Ψ 2 ) + ΨΣ 1.

53 Polynomial truncations Ṽ( φ 2 ) = λ 0 + λ 2 φ2 + λ 4 φ F( φ 2 ) = ξ 0 + ξ 2 φ t λ4 = 9λ2 4 2π 2 + Gλ 4 π +...

54 SM+gravity dh dt = βsm h + a h 8π G(µ)h β SM 1 = β SM y = β SM λ = π 2 6 g3 1 ; β2 SM = π 2 6 g3 2 ; β3 SM = 1 16π 27g3 3 ; [ π 2 2 y3 8g3 2 y 9 4 g2 2 y 17 ] 21 g2 1 y [ ( 1 16π 2 24λ λy 2 9λ g ) 3 g2 1 6y g g ] 4 g2 2g1 2 If a 1 = a 2 = a 3 < 0, a y < 0, a λ > 0, predict m h =126GeV [M. Shaposhnikov and C. Wetterich, Phys.Lett. B683, 196 (2010) ]

55 AS: strengths and weaknesses but use continuum covariant QFT bottom up approach guaranteed to give correct low energy limit highly predictive strong coupling problem scheme dependence off shell: gauge dependence no observables computed yet

56 Summary/outlook Pure gravity: truly functional truncations other approximations, e.g. two loops describe as CFT Gravity+matter: BSM physics strongly constrained running gravitational mass from 2 point function matter interactions: LPA for scalar+gravity turn on gauge and Yukawa couplings

Running Couplings in Topologically Massive Gravity

Running Couplings in Topologically Massive Gravity Running Couplings in Topologically Massive Gravity Roberto Percacci 1 Ergin Sezgin 2 1 SISSA, Trieste 2 Texas A& M University, College Station, TX ERG 2010 - Corfu arxiv:1002.2640 [hep-th] - C& QG 2010

More information

UV completion of the Standard Model

UV completion of the Standard Model UV completion of the Standard Model Manuel Reichert In collaboration with: Jan M. Pawlowski, Tilman Plehn, Holger Gies, Michael Scherer,... Heidelberg University December 15, 2015 Outline 1 Introduction

More information

Asymptotically Safe Gravity connecting continuum and Monte Carlo

Asymptotically Safe Gravity connecting continuum and Monte Carlo Asymptotically Safe Gravity connecting continuum and Monte Carlo Frank Saueressig Research Institute for Mathematics, Astrophysics and Particle Physics Radboud University Nijmegen J. Biemans, A. Platania

More information

Asymptotic Safety in the ADM formalism of gravity

Asymptotic Safety in the ADM formalism of gravity Asymptotic Safety in the ADM formalism of gravity Frank Saueressig Research Institute for Mathematics, Astrophysics and Particle Physics Radboud University Nijmegen J. Biemans, A. Platania and F. Saueressig,

More information

Asymptotic safety of gravity and the Higgs boson mass. Mikhail Shaposhnikov Quarks 2010, Kolomna, June 6-12, 2010

Asymptotic safety of gravity and the Higgs boson mass. Mikhail Shaposhnikov Quarks 2010, Kolomna, June 6-12, 2010 Asymptotic safety of gravity and the Higgs boson mass Mikhail Shaposhnikov Quarks 2010, Kolomna, June 6-12, 2010 Based on: C. Wetterich, M. S., Phys. Lett. B683 (2010) 196 Quarks-2010, June 8, 2010 p.

More information

The asymptotic-safety paradigm for quantum gravity

The asymptotic-safety paradigm for quantum gravity The asymptotic-safety paradigm for quantum gravity Astrid Eichhorn Imperial College, London Helsinki workshop on quantum gravity June 1, 2016 Asymptotic safety Generalization of asymptotic freedom (! Standard

More information

THE RENORMALIZATION GROUP AND WEYL-INVARIANCE

THE RENORMALIZATION GROUP AND WEYL-INVARIANCE THE RENORMALIZATION GROUP AND WEYL-INVARIANCE Asymptotic Safety Seminar Series 2012 [ Based on arxiv:1210.3284 ] GIULIO D ODORICO with A. CODELLO, C. PAGANI and R. PERCACCI 1 Outline Weyl-invariance &

More information

A functional renormalization group equation for foliated space-times

A functional renormalization group equation for foliated space-times p. 1/4 A functional renormalization group equation for foliated space-times Frank Saueressig Group for Theoretical High Energy Physics (THEP) Institute of Physics E. Manrique, S. Rechenberger, F.S., Phys.

More information

Critical exponents in quantum Einstein gravity

Critical exponents in quantum Einstein gravity Critical exponents in quantum Einstein gravity Sándor Nagy Department of Theoretical physics, University of Debrecen MTA-DE Particle Physics Research Group, Debrecen Leibnitz, 28 June Critical exponents

More information

The status of asymptotic safety for quantum gravity and the Standard Model

The status of asymptotic safety for quantum gravity and the Standard Model The status of asymptotic safety for quantum gravity and the Standard Model Aaron Held Institut für Theoretische Physik, Universität Heidelberg 1803.04027 (A. Eichhorn & AH) Phys.Lett. B777 (2018) 217-221

More information

arxiv:hep-th/ v1 2 May 1997

arxiv:hep-th/ v1 2 May 1997 Exact Renormalization Group and Running Newtonian Coupling in Higher Derivative Gravity arxiv:hep-th/9705008v 2 May 997 A.A. Bytseno State Technical University, St. Petersburg, 95252, Russia L.N. Granda

More information

Asymptotically safe Quantum Gravity. Nonperturbative renormalizability and fractal space-times

Asymptotically safe Quantum Gravity. Nonperturbative renormalizability and fractal space-times p. 1/2 Asymptotically safe Quantum Gravity Nonperturbative renormalizability and fractal space-times Frank Saueressig Institute for Theoretical Physics & Spinoza Institute Utrecht University Rapporteur

More information

Functional Renormalization Group Equations from a Differential Operator Perspective

Functional Renormalization Group Equations from a Differential Operator Perspective p. 1/4 Functional Renormalization Group Equations from a Differential Operator Perspective Frank Saueressig Group for Theoretical High Energy Physics (THEP) D. Benedetti, K. Groh, P. Machado, and F.S.,

More information

Renormalization Group Equations

Renormalization Group Equations Renormalization Group Equations Idea: study the dependence of correlation functions on the scale k Various options: k = Λ: Wilson, Wegner-Houghton, coarse graining constant physics, cutoff/uv insensitivity

More information

Kamila Kowalska. TU Dortmund. based on and work in progress with A.Bond, G.Hiller and D.Litim EPS-HEP Venice, 08 July 2017

Kamila Kowalska. TU Dortmund. based on and work in progress with A.Bond, G.Hiller and D.Litim EPS-HEP Venice, 08 July 2017 Towards an asymptotically safe completion of the Standard Model Kamila Kowalska TU Dortmund based on 1702.01727 and work in progress with A.Bond, G.Hiller and D.Litim 08.07.2017 EPS-HEP 2017 Venice, 08

More information

Causal RG equation for Quantum Einstein Gravity

Causal RG equation for Quantum Einstein Gravity Causal RG equation for Quantum Einstein Gravity Stefan Rechenberger Uni Mainz 14.03.2011 arxiv:1102.5012v1 [hep-th] with Elisa Manrique and Frank Saueressig Stefan Rechenberger (Uni Mainz) Causal RGE for

More information

Quantum Einstein Gravity a status report

Quantum Einstein Gravity a status report p. 1/4 Quantum Einstein Gravity a status report Frank Saueressig Group for Theoretical High Energy Physics (THEP) Institute of Physics M. Reuter and F.S., Sixth Aegean Summer School, Chora, Naxos (Greece),

More information

Gravitational Renormalization in Large Extra Dimensions

Gravitational Renormalization in Large Extra Dimensions Gravitational Renormalization in Large Extra Dimensions Humboldt Universität zu Berlin Institut für Physik October 1, 2009 D. Ebert, J. Plefka, and AR J. High Energy Phys. 0902 (2009) 028. T. Schuster

More information

Quantum Gravity and the Renormalization Group

Quantum Gravity and the Renormalization Group Nicolai Christiansen (ITP Heidelberg) Schladming Winter School 2013 Quantum Gravity and the Renormalization Group Partially based on: arxiv:1209.4038 [hep-th] (NC,Litim,Pawlowski,Rodigast) and work in

More information

Status of Hořava Gravity

Status of Hořava Gravity Status of Institut d Astrophysique de Paris based on DV & T. P. Sotiriou, PRD 85, 064003 (2012) [arxiv:1112.3385 [hep-th]] DV & T. P. Sotiriou, JPCS 453, 012022 (2013) [arxiv:1212.4402 [hep-th]] DV, arxiv:1502.06607

More information

Holographic Wilsonian Renormalization Group

Holographic Wilsonian Renormalization Group Holographic Wilsonian Renormalization Group JiYoung Kim May 0, 207 Abstract Strongly coupled systems are difficult to study because the perturbation of the systems does not work with strong couplings.

More information

Asymptotically safe inflation from quadratic gravity

Asymptotically safe inflation from quadratic gravity Asymptotically safe inflation from quadratic gravity Alessia Platania In collaboration with Alfio Bonanno University of Catania Department of Physics and Astronomy - Astrophysics Section INAF - Catania

More information

Early Universe Models

Early Universe Models Ma148b Spring 2016 Topics in Mathematical Physics This lecture based on, Elena Pierpaoli, Early universe models from Noncommutative Geometry, Advances in Theoretical and Mathematical Physics, Vol.14 (2010)

More information

On avoiding Ostrogradski instabilities within Asymptotic Safety

On avoiding Ostrogradski instabilities within Asymptotic Safety Prepared for submission to JHEP On avoiding Ostrogradski instabilities within Asymptotic Safety arxiv:1709.09098v2 [hep-th] 27 Oct 2017 Daniel Becker, Chris Ripken, Frank Saueressig Institute for Mathematics,

More information

Gravitational Waves and New Perspectives for Quantum Gravity

Gravitational Waves and New Perspectives for Quantum Gravity Gravitational Waves and New Perspectives for Quantum Gravity Ilya L. Shapiro Universidade Federal de Juiz de Fora, Minas Gerais, Brazil Supported by: CAPES, CNPq, FAPEMIG, ICTP Challenges for New Physics

More information

First steps toward an asymptotically safe model of electroweak interactions

First steps toward an asymptotically safe model of electroweak interactions First steps toward an asymptotically safe model of electroweak interactions (with M. Fabbrichesi, R. Percacci, F. Bazzocchi, L. Vecchi and O. Zanusso) Alberto Tonero SISSA Trieste - Asymptotic Safety Seminar

More information

Critical exponents in quantum Einstein gravity

Critical exponents in quantum Einstein gravity Critical exponents in quantum Einstein gravity S. Nagy,,2 B. Fazekas, 3 L. Juhász, and K. Sailer Department of Theoretical Physics, University of Debrecen, P.O. Box 5, H-4 Debrecen, Hungary 2 MTA-DE Particle

More information

Black hole thermodynamics under the microscope

Black hole thermodynamics under the microscope DELTA 2013 January 11, 2013 Outline Introduction Main Ideas 1 : Understanding black hole (BH) thermodynamics as arising from an averaging of degrees of freedom via the renormalisation group. Go beyond

More information

Asymptotically safe inflation from quadratic gravity

Asymptotically safe inflation from quadratic gravity Asymptotically safe inflation from quadratic gravity Alessia Platania In collaboration with Alfio Bonanno University of Catania Department of Physics and Astronomy - Astrophysics Section INAF - Catania

More information

Dimensional Reduction in the Renormalisation Group:

Dimensional Reduction in the Renormalisation Group: Dimensional Reduction in the Renormalisation Group: From Scalar Fields to Quantum Einstein Gravity Natália Alkofer Advisor: Daniel Litim Co-advisor: Bernd-Jochen Schaefer 11/01/12 PhD Seminar 1 Outline

More information

Scuola Internazionale Superiore di Studi Avanzati

Scuola Internazionale Superiore di Studi Avanzati Scuola Internazionale Superiore di Studi Avanzati Physics Area Ph.D. Course in Theoretical Particle Physics Thesis submitted for the degree of Doctor Philosophiae Matter fields, gravity and Asymptotic

More information

arxiv: v1 [hep-ph] 14 Feb 2013

arxiv: v1 [hep-ph] 14 Feb 2013 On non-minimal coupling of the inflaton Namit Mahajan Theoretical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India The non-minimal coupling of the inflaton to gravity,

More information

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory Anisotropic Interior Solutions in and Einstein-Æther Theory CENTRA, Instituto Superior Técnico based on DV and S. Carloni, arxiv:1706.06608 [gr-qc] Gravity and Cosmology 2018 Yukawa Institute for Theoretical

More information

Delta-gravity. Jorge Alfaro Pontificia Universidad Católica de Chile. Segundo Encuentro CosmoConce Concepción, March 16, Motivation...

Delta-gravity. Jorge Alfaro Pontificia Universidad Católica de Chile. Segundo Encuentro CosmoConce Concepción, March 16, Motivation... Delta-gravity Jorge Alfaro Pontificia Universidad Católica de Chile Segundo Encuentro CosmoConce Concepción, March 16, 2012 Table of contents Motivation........................................................

More information

Unimodular Gravity and General Relativity UV divergent contributions to the scattering of massive scalar particles

Unimodular Gravity and General Relativity UV divergent contributions to the scattering of massive scalar particles FTUAM-17-28 IFT-UAM/CSIC-17-115 FTI/UCM 37-2017 arxiv:1711.08009v1 [hep-th] 21 Nov 2017 Unimodular Gravity and General Relativity UV divergent contributions to the scattering of massive scalar particles

More information

Higher-derivative relativistic quantum gravity

Higher-derivative relativistic quantum gravity Preprint-INR-TH-207-044 Higher-derivative relativistic quantum gravity S.A. Larin Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect 7a, Moscow 732, Russia

More information

Physics Letters B 710 (2012) Contents lists available at SciVerse ScienceDirect. Physics Letters B.

Physics Letters B 710 (2012) Contents lists available at SciVerse ScienceDirect. Physics Letters B. Physics Letters B 70 (0 47 477 Contents lists available at SciVerse ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Scale-dependent Planck mass and Higgs VEV from holography and functional

More information

Gravitational perturbations on branes

Gravitational perturbations on branes º ( Ò Ò ) Ò ± 2015.4.9 Content 1. Introduction and Motivation 2. Braneworld solutions in various gravities 2.1 General relativity 2.2 Scalar-tensor gravity 2.3 f(r) gravity 3. Gravitational perturbation

More information

Some Quantum Aspects of D=3 Space-Time Massive Gravity.

Some Quantum Aspects of D=3 Space-Time Massive Gravity. Some Quantum Aspects of D=3 Space-Time Massive Gravity. arxiv:gr-qc/96049v 0 Nov 996 Carlos Pinheiro, Universidade Federal do Espírito Santo, Departamento de Física, Vitória-ES, Brazil, Gentil O. Pires,

More information

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology Yi-Fu Cai June 18, 2013 in Hefei CYF, Chang, Chen, Easson & Qiu, 1304.6938 Two Standard Models Cosmology CMB: Cobe (1989), WMAP (2001),

More information

Asymptotic Safety and Limit Cycles in minisuperspace quantum gravity

Asymptotic Safety and Limit Cycles in minisuperspace quantum gravity Asymptotic Safety and Limit Cycles in minisuperspace quantum gravity Alejandro Satz - University of Pennsylvania / University of Sussex Based on arxiv:1205.4218 (and forthcoming), in collaboration with

More information

On asymptotic safety in matter-gravity systems

On asymptotic safety in matter-gravity systems On asymptotic safety in matter-gravity systems Jan M. Pawlowsi Universität Heidelberg & ExtreMe Matter Institute th Bad Honnef, June 9 28 ISOQUANT SFB225 Overview!Towards apparent convergence in quantum

More information

The D 2 Limit of General Relativity

The D 2 Limit of General Relativity arxiv:gr-qc/908004v1 13 Aug 199 The D Limit of General Relativity R.B. Mann and S.F. Ross Department of Physics University of Waterloo Waterloo, Ontario NL 3G1 August 11, 199 WATPHYS TH 9/06 Abstract A

More information

One-loop renormalization in a toy model of Hořava-Lifshitz gravity

One-loop renormalization in a toy model of Hořava-Lifshitz gravity 1/0 Università di Roma TRE, Max-Planck-Institut für Gravitationsphysik One-loop renormalization in a toy model of Hořava-Lifshitz gravity Based on (hep-th:1311.653) with Dario Benedetti Filippo Guarnieri

More information

Connections and geodesics in the space of metrics The exponential parametrization from a geometric perspective

Connections and geodesics in the space of metrics The exponential parametrization from a geometric perspective Connections and geodesics in the space of metrics The exponential parametrization from a geometric perspective Andreas Nink Institute of Physics University of Mainz September 21, 2015 Based on: M. Demmel

More information

On the cutoff identification and the quantum. improvement in asymptotic safe gravity

On the cutoff identification and the quantum. improvement in asymptotic safe gravity On the cutoff identification and the quantum improvement in asymptotic safe gravity arxiv:1812.09135v1 [gr-qc] 21 Dec 2018 R. Moti and A. Shojai Department of Physics, University of Tehran. Abstract The

More information

BRANE COSMOLOGY and Randall-Sundrum model

BRANE COSMOLOGY and Randall-Sundrum model BRANE COSMOLOGY and Randall-Sundrum model M. J. Guzmán June 16, 2009 Standard Model of Cosmology CMB and large-scale structure observations provide us a high-precision estimation of the cosmological parameters:

More information

Higgs field in cosmology

Higgs field in cosmology Higgs field in cosmology Christian Friedrich Steinwachs Albert-Ludwigs-Universität Freiburg 678th Wilhelm and Else Heraeus Seminar: Hundred Years of Gauge Theory, Bad Honnef, 02.08.2018 Cosmic history

More information

Strings F( ) Cosmology or What does gravity learn from string field theory?

Strings F( ) Cosmology or What does gravity learn from string field theory? Strings F( Cosmology or What does gravity learn from string field theory? Alexey Koshelev Vrije Universiteit Brussel, Quarks, June 2-8, 2014 Outline Outline Problems to address Strings, SFT, p-adic strings

More information

arxiv: v1 [hep-th] 21 Oct 2008

arxiv: v1 [hep-th] 21 Oct 2008 arxiv:0810.3675v1 [hep-th] 21 Oct 2008 Fixed Points of Quantum Gravity and the Renormalisation Group Daniel F. Litim Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH, U.K. E-mail:

More information

The ultraviolet behavior of quantum gravity with fakeons

The ultraviolet behavior of quantum gravity with fakeons The ultraviolet behavior of quantum gravity with fakeons Dipartimento di Fisica Enrico Fermi SW12: Hot Topics in Modern Cosmology Cargèse May 18 th, 2018 Outline 1 Introduction 2 Lee-Wick quantum eld theory

More information

Higher-derivative relativistic quantum gravity

Higher-derivative relativistic quantum gravity arxiv:1711.02975v1 [physics.gen-ph] 31 Oct 2017 Preprint-INR-TH-044 Higher-derivative relativistic quantum gravity S.A. Larin Institute for Nuclear Research of the Russian Academy of Sciences, 60th October

More information

Dynamical Domain Wall and Localization

Dynamical Domain Wall and Localization Dynamical Domain Wall and Localization Shin ichi Nojiri Department of Physics & Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya Univ. Typeset by FoilTEX 1 Based on

More information

Graviton Corrections to Maxwell s Equations. arxiv: (to appear PRD) Katie E. Leonard and R. P. Woodard (U. of Florida)

Graviton Corrections to Maxwell s Equations. arxiv: (to appear PRD) Katie E. Leonard and R. P. Woodard (U. of Florida) Graviton Corrections to Maxwell s Equations arxiv:1202.5800 (to appear PRD) Katie E. Leonard and R. P. Woodard (U. of Florida) Classical Maxwell s Equations ν [ -g g νρ g µσ F ρσ ] = J µ 1. Photons (J

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Inverse square potential, scale anomaly, and complex extension

Inverse square potential, scale anomaly, and complex extension Inverse square potential, scale anomaly, and complex extension Sergej Moroz Seattle, February 2010 Work in collaboration with Richard Schmidt ITP, Heidelberg Outline Introduction and motivation Functional

More information

Beyond the unitarity bound in AdS/CFT

Beyond the unitarity bound in AdS/CFT Beyond the unitarity bound in AdS/CFT Tomás Andrade in collaboration with T. Faulkner, J. Jottar, R. Leigh, D. Marolf, C. Uhlemann October 5th, 2011 Introduction 1 AdS/CFT relates the dynamics of fields

More information

Mesonic and nucleon fluctuation effects at finite baryon density

Mesonic and nucleon fluctuation effects at finite baryon density Mesonic and nucleon fluctuation effects at finite baryon density Research Center for Nuclear Physics Osaka University Workshop on Strangeness and charm in hadrons and dense matter Yukawa Institute for

More information

Manifestly diffeomorphism invariant exact RG

Manifestly diffeomorphism invariant exact RG Manifestly diffeomorphism invariant exact RG II Flag Workshop The Quantum & Gravity 06/06/16 Tim Morris, Physics & Astronomy, University of Southampton, UK. TRM & Anthony W.H. Preston, arxiv:1602.08993,

More information

A Minimal Length from the Cutoff Modes in Asymptotically Safe Quantum Gravity

A Minimal Length from the Cutoff Modes in Asymptotically Safe Quantum Gravity MZ-TH/05-23 A Minimal Length from the Cutoff Modes in Asymptotically Safe Quantum Gravity Martin Reuter and Jan-Markus Schwindt arxiv:hep-th/0511021v1 2 Nov 2005 Institute of Physics, University of Mainz,

More information

Horava-Lifshitz Theory of Gravity & Applications to Cosmology

Horava-Lifshitz Theory of Gravity & Applications to Cosmology Horava-Lifshitz Theory of Gravity & Applications to Cosmology Anzhong Wang Phys. Dept., Baylor Univ. Waco, Texas 76798 Presented to Texas Cosmology Network Meeting, Austin, TX Oct. 30, 2009 Collaborators

More information

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Leonard Fister, Jan M. Pawlowski, Universität Heidelberg... work in progress ERG Corfu - September 2 Motivation ultimate goal: computation

More information

Analytic continuation of functional renormalization group equations

Analytic continuation of functional renormalization group equations Analytic continuation of functional renormalization group equations Stefan Flörchinger (CERN) Aachen, 07.03.2012 Short outline Quantum effective action and its analytic continuation Functional renormalization

More information

An all-scale exploration of alternative theories of gravity. Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste

An all-scale exploration of alternative theories of gravity. Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste An all-scale exploration of alternative theories of gravity Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste General Outline Beyond GR: motivation and pitfalls Alternative

More information

Contact interactions in string theory and a reformulation of QED

Contact interactions in string theory and a reformulation of QED Contact interactions in string theory and a reformulation of QED James Edwards QFT Seminar November 2014 Based on arxiv:1409.4948 [hep-th] and arxiv:1410.3288 [hep-th] Outline Introduction Worldline formalism

More information

Lecturer: Bengt E W Nilsson

Lecturer: Bengt E W Nilsson 9 3 19 Lecturer: Bengt E W Nilsson Last time: Relativistic physics in any dimension. Light-cone coordinates, light-cone stuff. Extra dimensions compact extra dimensions (here we talked about fundamental

More information

Gauge Dependence of the Effective Average Action in Einstein Gravity

Gauge Dependence of the Effective Average Action in Einstein Gravity Gauge Dependence of the Effective Average Action in Einstein Gravity Sven Falenberg Universität Leipzig, Institut für Theoretische Physi Augustusplatz 0, D-0409 Leipzig, Germany e-mail: Sven.Falenberg@itp.uni-leipzig.de

More information

Emergent space-time and gravity in the IIB matrix model

Emergent space-time and gravity in the IIB matrix model Emergent space-time and gravity in the IIB matrix model Harold Steinacker Department of physics Veli Losinj, may 2013 Geometry and physics without space-time continuum aim: (toy-?) model for quantum theory

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Functional RG methods in QCD

Functional RG methods in QCD methods in QCD Institute for Theoretical Physics University of Heidelberg LC2006 May 18th, 2006 methods in QCD motivation Strong QCD QCD dynamical symmetry breaking instantons χsb top. dofs link?! deconfinement

More information

Black holes and the renormalisation group 1

Black holes and the renormalisation group 1 Black holes and the renormalisation group 1 Kevin Falls, University of Sussex September 16, 2010 1 based on KF, D. F. Litim and A. Raghuraman, arxiv:1002.0260 [hep-th] also KF, D. F. Litim; KF, G. Hiller,

More information

RG flow of the Higgs potential. Holger Gies

RG flow of the Higgs potential. Holger Gies RG flow of the Higgs potential Holger Gies Helmholtz Institute Jena & Friedrich-Schiller-Universität Jena & C. Gneiting, R. Sondenheimer, PRD 89 (2014) 045012, [arxiv:1308.5075], & S. Rechenberger, M.M.

More information

New Model of massive spin-2 particle

New Model of massive spin-2 particle New Model of massive spin-2 particle Based on Phys.Rev. D90 (2014) 043006, Y.O, S. Akagi, S. Nojiri Phys.Rev. D90 (2014) 123013, S. Akagi, Y.O, S. Nojiri Yuichi Ohara QG lab. Nagoya univ. Introduction

More information

arxiv:gr-qc/ v1 23 Jul 1993

arxiv:gr-qc/ v1 23 Jul 1993 SUSSEX-AST-93/7- July 993 arxiv:gr-qc/9307034v 23 Jul 993 Extended Gravity Theories and the Einstein-Hilbert Action David Wands Astronomy Centre, School of athematical & Physical Sciences, University of

More information

The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria. Daniel Grumiller Olaf Hohm

The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria. Daniel Grumiller Olaf Hohm ESI The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria AdS 3 /LCFT 2 Correlators in New Massive Gravity Daniel Grumiller Olaf Hohm Vienna, Preprint

More information

arxiv:hep-th/ v2 24 Jan 2007

arxiv:hep-th/ v2 24 Jan 2007 Imperial-TP-AT-6-7 On sigma model RG flow, central charge action and Perelman s entropy arxiv:hep-th/0612296v2 24 Jan 2007 A.A. Tseytlin 1 Blackett Laboratory, Imperial College, London SW7 2AZ, U.K. Abstract

More information

Mesonic and nucleon fluctuation effects in nuclear medium

Mesonic and nucleon fluctuation effects in nuclear medium Mesonic and nucleon fluctuation effects in nuclear medium Research Center for Nuclear Physics Osaka University Workshop of Recent Developments in QCD and Quantum Field Theories National Taiwan University,

More information

The Spectral Action and the Standard Model

The Spectral Action and the Standard Model Ma148b Spring 2016 Topics in Mathematical Physics References A.H. Chamseddine, A. Connes, M. Marcolli, Gravity and the Standard Model with Neutrino Mixing, Adv. Theor. Math. Phys., Vol.11 (2007) 991 1090

More information

6.1 Quadratic Casimir Invariants

6.1 Quadratic Casimir Invariants 7 Version of May 6, 5 CHAPTER 6. QUANTUM CHROMODYNAMICS Mesons, then are described by a wavefunction and baryons by Φ = q a q a, (6.3) Ψ = ǫ abc q a q b q c. (6.4) This resolves the old paradox that ground

More information

Higher dimensional operators. in supersymmetry

Higher dimensional operators. in supersymmetry I. Antoniadis CERN Higher dimensional operators in supersymmetry with E. Dudas, D. Ghilencea, P. Tziveloglou Planck 2008, Barcelona Outline Effective operators from new physics integrating out heavy states

More information

RG flow of the Higgs potential. Holger Gies

RG flow of the Higgs potential. Holger Gies RG flow of the Higgs potential Holger Gies Helmholtz Institute Jena & TPI, Friedrich-Schiller-Universität Jena & C. Gneiting, R. Sondenheimer, PRD 89 (2014) 045012, [arxiv:1308.5075], & S. Rechenberger,

More information

GENERAL RELATIVITY: THE FIELD THEORY APPROACH

GENERAL RELATIVITY: THE FIELD THEORY APPROACH CHAPTER 9 GENERAL RELATIVITY: THE FIELD THEORY APPROACH We move now to the modern approach to General Relativity: field theory. The chief advantage of this formulation is that it is simple and easy; the

More information

Properties of the boundary rg flow

Properties of the boundary rg flow Properties of the boundary rg flow Daniel Friedan Department of Physics & Astronomy Rutgers the State University of New Jersey, USA Natural Science Institute University of Iceland 82ème rencontre entre

More information

The Effects of Inhomogeneities on the Universe Today. Antonio Riotto INFN, Padova

The Effects of Inhomogeneities on the Universe Today. Antonio Riotto INFN, Padova The Effects of Inhomogeneities on the Universe Today Antonio Riotto INFN, Padova Frascati, November the 19th 2004 Plan of the talk Short introduction to Inflation Short introduction to cosmological perturbations

More information

Lattice Quantum Gravity and Asymptotic Safety

Lattice Quantum Gravity and Asymptotic Safety Lattice Quantum Gravity and Asymptotic Safety Jack Laiho (Scott Bassler, Simon Catterall, Raghav Jha, Judah Unmuth-Yockey) Syracuse University June 18, 2018 Asymptotic Safety Weinberg proposed idea that

More information

Gravity in the Braneworld and

Gravity in the Braneworld and Gravity in the Braneworld and the AdS/CFT Correspondence Takahiro TANAKA Department of Physics, Kyoto University, Kyoto 606-8502, Japan October 18, 2004 Abstract We discuss gravitational interaction realized

More information

Asymptotic safety in the sine Gordon model a

Asymptotic safety in the sine Gordon model a Asymptotic safety in the sine Gordon model a Sándor Nagy Department of Theoretical Physics, University of Debrecen Debrecen, February 23, 2015 a J. Kovács, S.N., K. Sailer, arxiv:1408.2680, to appear in

More information

ASYMPTOTIC SAFETY, HYPERGEOMETRIC FUNCTIONS, AND THE HIGGS MASS IN SPECTRAL ACTION MODELS

ASYMPTOTIC SAFETY, HYPERGEOMETRIC FUNCTIONS, AND THE HIGGS MASS IN SPECTRAL ACTION MODELS ASYMPTOTIC SAFETY, HYPERGEOMETRIC FUNCTIONS, AND THE HIGGS MASS IN SPECTRAL ACTION MODELS CHRISTOPHER ESTRADA AND MATILDE MARCOLLI Abstract. We study the renormalization group flow for the Higgs self coupling

More information

A brief introduction to modified theories of gravity

A brief introduction to modified theories of gravity (Vinc)Enzo Vitagliano CENTRA, Lisboa May, 14th 2015 IV Amazonian Workshop on Black Holes and Analogue Models of Gravity Belém do Pará The General Theory of Relativity dynamics of the Universe behavior

More information

Holographic Geometries from Tensor Network States

Holographic Geometries from Tensor Network States Holographic Geometries from Tensor Network States J. Molina-Vilaplana 1 1 Universidad Politécnica de Cartagena Perspectives on Quantum Many-Body Entanglement, Mainz, Sep 2013 1 Introduction & Motivation

More information

Instantons and Sphalerons in a Magnetic Field

Instantons and Sphalerons in a Magnetic Field Stony Brook University 06/27/2012 GB, G.Dunne & D. Kharzeev, arxiv:1112.0532, PRD 85 045026 GB, D. Kharzeev, arxiv:1202.2161, PRD 85 086012 Outline Motivation & some lattice results General facts on Dirac

More information

Gauss-Bonnet Gravity with Scalar Field in Four Dimensions

Gauss-Bonnet Gravity with Scalar Field in Four Dimensions arxiv:0707.0347v3 [gr-qc] 13 Jul 2007 Gauss-Bonnet Gravity with Scalar Field in Four Dimensions Metin Gürses Department of Mathematics, Faculty of Sciences Bilkent University, 06800 Ankara - Turkey March

More information

Attractor Structure of Gauged Nambu-Jona-Lasinio Model

Attractor Structure of Gauged Nambu-Jona-Lasinio Model Attractor Structure of Gauged ambu-jona-lasinio Model Department of Physics, Hiroshima University E-mail: h-sakamoto@hiroshima-u.ac.jp We have studied the inflation theory in the gauged ambu-jona-lasinio

More information

Manifestly diffeomorphism invariant classical Exact Renormalization Group

Manifestly diffeomorphism invariant classical Exact Renormalization Group Manifestly diffeomorphism invariant classical Exact Renormalization Group Anthony W. H. Preston University of Southampton Supervised by Prof. Tim R. Morris Talk prepared for Asymptotic Safety seminar,

More information

AdS spacetimes and Kaluza-Klein consistency. Oscar Varela

AdS spacetimes and Kaluza-Klein consistency. Oscar Varela AdS spacetimes and Kaluza-Klein consistency Oscar Varela based on work with Jerome Gauntlett and Eoin Ó Colgáin hep-th/0611219, 0707.2315, 0711.xxxx CALTECH 16 November 2007 Outline 1 Consistent KK reductions

More information

arxiv: v2 [hep-th] 8 Oct 2012

arxiv: v2 [hep-th] 8 Oct 2012 Functional renormalization with fermions an tetras P. Donà an R. Percacci International School for Avance Stuies, via Bonomea 65, 3436 Trieste, Italy an INFN, Sezione i Trieste, Italy arxiv:09.3649v hep-th

More information

A String Model for Preons and the Standard Model Particles. Abstract

A String Model for Preons and the Standard Model Particles. Abstract March 5, 013 A String Model for Preons and the Standard Model Particles Risto Raitio 1 030 Espoo, Finland Abstract A preon model for standard model particles is proposed based on spin 1 fermion and spin

More information

A Short Note on D=3 N=1 Supergravity

A Short Note on D=3 N=1 Supergravity A Short Note on D=3 N=1 Supergravity Sunny Guha December 13, 015 1 Why 3-dimensional gravity? Three-dimensional field theories have a number of unique features, the massless states do not carry helicity,

More information

NONLOCAL EFFECTIVE FIELD EQUATIONS FOR QUANTUM COSMOLOGY

NONLOCAL EFFECTIVE FIELD EQUATIONS FOR QUANTUM COSMOLOGY Modern Physics Letters A Vol. 1, No. 9 006) 735 74 c World Scientific Publishing Company NONLOCAL EFFECTIVE FIELD EQUATIONS FOR QUANTUM COSMOLOGY H. W. HAMBER Department of Physics and Astronomy, University

More information