One-loop renormalization in a toy model of Hořava-Lifshitz gravity

Size: px
Start display at page:

Download "One-loop renormalization in a toy model of Hořava-Lifshitz gravity"

Transcription

1 1/0 Università di Roma TRE, Max-Planck-Institut für Gravitationsphysik One-loop renormalization in a toy model of Hořava-Lifshitz gravity Based on (hep-th: ) with Dario Benedetti Filippo Guarnieri Berlin,

2 /0 1 Motivations Hořava-Lifshitz gravity 3 Quantization procedure 4 β-functions 5 Conclusions and discussion

3 3/0 Motivations General relativity is perturbatively non-renormalizable. String theory? Asymptotic safety scenario? Power-counting renormalizability can be reconciled with unitarity at the expenses of a scale anisotropy between space and time. Hořava-Lifshitz gravity. Not much is known about the behaviour Hořava-Lifshitz gravity in the UV. Difficulties coming from the large number of invariants and working on an anisotropic curved background.

4 4/0 Hořava-Lifshitz gravity General relativity is power-counting non-renormalizabile in d >. [G] = d. Higher-derivative theories can cure the perturbative non-renormalizability, but they suffer from a lack of unitarity. S[g µν] hd = 1 d d x g {R γ R β R µν R µν Λ}, (1) 16 π G The propagator of spin- modes contains a poltergeist which spoils unitarity. Π(p) = 1 p β G p 4, p ghost = (β G) 1. ()

5 5/0 Hořava-Lifshitz gravity Power-counting renormalizability can be obtained by means of anisotropic scale dimensions for space and time coordinates, emulating what happens in condensed matter. [x] = 1, [t] = z, [ x] = 1, [ t ] = z. (3) As an example, for a Lifshitz scalar field theory we have S[φ] = dt d d x { φ(t, x) ( t G z x ) φ(t, x)}. (4) The propagator of the Lifshitz scalar field is 1 ω G(k ) z, (5) and a term c x in the action acts now (for z > 1) as a relevant perturbation.

6 6/0 Hořava-Lifshitz gravity Introducing a scale anisotropy we can gain perturbative-power counting and unitarity, but we lose Lorentz invariance. Invariance under diffeomorphisms is substituted by the invariance under a foliation-preserving diffeomorphisms, i.e. the reparameterization x i = x i (x j, t), t = t(t). (6) We have to build invariants under the new symmetry group. We employ the ADM decomposition, with g ij the spatial metric, N i the shift vector and N the lapse function. A natural spacetime topology in presence of a foliation F is M = N Σ. (7) where the leaf Σ is a generic d-dimensional manifold. We will consider N = R.

7 7/0 Hořava-Lifshitz gravity A kinetic action in d + 1 dimensions reads S K [N, N i, g ij ] = κ dt d d x ( g N K ij K ij λk ), (8) being K ij = 1 N ( t g ij D i N j D j N i ), (9) where D i is the spatial covariant derivative. At this stage the dynamical critical exponent z enters only in the dimension of the integration measure [dt d d x] = d z. (10) As a consequence, Newton s constant κ is a marginal parameter for z = d, since [κ] = z d. (11)

8 8/0 Hořava-Lifshitz gravity We can add a potential term by constructing spatial invariants S[N, N i, g ij ] = S K [N, N i, g ij ] + κ dt d d x g N V (g ij ). (1) In 3+1 dimensions with z = 3 the potential V (g ij ) will contain marginal operators like R 3, R ij R jk R k i, R R ij R ij D R D k R ij D k R ij (13) plus additional relevant terms as R, R ij R ij, D R D i D j R ij, (14) The number of invariants is reduced if the system features detailed balance, that is, if the d + 1-dimensional potential is related to a d-dimensional potential by means of a variational principle.

9 9/0 The + 1 dimensional case The + 1-dimensional case is easier to study, since for z = the potential contains fewer invariants. Furthermore, the Ricci is the only independent component of the Riemann tensor study and there are no gravitons. The theory with detailed balance has no potential. The most general action (non-projectable and without detailed balance) in + 1 dimensions with z = is S[N, N i, g ij ] = dt d xn { ( g λ K κ K ij K ij Λ + c R + γ R ) + c 1 D R +c a i a i + c 3 (a i a i ) + c 4 R a i a i + c 5 a i a i D j a j +c 6 (D j a j ) + c 7 (D i a j )(D i a j ) }, (15) where a i is the acceleration vector, a i = D i log N.

10 10/0 The + 1-dimensional case We will consider two simplifications: Projectable case, that is, a constant lapse function over the leaf, N N(t), so that S[N, N i, g ij ] = κ dt d xn { g λ K K ij K ij Λ + c R + γ R }. (16) Conformal reduction, that is, a scalar toy model in which we integrate only the conformal degree of freedom of the spatial metric, g ij = e φ(x) g ij, (17) where g ij is considered as a constant background. We will chose Σ = S. Questions?

11 11/0 Quantization procedure We will employ as usual the background field method: g ij g ij + ɛ h ij ; N N + ɛ n ; N i N i + ɛ n i, (18) and set N = 1 and N j = 0 for the background lapse and shift. The perturbative parameter ɛ will be set at a later stage. The metric fluctuation can be decomposed in a trace and traceless parts as h ij = ĥij + 1 g ij h, g ij ĥ ij = 0. (19) On a sphere S the traceless part ĥij contains just longitudinal components. In our toy model we neglect those contribution and integrate only the trace term.

12 1/0 Gauge-fixing and ghosts We employ as a gauge choices n = 0 and n i = 0. The gauge-fixing action reads S gf = 1 α dt d x g n + 1 β dt d x g n i n i. (0) Taking the limit α 0 and β 0 leads to a complete decoupling of n and n i in the second variation of the action. For the ghost sector, in order to avoid positivity problems of the Faddeev-Popov operator M = t we will employ the squared root of its determinant, det( M ), which corresponds to the ghost action S gh = dt N d x } g { c t c + c i t ci + b t b + b i t bi, (1) where c i and c Grassmannian complex fields and b i and b real bosonic fields.

13 13/0 One-loop effective action We will focus on evaluating only the one-loop correction to the effective action, Γ = S tot + ħ S 1 loop + O(ħ ), () being and where S tot = S + S gf + S gh, (3) S 1 loop = 1 STr ln S() tot. (4) The Hessian can be evaluated by the reduced second variation of the action, i.e. δ S = 1 κ dt d x {( g λ 1 ) } ( t h) + γ h (D 4 + R D + R ) h. (5) The perturbative parameter is chosen so to normalize the kinetic operator, so that in our case κ ɛ =. (6) (λ 1 ) 1

14 14/0 Heat kernel techniques We will employ heat-kernel techniques to evaluate the one-loop term, i.e. S 1 loop = 1 Tr ln(s() ) = µ 4 1 Λ 4 ds s 1 µ 4 1 Λ 4 dt d x ds s Tr H(x, s; S() ) = { } ĝ a 0 + s 1 a 1 + s a + O(s 3 ), (7) where a = b 1 K ij K ij + b K + b 3 R +, and µ is a renormalization scale. For the coefficients b 1 and b we can use the result of Baggio, de Boer and Holsheimer ( ) for an anisotropic differential operator D action on a scalar field, i.e. D bbh = 1 N g 1 t g t + D 4, (8) N whereas our operator reads instead D = (λ 1 ) 1 g t g t + γ (D + R). (9)

15 15/0 Heat-kernel techniques As already mentioned, using the expression of ɛ in the background field decomposition the kinetic part normalizes, i.e. D = 1 g t g t + γ λ 1 (D + R). (30) The normalization of the spatial part can be obtained by working with an auxiliary metric, ( ) 1 λ 1 ĝ ij = g ij, (31) γ so that we have ˆD = 1 ĝ t ĝ t + ( ˆD + ˆR). (3) We can use the results of Baggio et.al. and obtain for b 1 and b a = 1 56 π ( ˆK ij ˆK ij 1 ) ˆK +. (33)

16 16/0 Heat-kernel techniques For the coefficient b 3 we can use the well known results for higher-derivative operators in the isotropic case (see Gusynin, Nucl.Phys. B333). In particular, the heat kernel coefficient of R for an operator (D + X) vanishes in two dimensions, so that we have no R term in our one-loop result. The one-loop correction is then equal to 1 ˆTr ln( ˆD) = 1 dt d x ĝ + ln { (Λ 4 µ 4 ) 1 16 π + (Λ µ ) 14 ˆR 48 π3/ ( ) { Λ 1 1 ˆK ij ˆK ij + 1 } ( ) } 1 ˆK + O µ 16 π 4 8 Λ. (34) We are interested only in the logarithmic divergence, which rewritten in terms of the physical metric reads ( ) 1 S 1 loop = 1 λ 1 ( ) Λ ln dt d x g {K log ij K ij 1 } 18 π γ µ K. (35)

17 β-functions We can obtained the β-functions by expressing the i-th bare coupling g b,i as g b,i = g R,i + δg i, being g R,i a renormalized coupling δg i a counterterm, so that ( ) 1 = κ 1 λ 1 ( ) Λ ln, 18 π γ µ κ R λ R κ R γ R κ R = λ κ 1 56 π = γ κ. ( λ 1 γ ) 1 ln ( ) Λ, µ (36) 17/0 The renormalized couplings then read ( ( κ R = κ 1 + κ λ 1 56 π γ ) 1 ln ( ) ) Λ + O(ħ ), µ λ R = λ + 1 κ (λ 56 π γ 1/ 1 ) 3 ( ) Λ ln + O(ħ ), µ ( ( ) 1 γ R = γ 1 + κ λ 1 ( ) ) Λ ln + O(ħ ). 56 π γ µ (37)

18 18/0 β-functions As usual the β-functions are obtained stating µ g b = 0, so that ( ) 1 β κ = µ µ κ R = κ4 λ 1, 56 π γ ( ) λ 1 β λ = µ µ λ R = κ β κ, β γ = µ µ γ R = γ κ β κ. (38) Solving the system we find k R (µ) = 56 π b 1/ (ln µ µ 0 + C), λ R (µ) = 1 + C 1 ln µ µ 0 + C, (39) γ R (µ) = C ln µ µ 0 + C. where C and b = C 1 /C are integration constants.

19 19/0 β-functions Although the Newton s constant tends to zero in the UV, the interaction of the theory is defined by ɛ, whose running reads ɛ R = κ R λ R 1 = 56 π C 1/ C 3/ 1 Consequently, at one loop the theory is not asymptotically free.. (40) However, it is interesting to note that λ tends to 1/. For this value the kinetic action is invariant under anisotropic Weyl transformations g ij e φ(t,x) g ij, N e z φ(t,x) N, N i e φ(t,x) N i. (41) We expect the running of λ to the conformal point to be a feature of the full model.

20 0/0 Conclusions and discussion Hořava-Lifshitz gravity in d + 1 dimensions with z = d features simultaneously power-counting renormalizability and unitarity. Because of the large number of couplings and complications coming from the anisotropic character of the background the UV has not been explored. We studied a simpler case, i.e. Hořava-Lifshitz gravity in +1 dimensions with z =. We focused on a conformally reduced version of the projectable case. At one-loop the Newton s constant runs to zero in UV and λ to its conformal value λ = 1. The interaction strength, however, is constant along the flow. What happens at two loops? What happens with gravitons? We expect λ to run to its conformal value also in the full model. Thanks for the attention.

Status of Hořava Gravity

Status of Hořava Gravity Status of Institut d Astrophysique de Paris based on DV & T. P. Sotiriou, PRD 85, 064003 (2012) [arxiv:1112.3385 [hep-th]] DV & T. P. Sotiriou, JPCS 453, 012022 (2013) [arxiv:1212.4402 [hep-th]] DV, arxiv:1502.06607

More information

Quantum Gravity and the Renormalization Group

Quantum Gravity and the Renormalization Group Nicolai Christiansen (ITP Heidelberg) Schladming Winter School 2013 Quantum Gravity and the Renormalization Group Partially based on: arxiv:1209.4038 [hep-th] (NC,Litim,Pawlowski,Rodigast) and work in

More information

Horava-Lifshitz Theory of Gravity & Applications to Cosmology

Horava-Lifshitz Theory of Gravity & Applications to Cosmology Horava-Lifshitz Theory of Gravity & Applications to Cosmology Anzhong Wang Phys. Dept., Baylor Univ. Waco, Texas 76798 Presented to Texas Cosmology Network Meeting, Austin, TX Oct. 30, 2009 Collaborators

More information

Causal RG equation for Quantum Einstein Gravity

Causal RG equation for Quantum Einstein Gravity Causal RG equation for Quantum Einstein Gravity Stefan Rechenberger Uni Mainz 14.03.2011 arxiv:1102.5012v1 [hep-th] with Elisa Manrique and Frank Saueressig Stefan Rechenberger (Uni Mainz) Causal RGE for

More information

Recovering General Relativity from Hořava Theory

Recovering General Relativity from Hořava Theory Recovering General Relativity from Hořava Theory Jorge Bellorín Department of Physics, Universidad Simón Bolívar, Venezuela Quantum Gravity at the Southern Cone Sao Paulo, Sep 10-14th, 2013 In collaboration

More information

Manifestly diffeomorphism invariant classical Exact Renormalization Group

Manifestly diffeomorphism invariant classical Exact Renormalization Group Manifestly diffeomorphism invariant classical Exact Renormalization Group Anthony W. H. Preston University of Southampton Supervised by Prof. Tim R. Morris Talk prepared for Asymptotic Safety seminar,

More information

arxiv: v2 [hep-th] 2 Mar 2009

arxiv: v2 [hep-th] 2 Mar 2009 Preprint typeset in JHEP style - HYPER VERSION Quantum Gravity at a Lifshitz Point arxiv:0901.3775v2 [hep-th] 2 Mar 2009 Petr Hořava Berkeley Center for Theoretical Physics and Department of Physics University

More information

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory Anisotropic Interior Solutions in and Einstein-Æther Theory CENTRA, Instituto Superior Técnico based on DV and S. Carloni, arxiv:1706.06608 [gr-qc] Gravity and Cosmology 2018 Yukawa Institute for Theoretical

More information

Quantum Fields in Curved Spacetime

Quantum Fields in Curved Spacetime Quantum Fields in Curved Spacetime Lecture 3 Finn Larsen Michigan Center for Theoretical Physics Yerevan, August 22, 2016. Recap AdS 3 is an instructive application of quantum fields in curved space. The

More information

One Loop Tests of Higher Spin AdS/CFT

One Loop Tests of Higher Spin AdS/CFT One Loop Tests of Higher Spin AdS/CFT Simone Giombi UNC-Chapel Hill, Jan. 30 2014 Based on 1308.2337 with I. Klebanov and 1401.0825 with I. Klebanov and B. Safdi Massless higher spins Consistent interactions

More information

Towards a manifestly diffeomorphism invariant Exact Renormalization Group

Towards a manifestly diffeomorphism invariant Exact Renormalization Group Towards a manifestly diffeomorphism invariant Exact Renormalization Group Anthony W. H. Preston University of Southampton Supervised by Prof. Tim R. Morris Talk prepared for UK QFT-V, University of Nottingham,

More information

Gravitational Waves and New Perspectives for Quantum Gravity

Gravitational Waves and New Perspectives for Quantum Gravity Gravitational Waves and New Perspectives for Quantum Gravity Ilya L. Shapiro Universidade Federal de Juiz de Fora, Minas Gerais, Brazil Supported by: CAPES, CNPq, FAPEMIG, ICTP Challenges for New Physics

More information

A Brief Introduction to AdS/CFT Correspondence

A Brief Introduction to AdS/CFT Correspondence Department of Physics Universidad de los Andes Bogota, Colombia 2011 Outline of the Talk Outline of the Talk Introduction Outline of the Talk Introduction Motivation Outline of the Talk Introduction Motivation

More information

A functional renormalization group equation for foliated space-times

A functional renormalization group equation for foliated space-times p. 1/4 A functional renormalization group equation for foliated space-times Frank Saueressig Group for Theoretical High Energy Physics (THEP) Institute of Physics E. Manrique, S. Rechenberger, F.S., Phys.

More information

How to define a continuum limit in CDT?

How to define a continuum limit in CDT? How to define a continuum limit in CDT? Andrzej Görlich Niels Bohr Institute, University of Copenhagen Kraków, May 8th, 2015 Work done in collaboration with: J. Ambjørn, J. Jurkiewicz, A. Kreienbühl, R.

More information

Functional Renormalization Group Equations from a Differential Operator Perspective

Functional Renormalization Group Equations from a Differential Operator Perspective p. 1/4 Functional Renormalization Group Equations from a Differential Operator Perspective Frank Saueressig Group for Theoretical High Energy Physics (THEP) D. Benedetti, K. Groh, P. Machado, and F.S.,

More information

Asymptotically safe Quantum Gravity. Nonperturbative renormalizability and fractal space-times

Asymptotically safe Quantum Gravity. Nonperturbative renormalizability and fractal space-times p. 1/2 Asymptotically safe Quantum Gravity Nonperturbative renormalizability and fractal space-times Frank Saueressig Institute for Theoretical Physics & Spinoza Institute Utrecht University Rapporteur

More information

Horava-Lifshitz. Based on: work with ( ), ( ) arxiv: , JCAP 0911:015 (2009) arxiv:

Horava-Lifshitz. Based on: work with ( ), ( ) arxiv: , JCAP 0911:015 (2009) arxiv: @ 2010 2 18 Horava-Lifshitz Based on: work with ( ), ( ) arxiv:0908.1005, JCAP 0911:015 (2009) arxiv:1002.3101 Motivation A quantum gravity candidate Recently Horava proposed a power-counting renormalizable

More information

Suppressing the Lorentz violations in the matter sector A class of extended Hořava gravity

Suppressing the Lorentz violations in the matter sector A class of extended Hořava gravity Suppressing the Lorentz violations in the matter sector A class of extended Hořava gravity A. Emir Gümrükçüoğlu University of Nottingham [Based on arxiv:1410.6360; 1503.07544] with Mattia Colombo and Thomas

More information

Asymptotically Safe Gravity connecting continuum and Monte Carlo

Asymptotically Safe Gravity connecting continuum and Monte Carlo Asymptotically Safe Gravity connecting continuum and Monte Carlo Frank Saueressig Research Institute for Mathematics, Astrophysics and Particle Physics Radboud University Nijmegen J. Biemans, A. Platania

More information

Anisotropy in Gravity and Holography. Charles Milton Melby-Thompson

Anisotropy in Gravity and Holography. Charles Milton Melby-Thompson Anisotropy in Gravity and Holography by Charles Milton Melby-Thompson A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate

More information

Exercise 1 Classical Bosonic String

Exercise 1 Classical Bosonic String Exercise 1 Classical Bosonic String 1. The Relativistic Particle The action describing a free relativistic point particle of mass m moving in a D- dimensional Minkowski spacetime is described by ) 1 S

More information

Massless field perturbations around a black hole in Hořava-Lifshitz gravity

Massless field perturbations around a black hole in Hořava-Lifshitz gravity 5 Massless field perturbations around a black hole in 5.1 Gravity and quantization Gravity, one among all the known four fundamental interactions, is well described by Einstein s General Theory of Relativity

More information

Intrinsic time quantum geometrodynamics: The. emergence of General ILQGS: 09/12/17. Eyo Eyo Ita III

Intrinsic time quantum geometrodynamics: The. emergence of General ILQGS: 09/12/17. Eyo Eyo Ita III Intrinsic time quantum geometrodynamics: The Assistant Professor Eyo Ita emergence of General Physics Department Relativity and cosmic time. United States Naval Academy ILQGS: 09/12/17 Annapolis, MD Eyo

More information

LQG, the signature-changing Poincaré algebra and spectral dimension

LQG, the signature-changing Poincaré algebra and spectral dimension LQG, the signature-changing Poincaré algebra and spectral dimension Tomasz Trześniewski Institute for Theoretical Physics, Wrocław University, Poland / Institute of Physics, Jagiellonian University, Poland

More information

New Model of massive spin-2 particle

New Model of massive spin-2 particle New Model of massive spin-2 particle Based on Phys.Rev. D90 (2014) 043006, Y.O, S. Akagi, S. Nojiri Phys.Rev. D90 (2014) 123013, S. Akagi, Y.O, S. Nojiri Yuichi Ohara QG lab. Nagoya univ. Introduction

More information

Asymptotic Safety in the ADM formalism of gravity

Asymptotic Safety in the ADM formalism of gravity Asymptotic Safety in the ADM formalism of gravity Frank Saueressig Research Institute for Mathematics, Astrophysics and Particle Physics Radboud University Nijmegen J. Biemans, A. Platania and F. Saueressig,

More information

En búsqueda del mundo cuántico de la gravedad

En búsqueda del mundo cuántico de la gravedad En búsqueda del mundo cuántico de la gravedad Escuela de Verano 2015 Gustavo Niz Grupo de Gravitación y Física Matemática Grupo de Gravitación y Física Matemática Hoy y Viernes Mayor información Quantum

More information

THE RENORMALIZATION GROUP AND WEYL-INVARIANCE

THE RENORMALIZATION GROUP AND WEYL-INVARIANCE THE RENORMALIZATION GROUP AND WEYL-INVARIANCE Asymptotic Safety Seminar Series 2012 [ Based on arxiv:1210.3284 ] GIULIO D ODORICO with A. CODELLO, C. PAGANI and R. PERCACCI 1 Outline Weyl-invariance &

More information

Graviton contributions to the graviton self-energy at one loop order during inflation

Graviton contributions to the graviton self-energy at one loop order during inflation Graviton contributions to the graviton self-energy at one loop order during inflation PEDRO J. MORA DEPARTMENT OF PHYSICS UNIVERSITY OF FLORIDA PASI2012 1. Description of my thesis problem. i. Graviton

More information

Theory. V H Satheeshkumar. XXVII Texas Symposium, Dallas, TX December 8 13, 2013

Theory. V H Satheeshkumar. XXVII Texas Symposium, Dallas, TX December 8 13, 2013 Department of Physics Baylor University Waco, TX 76798-7316, based on my paper with J Greenwald, J Lenells and A Wang Phys. Rev. D 88 (2013) 024044 with XXVII Texas Symposium, Dallas, TX December 8 13,

More information

An all-scale exploration of alternative theories of gravity. Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste

An all-scale exploration of alternative theories of gravity. Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste An all-scale exploration of alternative theories of gravity Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste General Outline Beyond GR: motivation and pitfalls Alternative

More information

Critical exponents in quantum Einstein gravity

Critical exponents in quantum Einstein gravity Critical exponents in quantum Einstein gravity Sándor Nagy Department of Theoretical physics, University of Debrecen MTA-DE Particle Physics Research Group, Debrecen Leibnitz, 28 June Critical exponents

More information

Dimensional Reduction in the Renormalisation Group:

Dimensional Reduction in the Renormalisation Group: Dimensional Reduction in the Renormalisation Group: From Scalar Fields to Quantum Einstein Gravity Natália Alkofer Advisor: Daniel Litim Co-advisor: Bernd-Jochen Schaefer 11/01/12 PhD Seminar 1 Outline

More information

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds Introduction to String Theory ETH Zurich, HS11 Chapter 9 Prof. N. Beisert 9 String Backgrounds Have seen that string spectrum contains graviton. Graviton interacts according to laws of General Relativity.

More information

Topologically Massive Gravity and AdS/CFT

Topologically Massive Gravity and AdS/CFT Topologically Massive Gravity and AdS/CFT Institute for Theoretical Physics University of Amsterdam The Planck Scale, XXV Max Born Symposium Wroclaw, 30 June 2009 Introduction Three dimensional gravity

More information

Aspects of Spontaneous Lorentz Violation

Aspects of Spontaneous Lorentz Violation Aspects of Spontaneous Lorentz Violation Robert Bluhm Colby College IUCSS School on CPT & Lorentz Violating SME, Indiana University, June 2012 Outline: I. Review & Motivations II. Spontaneous Lorentz Violation

More information

Approaches to Quantum Gravity A conceptual overview

Approaches to Quantum Gravity A conceptual overview Approaches to Quantum Gravity A conceptual overview Robert Oeckl Instituto de Matemáticas UNAM, Morelia Centro de Radioastronomía y Astrofísica UNAM, Morelia 14 February 2008 Outline 1 Introduction 2 Different

More information

Connection Variables in General Relativity

Connection Variables in General Relativity Connection Variables in General Relativity Mauricio Bustamante Londoño Instituto de Matemáticas UNAM Morelia 28/06/2008 Mauricio Bustamante Londoño (UNAM) Connection Variables in General Relativity 28/06/2008

More information

Chapter 2: Deriving AdS/CFT

Chapter 2: Deriving AdS/CFT Chapter 8.8/8.87 Holographic Duality Fall 04 Chapter : Deriving AdS/CFT MIT OpenCourseWare Lecture Notes Hong Liu, Fall 04 Lecture 0 In this chapter, we will focus on:. The spectrum of closed and open

More information

arxiv: v3 [hep-th] 16 Dec 2018

arxiv: v3 [hep-th] 16 Dec 2018 Review Conformal Symmetry in Field Theory and in Quantum Gravity Lesław Rachwał 1 1 Instituto de Física, Universidade de Brasília, 70910-900, Brasília, DF, Brazil; grzerach@gmail.com Academic Editor: name

More information

Black hole thermodynamics and spacetime symmetry breaking

Black hole thermodynamics and spacetime symmetry breaking Black hole thermodynamics and spacetime symmetry breaking David Mattingly University of New Hampshire Experimental Search for Quantum Gravity, SISSA, September 2014 What do we search for? What does the

More information

Local RG, Quantum RG, and Holographic RG. Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis

Local RG, Quantum RG, and Holographic RG. Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis Local RG, Quantum RG, and Holographic RG Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis Local renormalization group The main idea dates back to Osborn NPB 363 (1991) See also my recent review

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.821 String Theory Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.821 F2008 Lecture 03: The decoupling

More information

Inflationary cosmology from higher-derivative gravity

Inflationary cosmology from higher-derivative gravity Inflationary cosmology from higher-derivative gravity Sergey D. Odintsov ICREA and IEEC/ICE, Barcelona April 2015 REFERENCES R. Myrzakulov, S. Odintsov and L. Sebastiani, Inflationary universe from higher-derivative

More information

Lecture 9: RR-sector and D-branes

Lecture 9: RR-sector and D-branes Lecture 9: RR-sector and D-branes José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 6, 2013 José D. Edelstein (USC) Lecture 9: RR-sector and D-branes 6-mar-2013

More information

Spinning strings and QED

Spinning strings and QED Spinning strings and QED James Edwards Oxford Particles and Fields Seminar January 2015 Based on arxiv:1409.4948 [hep-th] and arxiv:1410.3288 [hep-th] Outline Introduction Various relationships between

More information

A solution in Weyl gravity with planar symmetry

A solution in Weyl gravity with planar symmetry Utah State University From the SelectedWorks of James Thomas Wheeler Spring May 23, 205 A solution in Weyl gravity with planar symmetry James Thomas Wheeler, Utah State University Available at: https://works.bepress.com/james_wheeler/7/

More information

Cosmological solutions of Double field theory

Cosmological solutions of Double field theory Cosmological solutions of Double field theory Haitang Yang Center for Theoretical Physics Sichuan University USTC, Oct. 2013 1 / 28 Outlines 1 Quick review of double field theory 2 Duality Symmetries in

More information

Holography with Shape Dynamics

Holography with Shape Dynamics . 1/ 11 Holography with Henrique Gomes Physics, University of California, Davis July 6, 2012 In collaboration with Tim Koslowski Outline 1 Holographic dulaities 2 . 2/ 11 Holographic dulaities Ideas behind

More information

Lecture 8: 1-loop closed string vacuum amplitude

Lecture 8: 1-loop closed string vacuum amplitude Lecture 8: 1-loop closed string vacuum amplitude José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 5, 2013 José D. Edelstein (USC) Lecture 8: 1-loop vacuum

More information

arxiv:hep-th/ v1 2 May 1997

arxiv:hep-th/ v1 2 May 1997 Exact Renormalization Group and Running Newtonian Coupling in Higher Derivative Gravity arxiv:hep-th/9705008v 2 May 997 A.A. Bytseno State Technical University, St. Petersburg, 95252, Russia L.N. Granda

More information

Gravity vs Yang-Mills theory. Kirill Krasnov (Nottingham)

Gravity vs Yang-Mills theory. Kirill Krasnov (Nottingham) Gravity vs Yang-Mills theory Kirill Krasnov (Nottingham) This is a meeting about Planck scale The problem of quantum gravity Many models for physics at Planck scale This talk: attempt at re-evaluation

More information

HAMILTONIAN FORMULATION OF f (Riemann) THEORIES OF GRAVITY

HAMILTONIAN FORMULATION OF f (Riemann) THEORIES OF GRAVITY ABSTRACT We present a canonical formulation of gravity theories whose Lagrangian is an arbitrary function of the Riemann tensor, which, for example, arises in the low-energy limit of superstring theories.

More information

Lecture 2: 3d gravity as group theory Quantum Coulomb Solution

Lecture 2: 3d gravity as group theory Quantum Coulomb Solution The Second Mandelstam Theoretical Physics School University of the Witwatersrand 17/01/2018 Lecture 2: 3d gravity as group theory Quantum Coulomb Solution Glenn Barnich Physique théorique et mathématique

More information

th Aegean Summer School / Paros Minás Tsoukalás (CECs-Valdivia)

th Aegean Summer School / Paros Minás Tsoukalás (CECs-Valdivia) 013-09-4 7th Aegean Summer School / Paros Minás Tsoukalás (CECs-Valdivia Higher Dimensional Conformally Invariant theories (work in progress with Ricardo Troncoso 1 Modifying gravity Extra dimensions (string-theory,

More information

Scale symmetry a link from quantum gravity to cosmology

Scale symmetry a link from quantum gravity to cosmology Scale symmetry a link from quantum gravity to cosmology scale symmetry fluctuations induce running couplings violation of scale symmetry well known in QCD or standard model Fixed Points Quantum scale symmetry

More information

arxiv: v3 [hep-th] 8 Jun 2017

arxiv: v3 [hep-th] 8 Jun 2017 Prepared for submission to JHEP CERN-TH-07-055, FR-PHENO-07-006 Heat kernel methods for Lifshitz theories arxiv:703.04747v3 [hep-th] 8 Jun 07 Andrei O. Barvinsky, a,d Diego Blas, b Mario Herrero-Valea,

More information

Symmetries, Groups Theory and Lie Algebras in Physics

Symmetries, Groups Theory and Lie Algebras in Physics Symmetries, Groups Theory and Lie Algebras in Physics M.M. Sheikh-Jabbari Symmetries have been the cornerstone of modern physics in the last century. Symmetries are used to classify solutions to physical

More information

Black Holes in Higher-Derivative Gravity. Classical and Quantum Black Holes

Black Holes in Higher-Derivative Gravity. Classical and Quantum Black Holes Black Holes in Higher-Derivative Gravity Classical and Quantum Black Holes LMPT, Tours May 30th, 2016 Work with Hong Lü, Alun Perkins, Kelly Stelle Phys. Rev. Lett. 114 (2015) 17, 171601 Introduction Black

More information

HOLOGRAPHIC RECIPE FOR TYPE-B WEYL ANOMALIES

HOLOGRAPHIC RECIPE FOR TYPE-B WEYL ANOMALIES HOLOGRAPHIC RECIPE FOR TYPE-B WEYL ANOMALIES Danilo E. Díaz (UNAB-Talcahuano) joint work with F. Bugini (acknowledge useful conversations with R. Aros, A. Montecinos, R. Olea, S. Theisen,...) 5TH COSMOCONCE

More information

Analyzing WMAP Observation by Quantum Gravity

Analyzing WMAP Observation by Quantum Gravity COSMO 07 Conference 21-25 August, 2007 Analyzing WMAP Observation by Quantum Gravity Ken-ji Hamada (KEK) with Shinichi Horata, Naoshi Sugiyama, and Tetsuyuki Yukawa arxiv:0705.3490[astro-ph], Phys. Rev.

More information

Non-SUSY BSM: Lecture 1/2

Non-SUSY BSM: Lecture 1/2 Non-SUSY BSM: Lecture 1/2 Generalities Benasque September 26, 2013 Mariano Quirós ICREA/IFAE Mariano Quirós (ICREA/IFAE) Non-SUSY BSM: Lecture 1/2 1 / 31 Introduction Introduction There are a number of

More information

Why we need quantum gravity and why we don t have it

Why we need quantum gravity and why we don t have it Why we need quantum gravity and why we don t have it Steve Carlip UC Davis Quantum Gravity: Physics and Philosophy IHES, Bures-sur-Yvette October 2017 The first appearance of quantum gravity Einstein 1916:

More information

arxiv: v1 [hep-th] 6 Feb 2015

arxiv: v1 [hep-th] 6 Feb 2015 Power-counting and Renormalizability in Lifshitz Scalar Theory Toshiaki Fujimori, 1, Takeo Inami, 1, 2, Keisuke Izumi, 3, and Tomotaka Kitamura 4, 1 Department of Physics, National Taiwan University, Taipei

More information

Non Relativistic Quantum Gravity

Non Relativistic Quantum Gravity Non Relativistic Quantum Gravity 0906.3046, JHEP 0910 09 0909.355, PRL xxx xxx 091.0550, PLB xxx xxx + in progress Oriol Pujolàs CERN with Diego Blas, Sergey Sibiryakov Fundaments of Gravity Munich, April

More information

arxiv: v1 [hep-th] 1 Oct 2008

arxiv: v1 [hep-th] 1 Oct 2008 Cascading Gravity and Degravitation Claudia de Rham Dept. of Physics & Astronomy, McMaster University, Hamilton ON, Canada Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada arxiv:0810.069v1

More information

Gravity and action at a distance

Gravity and action at a distance Gravitational waves Gravity and action at a distance Newtonian gravity: instantaneous action at a distance Maxwell's theory of electromagnetism: E and B fields at distance D from charge/current distribution:

More information

Quantum discontinuity between zero and infinitesimal graviton mass with a Λ term. Abstract

Quantum discontinuity between zero and infinitesimal graviton mass with a Λ term. Abstract MCTP-01-06 hep-th/010093 Quantum discontinuity between zero and infinitesimal graviton mass with a Λ term F. A. Dilkes, M. J. Duff, James T. Liu and H. Sati Michigan Center for Theoretical Physics Randall

More information

Spectral action, scale anomaly. and the Higgs-Dilaton potential

Spectral action, scale anomaly. and the Higgs-Dilaton potential Spectral action, scale anomaly and the Higgs-Dilaton potential Fedele Lizzi Università di Napoli Federico II Work in collaboration with A.A. Andrianov (St. Petersburg) and M.A. Kurkov (Napoli) JHEP 1005:057,2010

More information

On higher-spin gravity in three dimensions

On higher-spin gravity in three dimensions On higher-spin gravity in three dimensions Jena, 6 November 2015 Stefan Fredenhagen Humboldt-Universität zu Berlin und Max-Planck-Institut für Gravitationsphysik Higher spins Gauge theories are a success

More information

V Finite T, probe branes, quarks, other extensions

V Finite T, probe branes, quarks, other extensions Introduction to the AdS/CFT correspondence Outline I CFT review II AdS/CFT correspondence III Large N review IV D3 branes and AdS 5 S 5 V Finite T, probe branes, quarks, other extensions 1 0 References

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk FY3464 Quantum Field Theory II Final exam 0..0 NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory II Contact: Kåre Olaussen, tel. 735 9365/4543770 Allowed tools: mathematical

More information

String theory. Harold Erbin 1* 19th October Theresienstraße 37, München, Germany

String theory. Harold Erbin 1* 19th October Theresienstraße 37, München, Germany String theory Harold Erbin 1* * Arnold Sommerfeld Center for Theoretical Physics, Ludwig Maximilians Universität München, Theresienstraße 37, 80333 München, Germany 19th October 2018 1 harold.erbin@physik.lmu.de

More information

Stable bouncing universe in Hořava-Lifshitz Gravity

Stable bouncing universe in Hořava-Lifshitz Gravity Stable bouncing universe in Hořava-Lifshitz Gravity (Waseda Univ.) Collaborate with Yosuke MISONOH (Waseda Univ.) & Shoichiro MIYASHITA (Waseda Univ.) Based on Phys. Rev. D95 044044 (2017) 1 Inflation

More information

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises SM, EWSB & Higgs MITP Summer School 017 Joint Challenges for Cosmology and Colliders Homework & Exercises Ch!"ophe Grojean Ch!"ophe Grojean DESY (Hamburg) Humboldt University (Berlin) ( christophe.grojean@desy.de

More information

Lorentz violations: from quantum gravity to black holes. Thomas P. Sotiriou

Lorentz violations: from quantum gravity to black holes. Thomas P. Sotiriou Lorentz violations: from quantum gravity to black holes Thomas P. Sotiriou Motivation Test Lorentz symmetry Motivation Old problem: Can we make gravity renormalizable? Possible solution: Add higher-order

More information

Critical metrics on connected sums of Einstein four-manifolds

Critical metrics on connected sums of Einstein four-manifolds Critical metrics on connected sums of Einstein four-manifolds University of Wisconsin, Madison March 22, 2013 Kyoto Einstein manifolds Einstein-Hilbert functional in dimension 4: R(g) = V ol(g) 1/2 R g

More information

Quantum gravity at one-loop and AdS/CFT

Quantum gravity at one-loop and AdS/CFT Quantum gravity at one-loop and AdS/CFT Marcos Mariño University of Geneva (mostly) based on S. Bhattacharyya, A. Grassi, M.M. and A. Sen, 1210.6057 The AdS/CFT correspondence is supposed to provide a

More information

Recent Progress on Curvature Squared Supergravities in Five and Six Dimensions

Recent Progress on Curvature Squared Supergravities in Five and Six Dimensions Recent Progress on Curvature Squared Supergravities in Five and Six Dimensions Mehmet Ozkan in collaboration with Yi Pang (Texas A&M University) hep-th/1301.6622 April 24, 2013 Mehmet Ozkan () April 24,

More information

arxiv: v1 [hep-th] 28 Jul 2016

arxiv: v1 [hep-th] 28 Jul 2016 Hamiltonian Analysis of Mixed Derivative Hořava-Lifshitz Gravity Josef Klusoň 1 arxiv:1607.08361v1 [hep-th] 8 Jul 016 Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University,

More information

t Hooft Loops and S-Duality

t Hooft Loops and S-Duality t Hooft Loops and S-Duality Jaume Gomis KITP, Dualities in Physics and Mathematics with T. Okuda and D. Trancanelli Motivation 1) Quantum Field Theory Provide the path integral definition of all operators

More information

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/ Twistor Strings, Gauge Theory and Gravity Abou Zeid, Hull and Mason hep-th/0606272 Amplitudes for YM, Gravity have elegant twistor space structure: Twistor Geometry Amplitudes for YM, Gravity have elegant

More information

arxiv: v3 [hep-ph] 5 Sep 2016

arxiv: v3 [hep-ph] 5 Sep 2016 KCL-PH-TH/05- Effective fermion kinematics from modified quantum gravity J. Alexandre and J. Leite King s College London, Department of Physics, WCR LS, UK jean.alexandre@kcl.ac.uk, julio.leite@kcl.ac.uk

More information

General Relativity (225A) Fall 2013 Assignment 8 Solutions

General Relativity (225A) Fall 2013 Assignment 8 Solutions University of California at San Diego Department of Physics Prof. John McGreevy General Relativity (5A) Fall 013 Assignment 8 Solutions Posted November 13, 013 Due Monday, December, 013 In the first two

More information

Self-Dual Gravity. or On a class of (modified) gravity theories motivated by Plebanski s self-dual formulation of GR

Self-Dual Gravity. or On a class of (modified) gravity theories motivated by Plebanski s self-dual formulation of GR Self-Dual Gravity or On a class of (modified) gravity theories motivated by Plebanski s self-dual formulation of GR Kirill Krasnov University of Nottingham International Loop Quantum Gravity Seminar February

More information

On the curious spectrum of duality-invariant higher-derivative gravitational field theories

On the curious spectrum of duality-invariant higher-derivative gravitational field theories On the curious spectrum of duality-invariant higher-derivative gravitational field theories VIII Workshop on String Field Theory and Related Aspects ICTP-SAIFR 31 May 2016 Barton Zwiebach, MIT Introduction

More information

Quantising Gravitational Instantons

Quantising Gravitational Instantons Quantising Gravitational Instantons Kirill Krasnov (Nottingham) GARYFEST: Gravitation, Solitons and Symmetries MARCH 22, 2017 - MARCH 24, 2017 Laboratoire de Mathématiques et Physique Théorique Tours This

More information

On asymptotic safety in matter-gravity systems

On asymptotic safety in matter-gravity systems On asymptotic safety in matter-gravity systems Jan M. Pawlowsi Universität Heidelberg & ExtreMe Matter Institute th Bad Honnef, June 9 28 ISOQUANT SFB225 Overview!Towards apparent convergence in quantum

More information

Introduction to (Large) Extra Dimensions

Introduction to (Large) Extra Dimensions SLAC Dark Matter & Exotic Physics WG p. 1/39 Introduction to (Large) Extra Dimensions A. Lionetto Department of Physics & INFN Roma Tor Vergata SLAC Dark Matter & Exotic Physics WG p. 2/39 Outline Introduction

More information

Stress-energy tensor is the most important object in a field theory and have been studied

Stress-energy tensor is the most important object in a field theory and have been studied Chapter 1 Introduction Stress-energy tensor is the most important object in a field theory and have been studied extensively [1-6]. In particular, the finiteness of stress-energy tensor has received great

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.81 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.81 F008 Lecture 1: Boundary of AdS;

More information

Wiggling Throat of Extremal Black Holes

Wiggling Throat of Extremal Black Holes Wiggling Throat of Extremal Black Holes Ali Seraj School of Physics Institute for Research in Fundamental Sciences (IPM), Tehran, Iran Recent Trends in String Theory and Related Topics May 2016, IPM based

More information

Higher-derivative relativistic quantum gravity

Higher-derivative relativistic quantum gravity Preprint-INR-TH-207-044 Higher-derivative relativistic quantum gravity S.A. Larin Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect 7a, Moscow 732, Russia

More information

"Topologically Massive" theories in and beyond 3D

Topologically Massive theories in and beyond 3D "Topologically Massive" theories in and beyond 3D Yihao Yin (University of Groningen) In collaboration with E.A. Bergshoeff, M. Kovacevic, J. Rosseel, P.K. Townsend, etc. ( arxiv: 1109.0382 & 1207.0192

More information

Aspects of integrability in classical and quantum field theories

Aspects of integrability in classical and quantum field theories Aspects of integrability in classical and quantum field theories Second year seminar Riccardo Conti Università degli Studi di Torino and INFN September 26, 2018 Plan of the talk PART 1 Supersymmetric 3D

More information

First Year Seminar. Dario Rosa Milano, Thursday, September 27th, 2012

First Year Seminar. Dario Rosa Milano, Thursday, September 27th, 2012 dario.rosa@mib.infn.it Dipartimento di Fisica, Università degli studi di Milano Bicocca Milano, Thursday, September 27th, 2012 1 Holomorphic Chern-Simons theory (HCS) Strategy of solution and results 2

More information

Noncommutative Geometry for Quantum Spacetime

Noncommutative Geometry for Quantum Spacetime Noncommutative Geometry for Quantum Spacetime The view from below Fedele Lizzi Università di Napoli Federico II Institut de Ciencies del Cosmo, Barcelona SIGrav, Alessandria 2014 I think we would all agree

More information

The TT Deformation of Quantum Field Theory

The TT Deformation of Quantum Field Theory The TT Deformation of Quantum Field Theory John Cardy University of California, Berkeley All Souls College, Oxford ICMP, Montreal, July 2018 Introduction all QFTs that we use in physics are in some sense

More information

On the QCD of a Massive Vector Field in the Adjoint Representation

On the QCD of a Massive Vector Field in the Adjoint Representation On the QCD of a Massive Vector Field in the Adjoint Representation Alfonso R. Zerwekh UTFSM December 9, 2012 Outlook 1 Motivation 2 A Gauge Theory for a Massive Vector Field Local Symmetry 3 Quantum Theory:

More information