A Short Note on D=3 N=1 Supergravity

Size: px
Start display at page:

Download "A Short Note on D=3 N=1 Supergravity"

Transcription

1 A Short Note on D=3 N=1 Supergravity Sunny Guha December 13, Why 3-dimensional gravity? Three-dimensional field theories have a number of unique features, the massless states do not carry helicity, so that the associated degrees of freedom can generally be described by scalar fields. Pure gravity and supergravity are topological theories and do not give rise to physical (i.e. propagating) degrees of freedom. Apart from conical singularities at the location of matter sources, space-time is flat. A further motivation for studying three-dimensional supergravity is the important role it plays in the construction of two-dimensional supergravity theories via dimensional reduction. In +1 dimensions, the Weyl tensor vanishes identically, and the full curvature tensor is determined algebraically by the curvature scalar and the Ricci tensor: R µνρσ = g µ ρr νσ + g νσ R µσ g νρ R µσ g µσ R νρ 1 (g µρg νσ g µσ g νρ )R (1) In particular, this implies that any particular solution of the vacuum Einstein field equations is flat, and that any solution of the field equatiuons wirth a cosmological constant has constant curvature. R µν = Λg µν () Physically a 3-dimensiaonal spacetime has local degrees of freedom, ie there are no gravitational waves in the classical theory and no gravitons in the quantum theory. Degrees of Freedom 3d N=1 supergravity, for On-shell has the multiplet {e a µ, ψ α µ}, with no degrees of freedom. Since on shell degree of freedom for gravitino and graviton are, (d 1)(d )/ 1 = 0 Graviton (d 3) [d/] / = 0 Gravitino (3) 1

2 However for the offshell case, we have the following degrees of freedom, (d)(d 1)/ = 3 Graviton (d 1) [d/] = 4 Gravitino (4) Since the degrees of freedom do not match, for off-shell we need to add another bosonic degree of freedom in the form of an auxiliary field S. Thus the off-shell multiplet is {e a µ, ψ α µ, S}. 3 Gamma Identites We will take our 3d metric to be mostly plus, η µν = diag( 1, 1, 1) (5) We will use (m,n,..) for flat space indices and (µ, ν,.) for curved space indices. For the three dimensional gamma matrices we choose the following representation, (γ 0 ) α β = iσ (γ 1 ) α β = σ 1 (γ ) α β = σ 3 (6) Upper and Lower Gamma matrices are given by, γ µ = { 1, σ 3, σ 1 } (7) γ µ = {1, σ 3, σ 1 } (8) In 3 dimensions the gamma matrices are particularly simple and take the form of levi civita, γ mnp = ɛ mnp (9) with curved indices ɛ becomes a density. Contraction between ɛ of different indices is given as, We would also need the use of following identities eγ µνρ = ɛ µνρ (10) ɛ µνρ γ ρ = γ [µ γ ν] (11) ɛ µνρ ɛ mnr = 6ee [µ me ν ne ρ] r (1) γ mn = ɛ mnr γ r (13) ɛ µνρ γ ρ = γ [µ γ ν] (14) γ µ γ ρ γ σ = γ [µ γ ρ γ σ] + η µρ γ σ + η ρσ γ µ η µσ γ ρ (15)

3 4 The Action The Full pure supergravity action(on-shell) for D=3 N=1 Supergravity is given by, S = 1 8k d 3 xer 1 d 3 xe Ψγ µνρ D ν (ω)ψ ρ (16) The Ricci Scalar written in terms of veilbein indices is, R = R mn µν (ω)e ν me µ n (17) The Riemann tensor in terms of spin connection is given as, Rµν mn (ω) = µ ων mn ν ωµ mn + ωµ mp ων pn The covariant derivative is defined as, ων mp ωµ pn (18) D nu Ψ ρ = ν Ψ ρ ωmn nu γ mn Ψ ρ (19) In the action κ is the gravitational constant with mass dimensions -1 in 3 dimensions. Also e = det(e m µ ) = g. The supersymmetric transformation for the graviton and gravitino field are, δe m µ = k ɛγ m Ψ µ (0) δψ µ = 1 κ D µ(ω)ɛ = 1 κ ( µɛ ωmn µ γ m γ n ɛ) (1) We will use these to check the supersymmetry invariance of the action. 5 SUSY Algebra We will be using the 1.5 formulation. Using equations (9) the action of Gravitino can be written as, I = d 3 x 1 ɛµρσ Ψµ D ρ (ω)ψ σ () SUSY variation of this action gives us, δi 3/ = 1 d 3 xɛ µρσ Ψµ D ρ (ω)d σ (ω)ɛ = 1 κ 8κ We have used, Now using (9-13) we get, d 3 xɛ µρσ Ψµ R mn ρσ (ω)γ m γ n ɛ (3) [D ρ (ω)d σ (ω)]ɛ = 1 4 Rmn ρσ (ω)γ m γ n ɛ (4) ɛ µνρ R mn νρ γ mn = ɛ µνρ ɛ mnr R mn νρ γ r (5) = +6eR mn νρ e [µ me ν ne ρ] r γ r (6) = 4ee µ m(r m ρ 1 Rem ρ )γ r e ρ r (7) 3

4 From the bosonic bit of action we get, using δe = e ν mδe m ν, we have, δi = 1 8κ Rmn µν (ω)δ[ee ν me µ, ] = 1 4κ d 3 xe(rν m 1 em ν R)δe ν m (8) Thus we see that δi + δi 3/ = 0. Hence we have shown how the action is invariant under supersymmetry. Now we will calculate the local susy algebra, by requiring the closure of the supersymmetry commutator on the vielbein, [δ 1, δ ]e m µ. Since we are using the 1.5 formulation, we split ωµ mn (e, ψ) into the torsionless part ωµ mn (e) and a torsion piece ωµ mn (ψ) ω mn µ (e, ψ) = ω mn µ (e) + ω ψ µ (9) By varying the action with respect to ω we get the solution of the torsion piece as, ωµ mn (ψ) = k ( ψ µ γ m ψ n ψ µ γ n ψ m + ψ µ γ m ψ n ) (30) Upon calculating we find the supersymmetry commutator on the vielbein as, [δ 1, δ ]e m µ = ( µ ξ ν )e m ν + ξ ν ( µ e m ν ) + [ξ ν ω mn ν (e, ψ)]e µm + [ω m µs ω m sµ]ξ s (31) We can easily identify the General Coordinate transformation, Local Lorentz and Supersymmetry pieces. [δ 1, δ ]e m µ = δ gc (ξ ν ) + δ LL (ξ ν ω mn ν (e, ψ)) + δ Q ( kξ ν ψ ν ) (3) 6 Off-Shell SUSY We saw that the off shell multiplet has an additional scalar S(auxiliary scalar). The addition to the action is, I s = d 3 x( 1 es ) (33) Thus, the full off-shell action is given by, S = 1 8k d 3 xer 1 d 3 xe Ψγ µνρ D ν (ω)ψ ρ 1 The variation of Auxiliary S is given as, d 3 x(es ) (34) δs = κ κγ ψs e ɛµρσ ɛγ µ D ρ (ω)ψ σ (35) The variation of ψ also gets an additional term δ additional ψ = Sγ µ ɛ. off-shell commutation on veilbein is given by, The [δ 1, δ ]e m µ = as before + 4κS ɛ γ m γ µ ɛ 1 (1 ) (36) 4

5 7 Matter Coupling and Massive Gravity stuff There are three possible way of having massive gravity, 1. General Massive Gravity : This propagates two massive gravitons of helicity ±, generically with different masses. Topologically Massive gravity is a special case.. Scalar Massive Gravity : This is equivalent to a scalar field coupling the gravity 3. New Topologically Massive Gravity : This is a model in which the Einstein- Hilbert term is omitted. It involves a new scalar but turns out to propagate a single helicity mode. Following from [3] Scalar Massive gravity can be written in form of the supersymmetric non-linear sigma model is described by lagrangian, L matter = 1 g ij(φ){ µ φ i µ φ j + χ i D(Γ)χ j } + L χ 4 (37) The covariant derivative is defined as, D µ (Γ)χ i = µ χ i + Γ i jk µ φ j χ k (38) For N=1 connection would vanish and covariant derivative would just be a normal derivative since For N=1 the metric on the manifold is just a constant. L χ 4 is the quartic fermion bit.the full lagrangian is given by, L = 1 κ {L sg + L kin + L N + L χ 4} (39) Here L N includes terms required for supercovariance of χ i field equation. 8 Conclusion So in this note we presented the pure D=3 N=1 Supergravity and explicitly checked the supersymmetric invariance of the action. We also very briefly presented non-linear sigma model in D=3. 5

6 9 References 1. Horatiu Nastase, Introduction to supergravity,arxiv:hep-th/ F. Ruiz and P. Nieuwenhuizen, Lectures on Supersymmetry and Supergravity in +1 Dimensions and Regularization of Supersymmetric Gauge Theories 3. B. de Wit, A.K. Tollsten, Locally Supersymmetric D=3 Non-Linear Sigma Model,arXiv:hep-th/ Roel Andringa, Eric Bergshoeff, Mees de Roo,Olaf Hohm,Ergin Sezgin and Paul K Townsend, Massive 3d Supergravity, arxiv:hep-th/ S. Carlip, Lectures on +1 Dimensional Gravity 6

First structure equation

First structure equation First structure equation Spin connection Let us consider the differential of the vielbvein it is not a Lorentz vector. Introduce the spin connection connection one form The quantity transforms as a vector

More information

Exact solutions in supergravity

Exact solutions in supergravity Exact solutions in supergravity James T. Liu 25 July 2005 Lecture 1: Introduction and overview of supergravity Lecture 2: Conditions for unbroken supersymmetry Lecture 3: BPS black holes and branes Lecture

More information

Lorentz-covariant spectrum of single-particle states and their field theory Physics 230A, Spring 2007, Hitoshi Murayama

Lorentz-covariant spectrum of single-particle states and their field theory Physics 230A, Spring 2007, Hitoshi Murayama Lorentz-covariant spectrum of single-particle states and their field theory Physics 30A, Spring 007, Hitoshi Murayama 1 Poincaré Symmetry In order to understand the number of degrees of freedom we need

More information

A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods

A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods Frederik Coomans KU Leuven Workshop on Conformal Field Theories Beyond Two Dimensions 16/03/2012, Texas A&M Based on

More information

Recent Progress on Curvature Squared Supergravities in Five and Six Dimensions

Recent Progress on Curvature Squared Supergravities in Five and Six Dimensions Recent Progress on Curvature Squared Supergravities in Five and Six Dimensions Mehmet Ozkan in collaboration with Yi Pang (Texas A&M University) hep-th/1301.6622 April 24, 2013 Mehmet Ozkan () April 24,

More information

Introduction to Supergravity

Introduction to Supergravity Introduction to Supergravity Lectures presented by Henning Samtleben at the 13th Saalburg School on Fundamentals and New Methods in Theoretical Physics, September 3 14, 2007 typed by Martin Ammon and Cornelius

More information

Quantum Fields in Curved Spacetime

Quantum Fields in Curved Spacetime Quantum Fields in Curved Spacetime Lecture 3 Finn Larsen Michigan Center for Theoretical Physics Yerevan, August 22, 2016. Recap AdS 3 is an instructive application of quantum fields in curved space. The

More information

arxiv: v2 [hep-th] 26 Aug 2014

arxiv: v2 [hep-th] 26 Aug 2014 UG-72-2014 3D Born-Infeld Gravity and Supersymmetry arxiv:1405.6212v2 [hep-th] 26 Aug 2014 Eric Bergshoeff and Mehmet Ozkan e.a.bergshoeff@rug.nl, m.ozkan@rug.nl Institute for Particle Physics and Gravity,

More information

Tools for supersymmetry

Tools for supersymmetry Tools for supersymmetry Antoine Van Proeyen KU Leuven Wolfersdorf, September 2014 Based on some sections of the book Supergravity Plan for the lectures 1. Symmetries 2. Clifford algebras and spinors 3.

More information

Supersymmetric field theories

Supersymmetric field theories Supersymmetric field theories Antoine Van Proeyen KU Leuven Summer school on Differential Geometry and Supersymmetry, September 10-14, 2012, Hamburg Based on some chapters of the book Supergravity Wess,

More information

N = 2 supergravity in d = 4, 5, 6 and its matter couplings

N = 2 supergravity in d = 4, 5, 6 and its matter couplings KUL-TF-XX/XXX hep-th/yymmnnn N = 2 supergravity in d = 4, 5, 6 and its matter couplings Antoine Van Proeyen, 1 Instituut voor theoretische fysica Universiteit Leuven, B-3001 Leuven, Belgium Abstract An

More information

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are.

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are. GRAVITATION F0 S. G. RAJEEV Lecture. Maxwell s Equations in Curved Space-Time.. Recall that Maxwell equations in Lorentz covariant form are. µ F µν = j ν, F µν = µ A ν ν A µ... They follow from the variational

More information

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor. Übungen zu RT2 SS 2010 (1) Show that the tensor field g µν (x) = η µν is invariant under Poincaré transformations, i.e. x µ x µ = L µ νx ν + c µ, where L µ ν is a constant matrix subject to L µ ρl ν ση

More information

Supergravity and Kaluza-Klein dimensional reductions

Supergravity and Kaluza-Klein dimensional reductions Uppsala University Supergravity and Kaluza-Klein dimensional reductions Author: Roberto Goranci Supervisor: Giuseppe Dibitetto May 13, 2015 Abstract This is a 15 credit project in basic supergravity. We

More information

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Chern-Simons Theory and Its Applications The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Maxwell Theory Maxwell Theory: Gauge Transformation and Invariance Gauss Law Charge Degrees of

More information

Conformal Symmetry Breaking in Einstein-Cartan Gravity Coupled to the Electroweak Theory

Conformal Symmetry Breaking in Einstein-Cartan Gravity Coupled to the Electroweak Theory Conformal Symmetry Breaking in Einstein-Cartan Gravity Coupled to the Electroweak Theory J. Lee Montag, Ph.D. December 018 Abstract We develop an alternative to the Higgs mechanism for spontaneously breaking

More information

GENERAL RELATIVITY: THE FIELD THEORY APPROACH

GENERAL RELATIVITY: THE FIELD THEORY APPROACH CHAPTER 9 GENERAL RELATIVITY: THE FIELD THEORY APPROACH We move now to the modern approach to General Relativity: field theory. The chief advantage of this formulation is that it is simple and easy; the

More information

Non-Abelian and gravitational Chern-Simons densities

Non-Abelian and gravitational Chern-Simons densities Non-Abelian and gravitational Chern-Simons densities Tigran Tchrakian School of Theoretical Physics, Dublin nstitute for Advanced Studies (DAS) and Department of Computer Science, Maynooth University,

More information

Notes on General Relativity Linearized Gravity and Gravitational waves

Notes on General Relativity Linearized Gravity and Gravitational waves Notes on General Relativity Linearized Gravity and Gravitational waves August Geelmuyden Universitetet i Oslo I. Perturbation theory Solving the Einstein equation for the spacetime metric is tremendously

More information

Symmetries of curved superspace

Symmetries of curved superspace School of Physics, University of Western Australia Second ANZAMP Annual Meeting Mooloolaba, November 27 29, 2013 Based on: SMK, arxiv:1212.6179 Background and motivation Exact results (partition functions,

More information

Non-Abelian tensor multiplet in four dimensions

Non-Abelian tensor multiplet in four dimensions PASCOS 2012 18th nternational Symposium on Particles Strings and Cosmology OP Publishing Non-Abelian tensor multiplet in four dimensions Hitoshi Nishino and Subhash Rajpoot, Department of Physics and Astronomy,

More information

Supersymmetric Randall-Sundrum Scenario

Supersymmetric Randall-Sundrum Scenario CIT-USC/00-015 Supersymmetric Randall-Sundrum Scenario arxiv:hep-th/000117v May 000 Richard Altendorfer, Jonathan Bagger Department of Physics and Astronomy The Johns Hopkins University 400 North Charles

More information

Dual gravity and matter

Dual gravity and matter Gen Relativ Gravit (2009) 41:39 48 DOI 10.1007/s10714-008-0650-4 RESEARCH ARTICLE Dual gravity and matter Eric A. Bergshoeff Mees de Roo Sven F. Kerstan Axel Kleinschmidt Fabio Riccioni Received: 24 April

More information

Katrin Becker, Texas A&M University. Strings 2016, YMSC,Tsinghua University

Katrin Becker, Texas A&M University. Strings 2016, YMSC,Tsinghua University Katrin Becker, Texas A&M University Strings 2016, YMSC,Tsinghua University ± Overview Overview ± II. What is the manifestly supersymmetric complete space-time action for an arbitrary string theory or M-theory

More information

BPS rotating black holes in N = 1 D = 4 anti-de Sitter supergravity

BPS rotating black holes in N = 1 D = 4 anti-de Sitter supergravity UTRECHT UNIVERSITY INSTITUTE FOR THEORETICAL PHYSICS MASTER S THESIS BPS rotating black holes in N = 1 D = 4 anti-de Sitter supergravity Tran Do Supervised by: Stefan Vandoren June 2016 Contents Introduction

More information

Non-SUSY BSM: Lecture 1/2

Non-SUSY BSM: Lecture 1/2 Non-SUSY BSM: Lecture 1/2 Generalities Benasque September 26, 2013 Mariano Quirós ICREA/IFAE Mariano Quirós (ICREA/IFAE) Non-SUSY BSM: Lecture 1/2 1 / 31 Introduction Introduction There are a number of

More information

On Special Geometry of Generalized G Structures and Flux Compactifications. Hu Sen, USTC. Hangzhou-Zhengzhou, 2007

On Special Geometry of Generalized G Structures and Flux Compactifications. Hu Sen, USTC. Hangzhou-Zhengzhou, 2007 On Special Geometry of Generalized G Structures and Flux Compactifications Hu Sen, USTC Hangzhou-Zhengzhou, 2007 1 Dreams of A. Einstein: Unifications of interacting forces of nature 1920 s known forces:

More information

Lecture 9: RR-sector and D-branes

Lecture 9: RR-sector and D-branes Lecture 9: RR-sector and D-branes José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 6, 2013 José D. Edelstein (USC) Lecture 9: RR-sector and D-branes 6-mar-2013

More information

Introduction to Chern-Simons forms in Physics - II

Introduction to Chern-Simons forms in Physics - II Introduction to Chern-Simons forms in Physics - II 7th Aegean Summer School Paros September - 2013 Jorge Zanelli Centro de Estudios Científicos CECs - Valdivia z@cecs.cl Lecture I: 1. Topological invariants

More information

A Landscape of Field Theories

A Landscape of Field Theories A Landscape of Field Theories Travis Maxfield Enrico Fermi Institute, University of Chicago October 30, 2015 Based on arxiv: 1511.xxxxx w/ D. Robbins and S. Sethi Summary Despite the recent proliferation

More information

HIGHER SPIN PROBLEM IN FIELD THEORY

HIGHER SPIN PROBLEM IN FIELD THEORY HIGHER SPIN PROBLEM IN FIELD THEORY I.L. Buchbinder Tomsk I.L. Buchbinder (Tomsk) HIGHER SPIN PROBLEM IN FIELD THEORY Wroclaw, April, 2011 1 / 27 Aims Brief non-expert non-technical review of some old

More information

The N = 2 Gauss-Bonnet invariant in and out of superspace

The N = 2 Gauss-Bonnet invariant in and out of superspace The N = 2 Gauss-Bonnet invariant in and out of superspace Daniel Butter NIKHEF College Station April 25, 2013 Based on work with B. de Wit, S. Kuzenko, and I. Lodato Daniel Butter (NIKHEF) Super GB 1 /

More information

A Schrödinger approach to Newton-Cartan gravity. Miami 2015

A Schrödinger approach to Newton-Cartan gravity. Miami 2015 A Schrödinger approach to Newton-Cartan gravity Eric Bergshoeff Groningen University Miami 2015 A topical conference on elementary particles, astrophysics, and cosmology Fort Lauderdale, December 21 2015

More information

arxiv:hep-th/ v3 28 Dec 1996

arxiv:hep-th/ v3 28 Dec 1996 HEP-TH/9509142, UPR-660T CONSISTENT SPIN-TWO COUPLING AND QUADRATIC GRAVITATION AHMED HINDAWI, BURT A. OVRUT, AND DANIEL WALDRAM Department of Physics, University of Pennsylvania Philadelphia, PA 19104-6396,

More information

Symmetries, Groups Theory and Lie Algebras in Physics

Symmetries, Groups Theory and Lie Algebras in Physics Symmetries, Groups Theory and Lie Algebras in Physics M.M. Sheikh-Jabbari Symmetries have been the cornerstone of modern physics in the last century. Symmetries are used to classify solutions to physical

More information

PAPER 52 GENERAL RELATIVITY

PAPER 52 GENERAL RELATIVITY MATHEMATICAL TRIPOS Part III Monday, 1 June, 2015 9:00 am to 12:00 pm PAPER 52 GENERAL RELATIVITY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

The Conformal Algebra

The Conformal Algebra The Conformal Algebra Dana Faiez June 14, 2017 Outline... Conformal Transformation/Generators 2D Conformal Algebra Global Conformal Algebra and Mobius Group Conformal Field Theory 2D Conformal Field Theory

More information

8.821 F2008 Lecture 05

8.821 F2008 Lecture 05 8.821 F2008 Lecture 05 Lecturer: McGreevy Scribe: Evangelos Sfakianakis September 22, 2008 Today 1. Finish hindsight derivation 2. What holds up the throat? 3. Initial checks (counting of states) 4. next

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.821 String Theory Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.821 F2008 Lecture 04 Lecturer: McGreevy

More information

Aspects of Supergravity in Eleven. Dimensions

Aspects of Supergravity in Eleven. Dimensions Aspects of Supergravity in Eleven Dimensions Achilleas Passias Supervisor: Professor Arkady Tseytlin Submitted in partial fulfilment of the requirements for the degree of Master of Science of Imperial

More information

WHY BLACK HOLES PHYSICS?

WHY BLACK HOLES PHYSICS? WHY BLACK HOLES PHYSICS? Nicolò Petri 13/10/2015 Nicolò Petri 13/10/2015 1 / 13 General motivations I Find a microscopic description of gravity, compatibile with the Standard Model (SM) and whose low-energy

More information

PAPER 309 GENERAL RELATIVITY

PAPER 309 GENERAL RELATIVITY MATHEMATICAL TRIPOS Part III Monday, 30 May, 2016 9:00 am to 12:00 pm PAPER 309 GENERAL RELATIVITY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

Supercurrents. Nathan Seiberg IAS

Supercurrents. Nathan Seiberg IAS Supercurrents Nathan Seiberg IAS 2011 Zohar Komargodski and NS arxiv:0904.1159, arxiv:1002.2228 Tom Banks and NS arxiv:1011.5120 Thomas T. Dumitrescu and NS arxiv:1106.0031 Summary The supersymmetry algebra

More information

Lecture 7 SUSY breaking

Lecture 7 SUSY breaking Lecture 7 SUSY breaking Outline Spontaneous SUSY breaking in the WZ-model. The goldstino. Goldstino couplings. The goldstino theorem. Reading: Terning 5.1, 5.3-5.4. Spontaneous SUSY Breaking Reminder:

More information

Higher-derivative relativistic quantum gravity

Higher-derivative relativistic quantum gravity Preprint-INR-TH-207-044 Higher-derivative relativistic quantum gravity S.A. Larin Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect 7a, Moscow 732, Russia

More information

1 Canonical quantization conformal gauge

1 Canonical quantization conformal gauge Contents 1 Canonical quantization conformal gauge 1.1 Free field space of states............................... 1. Constraints..................................... 3 1..1 VIRASORO ALGEBRA...........................

More information

Sugra-Notes by Horatiu Nastase A very basic introduction (survival guide)

Sugra-Notes by Horatiu Nastase A very basic introduction (survival guide) Sugra-Notes by Horatiu Nastase A very basic introduction (survival guide) 1 Generalities Supergravity is the supersymmetric theory of gravity, or equivalently, a theory of local supersymetry. The gauge

More information

matter The second term vanishes upon using the equations of motion of the matter field, then the remaining term can be rewritten

matter The second term vanishes upon using the equations of motion of the matter field, then the remaining term can be rewritten 9.1 The energy momentum tensor It will be useful to follow the analogy with electromagnetism (the same arguments can be repeated, with obvious modifications, also for nonabelian gauge theories). Recall

More information

Introduction to Supergravity. 4:30pm, November 2, 2012

Introduction to Supergravity. 4:30pm, November 2, 2012 Introduction to Supergravity Úå{0 ½ (H. Lü) ŒÆ Œ % Ü 4:30pm, November 2, 2012 Úó: nøä: XÛE Ú u'x 5 Ä:Ôn J mµ

More information

Gauge Theory of Gravitation: Electro-Gravity Mixing

Gauge Theory of Gravitation: Electro-Gravity Mixing Gauge Theory of Gravitation: Electro-Gravity Mixing E. Sánchez-Sastre 1,2, V. Aldaya 1,3 1 Instituto de Astrofisica de Andalucía, Granada, Spain 2 Email: sastre@iaa.es, es-sastre@hotmail.com 3 Email: valdaya@iaa.es

More information

Introduction to supergravity

Introduction to supergravity December 2011 Introduction to supergravity arxiv:1112.3502v3 [hep-th] 23 Jan 2012 lectures by Horatiu Nastase Instituto de Física Teórica, UNESP São Paulo 01140-070, SP, Brazil Abstract These lectures

More information

Inequivalence of First and Second Order Formulations in D=2 Gravity Models 1

Inequivalence of First and Second Order Formulations in D=2 Gravity Models 1 BRX TH-386 Inequivalence of First and Second Order Formulations in D=2 Gravity Models 1 S. Deser Department of Physics Brandeis University, Waltham, MA 02254, USA The usual equivalence between the Palatini

More information

The l.h.s. of this equation is again a commutator of covariant derivatives, so we find. Deriving this once more we find

The l.h.s. of this equation is again a commutator of covariant derivatives, so we find. Deriving this once more we find 10.1 Symmetries A diffeomorphism φ is said to be an isometry of a metric g if φ g = g. An infinitesimal diffeomorphism is described by a vectorfield v. The vectorfield v is an infinitesimal isometry if

More information

One of the problems in modern physics

One of the problems in modern physics The Cosmological Constant One of the problems in modern physics Hendrik van Hees Fakultät für Physik Universität Bielefeld The Cosmological Constant p.1 Contents Fundamentals from General relativity: The

More information

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford AdS/CFT duality Agnese Bissi Mathematical Institute University of Oxford March 26, 2015 Fundamental Problems in Quantum Physics Erice What is it about? AdS=Anti de Sitter Maximally symmetric solution of

More information

Einstein Double Field Equations

Einstein Double Field Equations Einstein Double Field Equations Stephen Angus Ewha Woman s University based on arxiv:1804.00964 in collaboration with Kyoungho Cho and Jeong-Hyuck Park (Sogang Univ.) KIAS Workshop on Fields, Strings and

More information

Applied Newton-Cartan Geometry: A Pedagogical Review

Applied Newton-Cartan Geometry: A Pedagogical Review Applied Newton-Cartan Geometry: A Pedagogical Review Eric Bergshoeff Groningen University 10th Nordic String Meeting Bremen, March 15 2016 Newtonian Gravity Free-falling frames: Galilean symmetries Earth-based

More information

New Massive Dual Gravity: beyond 3D

New Massive Dual Gravity: beyond 3D New Massive Dual Gravity: beyond 3D Eric Bergshoeff Groningen University Work in progress together with Jose Juan Fernandez, Jan Rosseel and Paul Townsend Miami, December 18 2011 Outline Introduction Outline

More information

Theories of Massive Gravity

Theories of Massive Gravity UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI FISICA ED ASTRONOMIA GALILEO GALILEI CORSO DI LAUREA MAGISTRALE IN FISICA Theories of Massive Gravity Supervisor: Prof. Dmitri Sorokin Student: Eugenia

More information

N-C from the Noether Procedure and Galilean Electrodynamics

N-C from the Noether Procedure and Galilean Electrodynamics gen. Vertical version with logotype under the N-C from the Noether Procedure and Galilean Electrodynamics Dennis Hansen 10th Nordic String Theory Meeting, Bremen 2016 The Niels Bohr Institute and Niels

More information

BPS Solitons and Killing Spinors in Three Dimensional N =2Supergravity

BPS Solitons and Killing Spinors in Three Dimensional N =2Supergravity La Plata-Th 97/18 BPS Solitons and Killing Spinors in Three Dimensional N =2Supergravity José D. Edelstein Departamento de Física, Universidad Nacional de La Plata C.C. 67, (1900) La Plata, Argentina Short

More information

Particle Physics I Lecture Exam Question Sheet

Particle Physics I Lecture Exam Question Sheet Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?

More information

Citation for published version (APA): Halbersma, R. S. (2002). Geometry of strings and branes. Groningen: s.n.

Citation for published version (APA): Halbersma, R. S. (2002). Geometry of strings and branes. Groningen: s.n. University of Groningen Geometry of strings and branes Halbersma, Reinder Simon IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please

More information

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds Introduction to String Theory ETH Zurich, HS11 Chapter 9 Prof. N. Beisert 9 String Backgrounds Have seen that string spectrum contains graviton. Graviton interacts according to laws of General Relativity.

More information

On Torsion Fields in Higher Derivative Quantum Gravity

On Torsion Fields in Higher Derivative Quantum Gravity Annales de la Fondation Louis de Broglie, Volume 3 no -3, 007 33 On Torsion Fields in Higher Derivative Quantum Gravity S.I. Kruglov University of Toronto at Scarborough, Physical and Environmental Sciences

More information

Graded Lie Algebra of Quaternions and Superalgebra of SO(3, 1)

Graded Lie Algebra of Quaternions and Superalgebra of SO(3, 1) Graded Lie Algebra of Quaternions and Superalgebra of SO3, 1 Bhupendra C. S. Chauhan, O. P. S. Negi October 22, 2016 Department of Physics Kumaun University S. S. J. Campus Almora 263601 Uttarakhand Email:

More information

t, H = 0, E = H E = 4πρ, H df = 0, δf = 4πJ.

t, H = 0, E = H E = 4πρ, H df = 0, δf = 4πJ. Lecture 3 Cohomologies, curvatures Maxwell equations The Maxwell equations for electromagnetic fields are expressed as E = H t, H = 0, E = 4πρ, H E t = 4π j. These equations can be simplified if we use

More information

arxiv:hep-th/ v1 28 Jan 1999

arxiv:hep-th/ v1 28 Jan 1999 N=1, D=10 TENSIONLESS SUPERBRANES II. 1 arxiv:hep-th/9901153v1 28 Jan 1999 P. Bozhilov 2 Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia We consider a model for tensionless (null)

More information

arxiv:hep-th/ v2 14 Oct 1997

arxiv:hep-th/ v2 14 Oct 1997 T-duality and HKT manifolds arxiv:hep-th/9709048v2 14 Oct 1997 A. Opfermann Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge, CB3 9EW, UK February

More information

A note on the principle of least action and Dirac matrices

A note on the principle of least action and Dirac matrices AEI-2012-051 arxiv:1209.0332v1 [math-ph] 3 Sep 2012 A note on the principle of least action and Dirac matrices Maciej Trzetrzelewski Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,

More information

General Relativity (225A) Fall 2013 Assignment 8 Solutions

General Relativity (225A) Fall 2013 Assignment 8 Solutions University of California at San Diego Department of Physics Prof. John McGreevy General Relativity (5A) Fall 013 Assignment 8 Solutions Posted November 13, 013 Due Monday, December, 013 In the first two

More information

New Model of massive spin-2 particle

New Model of massive spin-2 particle New Model of massive spin-2 particle Based on Phys.Rev. D90 (2014) 043006, Y.O, S. Akagi, S. Nojiri Phys.Rev. D90 (2014) 123013, S. Akagi, Y.O, S. Nojiri Yuichi Ohara QG lab. Nagoya univ. Introduction

More information

BPS Black holes in AdS and a magnetically induced quantum critical point. A. Gnecchi

BPS Black holes in AdS and a magnetically induced quantum critical point. A. Gnecchi BPS Black holes in AdS and a magnetically induced quantum critical point A. Gnecchi June 20, 2017 ERICE ISSP Outline Motivations Supersymmetric Black Holes Thermodynamics and Phase Transition Conclusions

More information

On the uniqueness of Einstein-Hilbert kinetic term (in massive (multi-)gravity)

On the uniqueness of Einstein-Hilbert kinetic term (in massive (multi-)gravity) On the uniqueness of Einstein-Hilbert kinetic term (in massive (multi-)gravity) Andrew J. Tolley Case Western Reserve University Based on: de Rham, Matas, Tolley, ``New Kinetic Terms for Massive Gravity

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.821 String Theory Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.821 F2008 Lecture 02: String theory

More information

Generalized N = 1 orientifold compactifications

Generalized N = 1 orientifold compactifications Generalized N = 1 orientifold compactifications Thomas W. Grimm University of Wisconsin, Madison based on: [hep-th/0602241] Iman Benmachiche, TWG [hep-th/0507153] TWG Madison, Wisconsin, November 2006

More information

Stability in Maximal Supergravity

Stability in Maximal Supergravity Stability in Maximal Supergravity S. Bielleman, s171136, RuG Supervisor: Dr. D. Roest August 5, 014 Abstract In this thesis, we look for a bound on the lightest scalar mass in maximal supergravity. The

More information

An Introduction to Higher-Spin Fields

An Introduction to Higher-Spin Fields An Introduction to Higher-Spin Fields Augusto SAGNOTTI Scuola Normale Superiore, Pisa Some Some reviews: N. N. Bouatta, G. G. Compere, A.S., A.S., hep-th/0609068 D. D. Francia and and A.S., A.S., hep-th/0601199

More information

Running at Non-relativistic Speed

Running at Non-relativistic Speed Running at Non-relativistic Speed Eric Bergshoeff Groningen University Symmetries in Particles and Strings A Conference to celebrate the 70th birthday of Quim Gomis Barcelona, September 4 2015 Why always

More information

1 4-dimensional Weyl spinor

1 4-dimensional Weyl spinor 4-dimensional Weyl spinor Left moving ψ α, α =, Right moving ψ α, α =, They are related by the complex conjugation. The indices are raised or lowerd by the ϵ tensor as ψ α := ϵ αβ ψ β, α := ϵ α β β. (.)

More information

Topological DBI actions and nonlinear instantons

Topological DBI actions and nonlinear instantons 8 November 00 Physics Letters B 50 00) 70 7 www.elsevier.com/locate/npe Topological DBI actions and nonlinear instantons A. Imaanpur Department of Physics, School of Sciences, Tarbiat Modares University,

More information

Aspects of Spontaneous Lorentz Violation

Aspects of Spontaneous Lorentz Violation Aspects of Spontaneous Lorentz Violation Robert Bluhm Colby College IUCSS School on CPT & Lorentz Violating SME, Indiana University, June 2012 Outline: I. Review & Motivations II. Spontaneous Lorentz Violation

More information

Heisenberg-Euler effective lagrangians

Heisenberg-Euler effective lagrangians Heisenberg-Euler effective lagrangians Appunti per il corso di Fisica eorica 7/8 3.5.8 Fiorenzo Bastianelli We derive here effective lagrangians for the electromagnetic field induced by a loop of charged

More information

Lecturer: Bengt E W Nilsson

Lecturer: Bengt E W Nilsson 9 3 19 Lecturer: Bengt E W Nilsson Last time: Relativistic physics in any dimension. Light-cone coordinates, light-cone stuff. Extra dimensions compact extra dimensions (here we talked about fundamental

More information

A brief introduction to modified theories of gravity

A brief introduction to modified theories of gravity (Vinc)Enzo Vitagliano CENTRA, Lisboa May, 14th 2015 IV Amazonian Workshop on Black Holes and Analogue Models of Gravity Belém do Pará The General Theory of Relativity dynamics of the Universe behavior

More information

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams III. Quantization of constrained systems and Maxwell s theory 1. The

More information

AdS spacetimes and Kaluza-Klein consistency. Oscar Varela

AdS spacetimes and Kaluza-Klein consistency. Oscar Varela AdS spacetimes and Kaluza-Klein consistency Oscar Varela based on work with Jerome Gauntlett and Eoin Ó Colgáin hep-th/0611219, 0707.2315, 0711.xxxx CALTECH 16 November 2007 Outline 1 Consistent KK reductions

More information

Quantum discontinuity between zero and infinitesimal graviton mass with a Λ term. Abstract

Quantum discontinuity between zero and infinitesimal graviton mass with a Λ term. Abstract MCTP-01-06 hep-th/010093 Quantum discontinuity between zero and infinitesimal graviton mass with a Λ term F. A. Dilkes, M. J. Duff, James T. Liu and H. Sati Michigan Center for Theoretical Physics Randall

More information

Gauged N=2 Off-Shell Supergravity in Five Dimensions

Gauged N=2 Off-Shell Supergravity in Five Dimensions BONN-TH-99-16 hep-th/9909144 September 1999 arxiv:hep-th/9909144v1 21 Sep 1999 Gauged N=2 Off-Shell Supergravity in Five Dimensions Max Zucker 1 Physikalisches Institut Universität Bonn Nussallee 12 D-5115

More information

Higher-derivative relativistic quantum gravity

Higher-derivative relativistic quantum gravity arxiv:1711.02975v1 [physics.gen-ph] 31 Oct 2017 Preprint-INR-TH-044 Higher-derivative relativistic quantum gravity S.A. Larin Institute for Nuclear Research of the Russian Academy of Sciences, 60th October

More information

LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS.

LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS. LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS Merab Gogberashvili a and Paul Midodashvili b a Andronikashvili Institute of Physics, 6 Tamarashvili Str., Tbilisi 3877, Georgia E-mail: gogber@hotmail.com

More information

Maximally Supersymmetric Solutions in Supergravity

Maximally Supersymmetric Solutions in Supergravity Maximally Supersymmetric Solutions in Supergravity Severin Lüst Universität Hamburg arxiv:1506.08040, 1607.08249, and in progress in collaboration with J. Louis November 24, 2016 1 / 17 Introduction Supersymmetric

More information

arxiv:hep-th/ v1 6 Oct 1998

arxiv:hep-th/ v1 6 Oct 1998 DAMTP-1998-137 hep-th/9810041 arxiv:hep-th/9810041v1 6 Oct 1998 On Gauged Maximal Supergravity In Six Dimensions P.M.Cowdall DAMTP, University of Cambridge, Silver Street, Cambridge, U.K. ABSTRACT The

More information

arxiv:gr-qc/ v1 19 Feb 2003

arxiv:gr-qc/ v1 19 Feb 2003 Conformal Einstein equations and Cartan conformal connection arxiv:gr-qc/0302080v1 19 Feb 2003 Carlos Kozameh FaMAF Universidad Nacional de Cordoba Ciudad Universitaria Cordoba 5000 Argentina Ezra T Newman

More information

arxiv:hep-th/ v2 22 Jul 2003

arxiv:hep-th/ v2 22 Jul 2003 June 24 2003 QMUL-PH-03-08 hep-th/0306235 arxiv:hep-th/0306235v2 22 Jul 2003 All supersymmetric solutions of minimal supergravity in six dimensions Jan B. Gutowski 1, Dario Martelli 2 and Harvey S. Reall

More information

Chapter 1 LORENTZ/POINCARE INVARIANCE. 1.1 The Lorentz Algebra

Chapter 1 LORENTZ/POINCARE INVARIANCE. 1.1 The Lorentz Algebra Chapter 1 LORENTZ/POINCARE INVARIANCE 1.1 The Lorentz Algebra The requirement of relativistic invariance on any fundamental physical system amounts to invariance under Lorentz Transformations. These transformations

More information

String Theory Compactifications with Background Fluxes

String Theory Compactifications with Background Fluxes String Theory Compactifications with Background Fluxes Mariana Graña Service de Physique Th Journées Physique et Math ématique IHES -- Novembre 2005 Motivation One of the most important unanswered question

More information

N=1 Global Supersymmetry in D=4

N=1 Global Supersymmetry in D=4 Susy algebra equivalently at quantum level Susy algebra In Weyl basis In this form it is obvious the U(1) R symmetry Susy algebra We choose a Majorana representation for which all spinors are real. In

More information

Spinors in Curved Space

Spinors in Curved Space December 5, 2008 Tetrads The problem: How to put gravity into a Lagrangian density? The problem: How to put gravity into a Lagrangian density? The solution: The Principle of General Covariance The problem:

More information

On the curious spectrum of duality-invariant higher-derivative gravitational field theories

On the curious spectrum of duality-invariant higher-derivative gravitational field theories On the curious spectrum of duality-invariant higher-derivative gravitational field theories VIII Workshop on String Field Theory and Related Aspects ICTP-SAIFR 31 May 2016 Barton Zwiebach, MIT Introduction

More information