Running Couplings in Topologically Massive Gravity

Size: px
Start display at page:

Download "Running Couplings in Topologically Massive Gravity"

Transcription

1 Running Couplings in Topologically Massive Gravity Roberto Percacci 1 Ergin Sezgin 2 1 SISSA, Trieste 2 Texas A& M University, College Station, TX ERG Corfu arxiv: [hep-th] - C& QG 2010

2 Outline 1 TMG The theory 2 Calculations Wilsonian beta functions RG flow of TMG Beta functions of TMG 3 Results Ascending root cutoff Descending root cutoff Spectrally balanced cutoff 4 Conclusions Conclusions

3 The theory Topologically massive gravity Action S(γ) = Z d 3 x ( γ 2Λ + R + 1 2µ ελµν Γ ρ ( λσ µ Γ σ νρ Γσ µτγ τ νρ) ) Z = 1 16πG Dimensionless combinations of couplings ν = µg ; τ = ΛG 2 ; φ = µ/ Λ ν 2 = τφ 2

4 The theory Background field expansion γ µν = g µν + h µν Gauge fixing S GF = Z 2α d 3 x gχ µ g µν χ ν, S gh = Later will set β = 2α+1 3 χ ν = µ h µν β νh. d 3 x g C µ ( δ ν µ + 1 β 2 µ ν + R µ ν ) C ν

5 Wilsonian beta functions Modified generating functional { e Wk[J] = Dφ exp S[φ] S k [φ] } dx Jφ IR Cutoff S k [φ] = 1 2 dp φ( p) R k (p 2 )φ(p) = 1 φ 2 2 nr k (λ n ). n Effective average action Γ k [φ] = W k [J] dx Jφ S k [φ],

6 Wilsonian beta functions One loop evaluation For the EA Γ (1) = S Tr log ( S (2)) Similarly Γ (1) k = S Tr log ( S (2) + R k ) therefore k dγ(1) k dk = 1 2 Tr ( S (2) + R k ) 1 k dr k dk

7 Wilsonian beta functions Derivative expansion Γ k (φ, g i ) = k dγ k(φ, g i ) dk n=0 = i n=0 i g (n) i (k)o (n) (φ) β (n) i i (k)o (n) (φ) i

8 RG flow of TMG One loop flow eqn for TMG k dγ(1) k dk = 1 ( δ 2 2 Tr (S + S GF ) δh µν δh ρσ ) 1 + R µνρσ k dr ρσµν dk Tr ( δ 2 S gh δ C µ δc ν + R µ ν ) 1 k drµ ν dk Beta functions of G, µ, Λ can be read off calculating k dγ(1) k S 3 dk on

9 RG flow of TMG Second variations Take g metric on S 3 S (2) + S GF = 1 4 Z d 3 x g [h µν ( 2R3 + 2Λ ) h µν + 2(1 α) h µν µ ρ h ρν α ( + 2 β + 1 ) ) h µ ν (β + 1)2 h µν (1 h h+ 1 h(r 6Λ)h α 8α ( ( µ ελµν h λσ µ R ) ) ] h σν µ σ ρ h ρν 3

10 RG flow of TMG Decomposition h µν = h T µν + µ ξ ν + ν ξ µ + µ ν σ 1 3 g µν σ g µνh µ h T µν = 0 ; g µν h T µν = 0 ; µ ξ µ = 0 likewise for ghosts Field redefinitions C µ = V µ + µ S ; µ V µ = 0 + R 3 ξ µ = ˆξ µ ; ( + R ) σ = ˆσ ; 2 S = Ŝ

11 RG flow of TMG 2µν ρσ S (2) + S GF = Z [ hµν TT µνρσ 4 2 hρσ TT + c 1ˆξµ µν ˆξ ] 1 ν + c σˆσ σˆσ + c h h h h = ( 2R3 ) + 2Λ δ (ρ (µ δ ν) σ) + 1 ( µ ε (µ λ(ρ δ σ) ν) λ R ) 3 1µ ν σ = + 1 α 3 R + 2αΛ = + 2 α 4 α R + 6αΛ 4 α h = + R 4 α + 6Λ 4 α c 1 = 2 α, c σ = 2(4 α) 9α, c h = 4 α 18

12 m σ = m h = m S = n 2 + 2n + 1 RG flow of TMG Eigenvalues and multiplicities λ T ± n = R 6 (n2 + 2n + 2) 2Λ ± 1 µ λ ξ n = R 6 λ σ n = R 6 λ h n = R 6 ( ) n 2 + 2n 3 + 2α 2αΛ, n 2, ( n 2 + 2n 6(2 α) 4 α ( n 2 + 2n 6 4 α m T+ n ) ( ) R 3/2 n(n + 1)(n + 2), n 2, 6 ) 6αΛ 4 α, n 2, 6Λ 4 α, n 0 = m T n = n 2 + 2n 3, m ξ n = m V n = 2(n 2 + 2n),

13 RG flow of TMG Cutoff R k = Z O = Z R k ( 2 ) 2 c 1 1 c 1 R k ( 1 ) c σ σ c h h c σ R k ( σ ) c h R k ( h )

14 RG flow of TMG Collecting Tr(Zc i ( i + R k ( i ))) 1 d dt (Zc ir k ( i )) = Tr(W) W(x) = tr k (x) x + R k (x) k dγ k dk = 1 2 [Tr 2W( 2 ) + Tr 1 W( 1 ) + Tr 0 W( σ ) + Tr 0 W( h )] [Tr 1 W( V ) + Tr 0 W( S )]

15 RG flow of TMG Choice of R k R k (x) = (k 2 x)θ(k 2 x) ; W(x) = 2θ(k 2 x) k dγ k dk = ± + n n m T ± n θ(1 λ T n ± ) + n m ξ nθ(1 λ ξ n) mnθ(1 σ λ σ n) + mnθ(1 h λ h n) n 2 n m V n θ(1 λ V n ) 2 n m S n θ(1 λ S n) (here λ = λ/k 2 )

16 RG flow of TMG Euler-Maclaurin formula n=n 0 F(n) = Perform integrals n 0 dx F(x) F(n 0) B 2 2! F (n 0 ) B 4 4! F (n 0 ) + R n 0 dx m(x)θ(1 λ(x)) = where λ nmax = k 2 or λ nmax = 1 nmax n 0 dx m(x)

17 RG flow of TMG What is n max? 2 Λ 1 2 Λ n n λ T+ n Figure: (solid curve) and λ T n (dashed curve) as functions of n, for R = Λ = Right: large µ regime (here µ = 3). Left: small µ regime (here µ = 0.3).

18 RG flow of TMG Figure: The real (left) and imaginary (right) parts of the roots of the T+ equation λ n = 1, for R = Λ = 0.01, as functions of µ. The solutions of the equation λ T n = 1 are obtained by the reflection µ µ.

19 RG flow of TMG Figure: The real (left) and imaginary (right) parts of the roots of the equation λ T n = 1, for R = Λ = 0.01, as functions of µ. The T+ solutions of the equation λ n = 1 are obtained by the reflection µ µ.

20 Beta functions of TMG Euler-Maclaurin gives k dγ k dk = [ C 0 R 3/2 + C 2 R 1/2 + C 3/ F(n 0) B ] 2 2! F (n 0 ) compare with V(S 3 ) = 2π 2 ( 6 R ( 2Λ Γ k = V(S 3 ) = 3 6π 4 ) 3/2 ; tr(ωdω ω3 ) = 32π 2 16πG 1 ) 16πG R πGµ R3/ ( 2Λ k 3 16πG R 3/2 1 k 16πG R 1/ πGµ +... )

21 Beta functions of TMG R-independent terms n 0 C 3/2 F(n 0 ) F (n 0 ) hµν T ˆξ µ ˆσ h C µ Ĉ [ C 3/ F(n 0) B ] 2 2! F (n 0 ) = 0 β ν = 0

22 Beta functions of TMG Measure couplings in units of cutoff Beta functions G = Gk 1, Λ = Λk 2, µ = µk 1 8π G ( k d Λ dk Λ G k d G ) dk 1 d G k 16π G 2 dk ( π µ G G k d G ) d µ + k dk 1 µ dk = 3 Λ 8π G + A 16π = = π G + B 16π

23 Beta functions of TMG Beta functions of G and Λ β G = G + B( µ) G 2, β Λ = 2 Λ G ( ) A( µ, Λ) + 2B( µ) Λ Since ν = µg = µ G is constant can replace µ by ν/ G

24 Ascending root cutoff Ascending root cutoff For µ > Λ n 2

25 Ascending root cutoff Beta function coefficients A( Λ, µ) = 16 3π + 9(2 3 cos 2θ 3 cos 4θ + 8(cos θ) 3 sin θ) π(cos 3θ) 3 + 8(3 + 11α 2α2 ) π(4 α) Λ + 48(cos θ 3 sin θ) Λ, π sin 6θ 4(1 + α)(11 2α) B( µ) = π(4 α) 2( 3 sin θ cos θ) + 22( 3 sin 5θ + cos 5θ)) 3π sin 6θ, θ = 1 3 arctan 4 µ

26 Ascending root cutoff 1.0 G 0.10 G Figure: The flow in the Λ- G plane for α = 0, ν = 5. Right: enlargement of the region around the origin, showing the Gaussian FP. The beta functions become singular at G =

27 Ascending root cutoff 0.30 G Ν Figure: Position of the FP (left) and eigenvalues of the stability matrix (right) for the nontrivial FP with α = 0, 1 < ν < 40. Note that for this range of ν the singularity is always above the FP. In the left panel, ν grows from right to left. Note that Λ > 0 in this scheme. For large ν, G tends to and the eigenvalues tend to 1 and

28 Descending root cutoff Descending root cutoff For µ < Λ n 2

29 Descending root cutoff 1.0 G 0.10 G Figure: The flow in the Λ- G plane for α = 0, ν = 0.1. Right: enlargement of the region around the origin, showing that there is no Gaussian FP. The beta functions diverge on the Λ axis.

30 Descending root cutoff 0.8 G Ν Figure: Position of the FP (panel) and eigenvalues of the stability matrix (panel) for the nontrivial FP with α = 0, 10 6 < ν < 0.5, in the descending root cutoff scheme. In the left panel, ν decreases from right to left. Λ changes sign for ν = The rightmost point (ν = 0.5) has µ 3 > 27/4.

31 Spectrally balanced cutoff Spectrally balanced cutoff For any µ choose same n max for λ TT+ and λ TT. 2 Λ n 2

32 Spectrally balanced cutoff A( µ, Λ) = 16 3π π(cosh η) 3 + 8(3 + 11α 2α2 ) 16 3 Λ + π(4 α) π(cosh 3η + 2 cosh η) Λ B( µ) = 4(11 + 9α 2α2 ) 3π(4 α) η = 1 3 arctanh 8 3 9π 1 4 µ2 27 ( ) cosh 2η cosh 3η + 2 cosh η

33 Spectrally balanced cutoff 1.0 G Ν Figure: Left: The position of the FP in the Λ- G plane, varying ν from (upper left) to 1000 (lower right). The point with coordinates (0,0.2005) is the limit ν. Right: The eigenvalues of M as functions of ν. For ν = they are 1 and while for ν = 1000 they are and

34 Conclusions General features Simple form of R k implies spectrally unbalanced cutoff. No choice of roots is good for all µ: ascending root good for large µ (small G), descending root for small µ (large G) Spectrally balanced cutoff good for all µ Qualitative picture consistent Agreement with heat kernel calculation for µ

35 Conclusions Scheme independent features β ν = 0 expected for topological reasons GFP with crit exp 1 and 2 NGFP with crit exp 1 and 2 G is positive

36 Conclusions Scheme dependent features position of NGFP in particular, there is residual uncertainty on sign of cosmological constant at NGFP for large µ scaling exponents at NGFP (slightly)

37 Conclusions Gauge dependence EOM gives R = 6Λ, but we did not use this. Off shell EA gauge dependent, so off shell beta functions are gauge dependent. On shell Hilbert action is proportional to V(S 3 Λ ) 16πG 1 ΛG 1 τ so expect β τ to be gauge independent. Indeed β τ A + 6B Λ = 16 3π (1 + 3 Λ) + µ-dependent terms

38 Conclusions Asymptotic safety In d 4 large value of G consistency of truncation For large µ, TMG is an example of asymptotically safe theory which can be studied perturbatively Since Riemann can be expressed in terms of Ricci, higher derivative terms can be eliminated order by order in perturbation theory

THE RENORMALIZATION GROUP AND WEYL-INVARIANCE

THE RENORMALIZATION GROUP AND WEYL-INVARIANCE THE RENORMALIZATION GROUP AND WEYL-INVARIANCE Asymptotic Safety Seminar Series 2012 [ Based on arxiv:1210.3284 ] GIULIO D ODORICO with A. CODELLO, C. PAGANI and R. PERCACCI 1 Outline Weyl-invariance &

More information

Asymptotically safe Quantum Gravity. Nonperturbative renormalizability and fractal space-times

Asymptotically safe Quantum Gravity. Nonperturbative renormalizability and fractal space-times p. 1/2 Asymptotically safe Quantum Gravity Nonperturbative renormalizability and fractal space-times Frank Saueressig Institute for Theoretical Physics & Spinoza Institute Utrecht University Rapporteur

More information

Critical exponents in quantum Einstein gravity

Critical exponents in quantum Einstein gravity Critical exponents in quantum Einstein gravity Sándor Nagy Department of Theoretical physics, University of Debrecen MTA-DE Particle Physics Research Group, Debrecen Leibnitz, 28 June Critical exponents

More information

Constraints on matter from asymptotic safety

Constraints on matter from asymptotic safety Constraints on matter from asymptotic safety Roberto Percacci SISSA, Trieste Padova, February 19, 2014 Fixed points Γ k (φ) = i λ i (k)o i (φ) β i (λ j,k) = dλ i dt, t = log(k/k 0) λ i = k d iλ i β i =

More information

Asymptotic Safety in the ADM formalism of gravity

Asymptotic Safety in the ADM formalism of gravity Asymptotic Safety in the ADM formalism of gravity Frank Saueressig Research Institute for Mathematics, Astrophysics and Particle Physics Radboud University Nijmegen J. Biemans, A. Platania and F. Saueressig,

More information

Causal RG equation for Quantum Einstein Gravity

Causal RG equation for Quantum Einstein Gravity Causal RG equation for Quantum Einstein Gravity Stefan Rechenberger Uni Mainz 14.03.2011 arxiv:1102.5012v1 [hep-th] with Elisa Manrique and Frank Saueressig Stefan Rechenberger (Uni Mainz) Causal RGE for

More information

Functional Renormalization Group Equations from a Differential Operator Perspective

Functional Renormalization Group Equations from a Differential Operator Perspective p. 1/4 Functional Renormalization Group Equations from a Differential Operator Perspective Frank Saueressig Group for Theoretical High Energy Physics (THEP) D. Benedetti, K. Groh, P. Machado, and F.S.,

More information

Renormalization Group Equations

Renormalization Group Equations Renormalization Group Equations Idea: study the dependence of correlation functions on the scale k Various options: k = Λ: Wilson, Wegner-Houghton, coarse graining constant physics, cutoff/uv insensitivity

More information

Quantum Gravity and the Renormalization Group

Quantum Gravity and the Renormalization Group Nicolai Christiansen (ITP Heidelberg) Schladming Winter School 2013 Quantum Gravity and the Renormalization Group Partially based on: arxiv:1209.4038 [hep-th] (NC,Litim,Pawlowski,Rodigast) and work in

More information

Asymptotic Safety and Limit Cycles in minisuperspace quantum gravity

Asymptotic Safety and Limit Cycles in minisuperspace quantum gravity Asymptotic Safety and Limit Cycles in minisuperspace quantum gravity Alejandro Satz - University of Pennsylvania / University of Sussex Based on arxiv:1205.4218 (and forthcoming), in collaboration with

More information

Asymptotically Safe Gravity connecting continuum and Monte Carlo

Asymptotically Safe Gravity connecting continuum and Monte Carlo Asymptotically Safe Gravity connecting continuum and Monte Carlo Frank Saueressig Research Institute for Mathematics, Astrophysics and Particle Physics Radboud University Nijmegen J. Biemans, A. Platania

More information

Asymptotically safe inflation from quadratic gravity

Asymptotically safe inflation from quadratic gravity Asymptotically safe inflation from quadratic gravity Alessia Platania In collaboration with Alfio Bonanno University of Catania Department of Physics and Astronomy - Astrophysics Section INAF - Catania

More information

Analytic continuation of functional renormalization group equations

Analytic continuation of functional renormalization group equations Analytic continuation of functional renormalization group equations Stefan Flörchinger (CERN) Aachen, 07.03.2012 Short outline Quantum effective action and its analytic continuation Functional renormalization

More information

Scuola Internazionale Superiore di Studi Avanzati

Scuola Internazionale Superiore di Studi Avanzati Scuola Internazionale Superiore di Studi Avanzati Physics Area Ph.D. Course in Theoretical Particle Physics Thesis submitted for the degree of Doctor Philosophiae Matter fields, gravity and Asymptotic

More information

A functional renormalization group equation for foliated space-times

A functional renormalization group equation for foliated space-times p. 1/4 A functional renormalization group equation for foliated space-times Frank Saueressig Group for Theoretical High Energy Physics (THEP) Institute of Physics E. Manrique, S. Rechenberger, F.S., Phys.

More information

Lecturer: Bengt E W Nilsson

Lecturer: Bengt E W Nilsson 9 3 19 Lecturer: Bengt E W Nilsson Last time: Relativistic physics in any dimension. Light-cone coordinates, light-cone stuff. Extra dimensions compact extra dimensions (here we talked about fundamental

More information

Spectral action, scale anomaly. and the Higgs-Dilaton potential

Spectral action, scale anomaly. and the Higgs-Dilaton potential Spectral action, scale anomaly and the Higgs-Dilaton potential Fedele Lizzi Università di Napoli Federico II Work in collaboration with A.A. Andrianov (St. Petersburg) and M.A. Kurkov (Napoli) JHEP 1005:057,2010

More information

Holographic Entanglement Entropy for Surface Operators and Defects

Holographic Entanglement Entropy for Surface Operators and Defects Holographic Entanglement Entropy for Surface Operators and Defects Michael Gutperle UCLA) UCSB, January 14th 016 Based on arxiv:1407.569, 1506.0005, 151.04953 with Simon Gentle and Chrysostomos Marasinou

More information

Connections and geodesics in the space of metrics The exponential parametrization from a geometric perspective

Connections and geodesics in the space of metrics The exponential parametrization from a geometric perspective Connections and geodesics in the space of metrics The exponential parametrization from a geometric perspective Andreas Nink Institute of Physics University of Mainz September 21, 2015 Based on: M. Demmel

More information

First steps toward an asymptotically safe model of electroweak interactions

First steps toward an asymptotically safe model of electroweak interactions First steps toward an asymptotically safe model of electroweak interactions (with M. Fabbrichesi, R. Percacci, F. Bazzocchi, L. Vecchi and O. Zanusso) Alberto Tonero SISSA Trieste - Asymptotic Safety Seminar

More information

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds Introduction to String Theory ETH Zurich, HS11 Chapter 9 Prof. N. Beisert 9 String Backgrounds Have seen that string spectrum contains graviton. Graviton interacts according to laws of General Relativity.

More information

Critical Region of the QCD Phase Transition

Critical Region of the QCD Phase Transition Critical Region of the QCD Phase Transition Mean field vs. Renormalization group B.-J. Schaefer 1 and J. Wambach 1,2 1 Institut für Kernphysik TU Darmstadt 2 GSI Darmstadt 18th August 25 Uni. Graz B.-J.

More information

Functional Renormalization Group Equations, Asymptotic Safety, and Quantum Einstein Gravity

Functional Renormalization Group Equations, Asymptotic Safety, and Quantum Einstein Gravity MZ-TH/07-05 ITP-UU-07/22 Spin-07/15 arxiv:0708.1317v1 [hep-th] 9 Aug 2007 Functional Renormalization Group Equations, Asymptotic Safety, and Quantum Einstein Gravity Martin Reuter 1 and Fran Saueressig

More information

UV completion of the Standard Model

UV completion of the Standard Model UV completion of the Standard Model Manuel Reichert In collaboration with: Jan M. Pawlowski, Tilman Plehn, Holger Gies, Michael Scherer,... Heidelberg University December 15, 2015 Outline 1 Introduction

More information

Massive gravity in three dimensions The AdS 3 /LCFT 2 correspondence

Massive gravity in three dimensions The AdS 3 /LCFT 2 correspondence Massive gravity in three dimensions The AdS 3 /LCFT 2 correspondence Daniel Grumiller Institute for Theoretical Physics Vienna University of Technology CBPF, February 2011 with: Hamid Afshar, Mario Bertin,

More information

Some Quantum Aspects of D=3 Space-Time Massive Gravity.

Some Quantum Aspects of D=3 Space-Time Massive Gravity. Some Quantum Aspects of D=3 Space-Time Massive Gravity. arxiv:gr-qc/96049v 0 Nov 996 Carlos Pinheiro, Universidade Federal do Espírito Santo, Departamento de Física, Vitória-ES, Brazil, Gentil O. Pires,

More information

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor. Übungen zu RT2 SS 2010 (1) Show that the tensor field g µν (x) = η µν is invariant under Poincaré transformations, i.e. x µ x µ = L µ νx ν + c µ, where L µ ν is a constant matrix subject to L µ ρl ν ση

More information

Quantum Fields in Curved Spacetime

Quantum Fields in Curved Spacetime Quantum Fields in Curved Spacetime Lecture 3 Finn Larsen Michigan Center for Theoretical Physics Yerevan, August 22, 2016. Recap AdS 3 is an instructive application of quantum fields in curved space. The

More information

Delta-gravity. Jorge Alfaro Pontificia Universidad Católica de Chile. Segundo Encuentro CosmoConce Concepción, March 16, Motivation...

Delta-gravity. Jorge Alfaro Pontificia Universidad Católica de Chile. Segundo Encuentro CosmoConce Concepción, March 16, Motivation... Delta-gravity Jorge Alfaro Pontificia Universidad Católica de Chile Segundo Encuentro CosmoConce Concepción, March 16, 2012 Table of contents Motivation........................................................

More information

MCRG Flow for the Nonlinear Sigma Model

MCRG Flow for the Nonlinear Sigma Model Raphael Flore,, Björn Wellegehausen, Andreas Wipf 23.03.2012 So you want to quantize gravity... RG Approach to QFT all information stored in correlation functions φ(x 0 )... φ(x n ) = N Dφ φ(x 0 )... φ(x

More information

One-loop renormalization in a toy model of Hořava-Lifshitz gravity

One-loop renormalization in a toy model of Hořava-Lifshitz gravity 1/0 Università di Roma TRE, Max-Planck-Institut für Gravitationsphysik One-loop renormalization in a toy model of Hořava-Lifshitz gravity Based on (hep-th:1311.653) with Dario Benedetti Filippo Guarnieri

More information

Quantum Einstein Gravity a status report

Quantum Einstein Gravity a status report p. 1/4 Quantum Einstein Gravity a status report Frank Saueressig Group for Theoretical High Energy Physics (THEP) Institute of Physics M. Reuter and F.S., Sixth Aegean Summer School, Chora, Naxos (Greece),

More information

Notes on General Relativity Linearized Gravity and Gravitational waves

Notes on General Relativity Linearized Gravity and Gravitational waves Notes on General Relativity Linearized Gravity and Gravitational waves August Geelmuyden Universitetet i Oslo I. Perturbation theory Solving the Einstein equation for the spacetime metric is tremendously

More information

Asymptotic safety in the sine Gordon model a

Asymptotic safety in the sine Gordon model a Asymptotic safety in the sine Gordon model a Sándor Nagy Department of Theoretical Physics, University of Debrecen Debrecen, February 23, 2015 a J. Kovács, S.N., K. Sailer, arxiv:1408.2680, to appear in

More information

Gravitational perturbations on branes

Gravitational perturbations on branes º ( Ò Ò ) Ò ± 2015.4.9 Content 1. Introduction and Motivation 2. Braneworld solutions in various gravities 2.1 General relativity 2.2 Scalar-tensor gravity 2.3 f(r) gravity 3. Gravitational perturbation

More information

Quantum discontinuity between zero and infinitesimal graviton mass with a Λ term. Abstract

Quantum discontinuity between zero and infinitesimal graviton mass with a Λ term. Abstract MCTP-01-06 hep-th/010093 Quantum discontinuity between zero and infinitesimal graviton mass with a Λ term F. A. Dilkes, M. J. Duff, James T. Liu and H. Sati Michigan Center for Theoretical Physics Randall

More information

On the cutoff identification and the quantum. improvement in asymptotic safe gravity

On the cutoff identification and the quantum. improvement in asymptotic safe gravity On the cutoff identification and the quantum improvement in asymptotic safe gravity arxiv:1812.09135v1 [gr-qc] 21 Dec 2018 R. Moti and A. Shojai Department of Physics, University of Tehran. Abstract The

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Critical Behavior II: Renormalization Group Theory

Critical Behavior II: Renormalization Group Theory Critical Behavior II: Renormalization Group Theor H. W. Diehl Fachbereich Phsik, Universität Duisburg-Essen, Campus Essen 1 What the Theor should Accomplish Theor should ield & explain: scaling laws #

More information

Status of Hořava Gravity

Status of Hořava Gravity Status of Institut d Astrophysique de Paris based on DV & T. P. Sotiriou, PRD 85, 064003 (2012) [arxiv:1112.3385 [hep-th]] DV & T. P. Sotiriou, JPCS 453, 012022 (2013) [arxiv:1212.4402 [hep-th]] DV, arxiv:1502.06607

More information

Black Holes in Higher-Derivative Gravity. Classical and Quantum Black Holes

Black Holes in Higher-Derivative Gravity. Classical and Quantum Black Holes Black Holes in Higher-Derivative Gravity Classical and Quantum Black Holes LMPT, Tours May 30th, 2016 Work with Hong Lü, Alun Perkins, Kelly Stelle Phys. Rev. Lett. 114 (2015) 17, 171601 Introduction Black

More information

STOCHASTIC QUANTIZATION AND HOLOGRAPHY

STOCHASTIC QUANTIZATION AND HOLOGRAPHY STOCHASTIC QUANTIZATION AND HOLOGRAPHY WORK WITH D.MANSI & A. MAURI: TO APPEAR TASSOS PETKOU UNIVERSITY OF CRETE OUTLINE CONFORMAL HOLOGRAPHY STOCHASTIC QUANTIZATION STOCHASTIC QUANTIZATION VS HOLOGRAPHY

More information

Asymptotically safe inflation from quadratic gravity

Asymptotically safe inflation from quadratic gravity Asymptotically safe inflation from quadratic gravity Alessia Platania In collaboration with Alfio Bonanno University of Catania Department of Physics and Astronomy - Astrophysics Section INAF - Catania

More information

FERMION MASSES FROM A CROSSOVER MECHANISM

FERMION MASSES FROM A CROSSOVER MECHANISM FERMION MASSES FROM A ROSSOVER MEHANISM Vincenzo ranchina and Emanuele Messina Department of Physics, University of atania, Italy Eleventh Workshop on Non-Perturbative Quantum hromodynamics June 6 -, 2,

More information

Mesonic and nucleon fluctuation effects at finite baryon density

Mesonic and nucleon fluctuation effects at finite baryon density Mesonic and nucleon fluctuation effects at finite baryon density Research Center for Nuclear Physics Osaka University Workshop on Strangeness and charm in hadrons and dense matter Yukawa Institute for

More information

Inverse square potential, scale anomaly, and complex extension

Inverse square potential, scale anomaly, and complex extension Inverse square potential, scale anomaly, and complex extension Sergej Moroz Seattle, February 2010 Work in collaboration with Richard Schmidt ITP, Heidelberg Outline Introduction and motivation Functional

More information

κ = f (r 0 ) k µ µ k ν = κk ν (5)

κ = f (r 0 ) k µ µ k ν = κk ν (5) 1. Horizon regularity and surface gravity Consider a static, spherically symmetric metric of the form where f(r) vanishes at r = r 0 linearly, and g(r 0 ) 0. Show that near r = r 0 the metric is approximately

More information

Effect of the Trace Anomaly on the Cosmological Constant. Jurjen F. Koksma

Effect of the Trace Anomaly on the Cosmological Constant. Jurjen F. Koksma Effect of the Trace Anomaly on the Cosmological Constant Jurjen F. Koksma Invisible Universe Spinoza Institute Institute for Theoretical Physics Utrecht University 2nd of July 2009 J.F. Koksma T. Prokopec

More information

Higher-derivative relativistic quantum gravity

Higher-derivative relativistic quantum gravity Preprint-INR-TH-207-044 Higher-derivative relativistic quantum gravity S.A. Larin Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect 7a, Moscow 732, Russia

More information

Chapter 2 General Relativity and Black Holes

Chapter 2 General Relativity and Black Holes Chapter 2 General Relativity and Black Holes In this book, black holes frequently appear, so we will describe the simplest black hole, the Schwarzschild black hole and its physics. Roughly speaking, a

More information

arxiv:hep-th/ v1 2 May 1997

arxiv:hep-th/ v1 2 May 1997 Exact Renormalization Group and Running Newtonian Coupling in Higher Derivative Gravity arxiv:hep-th/9705008v 2 May 997 A.A. Bytseno State Technical University, St. Petersburg, 95252, Russia L.N. Granda

More information

Problem 1, Lorentz transformations of electric and magnetic

Problem 1, Lorentz transformations of electric and magnetic Problem 1, Lorentz transformations of electric and magnetic fields We have that where, F µν = F µ ν = L µ µ Lν ν F µν, 0 B 3 B 2 ie 1 B 3 0 B 1 ie 2 B 2 B 1 0 ie 3 ie 2 ie 2 ie 3 0. Note that we use the

More information

From the Newton equation to the wave equation in some simple cases

From the Newton equation to the wave equation in some simple cases From the ewton equation to the wave equation in some simple cases Xavier Blanc joint work with C. Le Bris (EPC) and P.-L. Lions (Collège de France) Université Paris Diderot, FRACE http://www.ann.jussieu.fr/

More information

Dynamical Domain Wall and Localization

Dynamical Domain Wall and Localization Dynamical Domain Wall and Localization Shin ichi Nojiri Department of Physics & Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya Univ. Typeset by FoilTEX 1 Based on

More information

The Effects of Inhomogeneities on the Universe Today. Antonio Riotto INFN, Padova

The Effects of Inhomogeneities on the Universe Today. Antonio Riotto INFN, Padova The Effects of Inhomogeneities on the Universe Today Antonio Riotto INFN, Padova Frascati, November the 19th 2004 Plan of the talk Short introduction to Inflation Short introduction to cosmological perturbations

More information

WIMP Dark Matter and the QCD Equation of State

WIMP Dark Matter and the QCD Equation of State Doktoratskolleg Graz Karl-Franzens-Universität, May 2006 WIMP Dark Matter and the QCD Equation of State Owe Philipsen Universität Münster Motivation + overview Cosmology I: expansion and contents of the

More information

Black hole thermodynamics under the microscope

Black hole thermodynamics under the microscope DELTA 2013 January 11, 2013 Outline Introduction Main Ideas 1 : Understanding black hole (BH) thermodynamics as arising from an averaging of degrees of freedom via the renormalisation group. Go beyond

More information

Virasoro hair on locally AdS 3 geometries

Virasoro hair on locally AdS 3 geometries Virasoro hair on locally AdS 3 geometries Kavli Institute for Theoretical Physics China Institute of Theoretical Physics ICTS (USTC) arxiv: 1603.05272, M. M. Sheikh-Jabbari and H. Y Motivation Introduction

More information

Dimensional Reduction in the Renormalisation Group:

Dimensional Reduction in the Renormalisation Group: Dimensional Reduction in the Renormalisation Group: From Scalar Fields to Quantum Einstein Gravity Natália Alkofer Advisor: Daniel Litim Co-advisor: Bernd-Jochen Schaefer 11/01/12 PhD Seminar 1 Outline

More information

"Topologically Massive" theories in and beyond 3D

Topologically Massive theories in and beyond 3D "Topologically Massive" theories in and beyond 3D Yihao Yin (University of Groningen) In collaboration with E.A. Bergshoeff, M. Kovacevic, J. Rosseel, P.K. Townsend, etc. ( arxiv: 1109.0382 & 1207.0192

More information

Heisenberg-Euler effective lagrangians

Heisenberg-Euler effective lagrangians Heisenberg-Euler effective lagrangians Appunti per il corso di Fisica eorica 7/8 3.5.8 Fiorenzo Bastianelli We derive here effective lagrangians for the electromagnetic field induced by a loop of charged

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

arxiv:gr-qc/ v3 10 Nov 1994

arxiv:gr-qc/ v3 10 Nov 1994 1 Nonsymmetric Gravitational Theory J. W. Moffat Department of Physics University of Toronto Toronto, Ontario M5S 1A7 Canada arxiv:gr-qc/9411006v3 10 Nov 1994 Abstract A new version of nonsymmetric gravitational

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Cosmological constant is a conserved charge

Cosmological constant is a conserved charge Cosmological constant is a conserved Kamal Hajian Institute for Research in Fundamental Sciences (IPM) In collaboration with Dmitry Chernyavsky (Tomsk Polytechnic U.) arxiv:1710.07904, to appear in Classical

More information

A Short Note on D=3 N=1 Supergravity

A Short Note on D=3 N=1 Supergravity A Short Note on D=3 N=1 Supergravity Sunny Guha December 13, 015 1 Why 3-dimensional gravity? Three-dimensional field theories have a number of unique features, the massless states do not carry helicity,

More information

Dilaton gravity at the brane with general matter-dilaton coupling

Dilaton gravity at the brane with general matter-dilaton coupling Dilaton gravity at the brane with general matter-dilaton coupling University of Würzburg, Institute for Theoretical Physics and Astrophysics Bielefeld, 6. Kosmologietag May 5th, 2011 Outline introduction

More information

Asymptotically free nonabelian Higgs models. Holger Gies

Asymptotically free nonabelian Higgs models. Holger Gies Asymptotically free nonabelian Higgs models Holger Gies Friedrich-Schiller-Universität Jena & Helmholtz-Institut Jena & Luca Zambelli, PRD 92, 025016 (2015) [arxiv:1502.05907], arxiv:16xx.yyyyy Prologue:

More information

Unimodular Gravity and General Relativity UV divergent contributions to the scattering of massive scalar particles

Unimodular Gravity and General Relativity UV divergent contributions to the scattering of massive scalar particles FTUAM-17-28 IFT-UAM/CSIC-17-115 FTI/UCM 37-2017 arxiv:1711.08009v1 [hep-th] 21 Nov 2017 Unimodular Gravity and General Relativity UV divergent contributions to the scattering of massive scalar particles

More information

the renormalization group (RG) idea

the renormalization group (RG) idea the renormalization group (RG) idea Block Spin Partition function Z =Tr s e H. block spin transformation (majority rule) T (s, if s i ; s,...,s 9 )= s i > 0; 0, otherwise. b Block Spin (block-)transformed

More information

Strings F( ) Cosmology or What does gravity learn from string field theory?

Strings F( ) Cosmology or What does gravity learn from string field theory? Strings F( Cosmology or What does gravity learn from string field theory? Alexey Koshelev Vrije Universiteit Brussel, Quarks, June 2-8, 2014 Outline Outline Problems to address Strings, SFT, p-adic strings

More information

GENERAL RELATIVITY: THE FIELD THEORY APPROACH

GENERAL RELATIVITY: THE FIELD THEORY APPROACH CHAPTER 9 GENERAL RELATIVITY: THE FIELD THEORY APPROACH We move now to the modern approach to General Relativity: field theory. The chief advantage of this formulation is that it is simple and easy; the

More information

New cosmological solutions in Nonlocal Modified Gravity. Jelena Stanković

New cosmological solutions in Nonlocal Modified Gravity. Jelena Stanković Motivation Large observational findings: High orbital speeds of galaxies in clusters. (F.Zwicky, 1933) High orbital speeds of stars in spiral galaxies. (Vera Rubin, at the end of 1960es) Big Bang Accelerated

More information

General Relativity and Cosmology Mock exam

General Relativity and Cosmology Mock exam Physikalisches Institut Mock Exam Universität Bonn 29. June 2011 Theoretische Physik SS 2011 General Relativity and Cosmology Mock exam Priv. Doz. Dr. S. Förste Exercise 1: Overview Give short answers

More information

Functional RG for few-body physics

Functional RG for few-body physics Functional RG for few-body physics Michael C Birse The University of Manchester Review of results from: Schmidt and Moroz, arxiv:0910.4586 Krippa, Walet and Birse, arxiv:0911.4608 Krippa, Walet and Birse,

More information

Gravity in lower dimensions

Gravity in lower dimensions Gravity in lower dimensions Daniel Grumiller Institute for Theoretical Physics Vienna University of Technology Uppsala University, December 2008 Outline Why lower-dimensional gravity? Which 2D theory?

More information

On avoiding Ostrogradski instabilities within Asymptotic Safety

On avoiding Ostrogradski instabilities within Asymptotic Safety Prepared for submission to JHEP On avoiding Ostrogradski instabilities within Asymptotic Safety arxiv:1709.09098v2 [hep-th] 27 Oct 2017 Daniel Becker, Chris Ripken, Frank Saueressig Institute for Mathematics,

More information

Ghost-free higher derivative unimodular gravity.

Ghost-free higher derivative unimodular gravity. Prepared for submission to JHEP arxiv:1708.03133v3 [hep-th] 5 Dec 2017 Ghost-free higher derivative unimodular gravity. Enrique Alvarez a,b and Sergio Gonzalez-Martin a a Departamento de Física Teórica

More information

The ultraviolet behavior of quantum gravity with fakeons

The ultraviolet behavior of quantum gravity with fakeons The ultraviolet behavior of quantum gravity with fakeons Dipartimento di Fisica Enrico Fermi SW12: Hot Topics in Modern Cosmology Cargèse May 18 th, 2018 Outline 1 Introduction 2 Lee-Wick quantum eld theory

More information

and Zoran Rakić Nonlocal modified gravity Ivan Dimitrijević, Branko Dragovich, Jelena Grujić

and Zoran Rakić Nonlocal modified gravity Ivan Dimitrijević, Branko Dragovich, Jelena Grujić Motivation Large cosmological observational findings: High orbital speeds of galaxies in clusters.( F.Zwicky, 1933) High orbital speeds of stars in spiral galaxies. ( Vera Rubin, at the end of 1960es )

More information

Holography and (Lorentzian) black holes

Holography and (Lorentzian) black holes Holography and (Lorentzian) black holes Simon Ross Centre for Particle Theory The State of the Universe, Cambridge, January 2012 Simon Ross (Durham) Holography and black holes Cambridge 7 January 2012

More information

A rotating charged black hole solution in f (R) gravity

A rotating charged black hole solution in f (R) gravity PRAMANA c Indian Academy of Sciences Vol. 78, No. 5 journal of May 01 physics pp. 697 703 A rotating charged black hole solution in f R) gravity ALEXIS LARRAÑAGA National Astronomical Observatory, National

More information

Analytical study of Yang-Mills theory from first principles by a massive expansion

Analytical study of Yang-Mills theory from first principles by a massive expansion Analytical study of Yang-Mills theory from first principles by a massive expansion Department of Physics and Astronomy University of Catania, Italy Infrared QCD APC, Paris Diderot University, 8-10 November

More information

Accelerating Cosmologies and Black Holes in the Dilatonic Einstein-Gauss-Bonnet (EGB) Theory

Accelerating Cosmologies and Black Holes in the Dilatonic Einstein-Gauss-Bonnet (EGB) Theory Accelerating Cosmologies and Black Holes in the Dilatonic Einstein-Gauss-Bonnet (EGB) Theory Zong-Kuan Guo Fakultät für Physik, Universität Bielefeld Zong-Kuan Guo (Universität Bielefeld) Dilatonic Einstein-Gauss-Bonnet

More information

Strong-Field QED and High-Power Lasers

Strong-Field QED and High-Power Lasers LC2006 16-05-2006 with: O. Schröder (UoP science + computing, Tübingen) B. Liesfeld, K.-U. Amthor, H. Schwörer and A. Wipf (FSU Jena) R. Sauerbrey, FZ Rossendorf Outline Introduction 1. Introduction QED

More information

arxiv: v2 [hep-th] 8 Oct 2012

arxiv: v2 [hep-th] 8 Oct 2012 Functional renormalization with fermions an tetras P. Donà an R. Percacci International School for Avance Stuies, via Bonomea 65, 3436 Trieste, Italy an INFN, Sezione i Trieste, Italy arxiv:09.3649v hep-th

More information

PAPER 309 GENERAL RELATIVITY

PAPER 309 GENERAL RELATIVITY MATHEMATICAL TRIPOS Part III Monday, 30 May, 2016 9:00 am to 12:00 pm PAPER 309 GENERAL RELATIVITY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

Attractor Structure of Gauged Nambu-Jona-Lasinio Model

Attractor Structure of Gauged Nambu-Jona-Lasinio Model Attractor Structure of Gauged ambu-jona-lasinio Model Department of Physics, Hiroshima University E-mail: h-sakamoto@hiroshima-u.ac.jp We have studied the inflation theory in the gauged ambu-jona-lasinio

More information

Inflationary cosmology from higher-derivative gravity

Inflationary cosmology from higher-derivative gravity Inflationary cosmology from higher-derivative gravity Sergey D. Odintsov ICREA and IEEC/ICE, Barcelona April 2015 REFERENCES R. Myrzakulov, S. Odintsov and L. Sebastiani, Inflationary universe from higher-derivative

More information

PhD in Theoretical Particle Physics Academic Year 2017/2018

PhD in Theoretical Particle Physics Academic Year 2017/2018 July 10, 017 SISSA Entrance Examination PhD in Theoretical Particle Physics Academic Year 017/018 S olve two among the four problems presented. Problem I Consider a quantum harmonic oscillator in one spatial

More information

Optical Conductivity with Holographic Lattices

Optical Conductivity with Holographic Lattices PHYS 612 Quantum Field Theory II Spring 2013 Final Project Optical Conductivity with Holographic Lattices Kubra Yeter Instructor: George Siopsis Department of Physics and Astronomy, The University of Tennessee,

More information

New Massive Dual Gravity: beyond 3D

New Massive Dual Gravity: beyond 3D New Massive Dual Gravity: beyond 3D Eric Bergshoeff Groningen University Work in progress together with Jose Juan Fernandez, Jan Rosseel and Paul Townsend Miami, December 18 2011 Outline Introduction Outline

More information

Abelian and non-abelian Hopfions in all odd dimensions

Abelian and non-abelian Hopfions in all odd dimensions Abelian and non-abelian Hopfions in all odd dimensions Tigran Tchrakian Dublin Institute for Advanced Studies (DIAS) National University of Ireland Maynooth, Ireland 7 December, 2012 Table of contents

More information

From Strings to AdS4-Black holes

From Strings to AdS4-Black holes by Marco Rabbiosi 13 October 2015 Why quantum theory of Gravity? The four foundamental forces are described by Electromagnetic, weak and strong QFT (Standard Model) Gravity Dierential Geometry (General

More information

Quantum Dynamics of Supergravity

Quantum Dynamics of Supergravity Quantum Dynamics of Supergravity David Tong Work with Carl Turner Based on arxiv:1408.3418 Crete, September 2014 An Old Idea: Euclidean Quantum Gravity Z = Dg exp d 4 x g R topology A Preview of the Main

More information

Domain Wall Brane in Eddington Inspired Born-Infeld Gravity

Domain Wall Brane in Eddington Inspired Born-Infeld Gravity 2012cüWâfÔn»Æï? Domain Wall Brane in Eddington Inspired Born-Infeld Gravity µ4œ Ç =²ŒÆnØÔnïÄ Email: yangke09@lzu.edu.cn I# Ÿ 2012.05.10 Outline Introduction to Brane World Introduction to Eddington Inspired

More information

PAPER 310 COSMOLOGY. Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

PAPER 310 COSMOLOGY. Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. MATHEMATICAL TRIPOS Part III Wednesday, 1 June, 2016 9:00 am to 12:00 pm PAPER 310 COSMOLOGY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

Problem Set 1 Classical Worldsheet Dynamics

Problem Set 1 Classical Worldsheet Dynamics MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics String Theory (8.821) Prof. J. McGreevy Fall 2007 Problem Set 1 Classical Worldsheet Dynamics Reading: GSW 2.1, Polchinski 1.2-1.4. Try 3.2-3.3.

More information

Self-force: foundations and formalism

Self-force: foundations and formalism University of Southampton June 11, 2012 Motivation Extreme-mass-ratio inspirals solar-mass neutron star or black hole orbits supermassive black hole m emits gravitational radiation, loses energy, spirals

More information

Massive gravity and Caustics: A definitive covariant constraint analysis

Massive gravity and Caustics: A definitive covariant constraint analysis Massive gravity and Caustics: A definitive covariant constraint analysis Cosmo 2014 - Chicago George Zahariade UC Davis August 29, 2014 1 / 18 Goals Motivation and goals de Rham-Gabadadze-Tolley massive

More information