The Spectral Action and the Standard Model

Size: px
Start display at page:

Download "The Spectral Action and the Standard Model"

Transcription

1 Ma148b Spring 2016 Topics in Mathematical Physics

2 References A.H. Chamseddine, A. Connes, M. Marcolli, Gravity and the Standard Model with Neutrino Mixing, Adv. Theor. Math. Phys., Vol.11 (2007)

3 The spectral action functional Ali Chamseddine, Alain Connes, The spectral action principle, Comm. Math. Phys. 186 (1997), no. 3, A good action functional for noncommutative geometries Tr(f (D/Λ)) D Dirac, Λ mass scale, f > 0 even smooth function (cutoff approx) Simple dimension spectrum expansion for Λ Tr(f (D/Λ)) f k Λ k D k + f (0) ζ D (0) + o(1), k with f k = 0 f (v) v k 1 dv momenta of f where DimSp(A, H, D) = poles of ζ b,d (s) = Tr(b D s )

4 Asymptotic expansion of the spectral action Tr(e t ) a α t α (t 0) and the ζ function ζ D (s) = Tr( s/2 ) Non-zero term a α with α < 0 pole of ζ D at 2α with Res s= 2α ζ D (s) = 2 a α Γ( α) No log t terms regularity at 0 for ζ D with ζ D (0) = a 0

5 Asymptotic expansion of the spectral action Tr(e t ) a α t α (t 0) and the ζ function ζ D (s) = Tr( s/2 ) Non-zero term a α with α < 0 pole of ζ D at 2α with Res s= 2α ζ D (s) = 2 a α Γ( α) No log t terms regularity at 0 for ζ D with ζ D (0) = a 0

6 Get first statement from D s = s/2 = 1 Γ ( ) s 2 with 1 0 tα+s/2 1 dt = (α + s/2) 1. Second statement from 1 Γ ( s 2) s 2 0 as s 0 contrib to ζ D (0) from pole part at s = 0 of 1 given by a 0 0 ts/2 1 2 dt = a 0 s 0 Tr(e t ) t s/2 1 dt e t t s/2 1 dt

7 Spectral action with fermionic terms S = Tr(f (D A /Λ)) J ξ, D A ξ, ξ H + cl, D A = Dirac with unimodular inner fluctuations, J = real structure, H + cl = classical spinors, Grassmann variables Fermionic terms 1 2 J ξ, D A ξ antisymmetric bilinear form A( ξ) on H + cl = {ξ H cl γξ = ξ} nonzero on Grassmann variables Euclidean functional integral Pfaffian Pf (A) = e 1 2 A( ξ) D[ ξ] avoids Fermion doubling problem of previous models based on symmetric ξ, D A ξ for NC space with KO-dim=0

8 Grassmann variables Anticommuting variables with basic integration rule ξ dξ = 1 An antisymmetric bilinear form A(ξ 1, ξ 2 ): if ordinary commuting variables A(ξ, ξ) = 0 but not on Grassmann variables Example: 2-dim case A(ξ, ξ) = a(ξ 1 ξ 2 ξ 2 ξ 1), if ξ 1 and ξ 2 anticommute, with integration rule as above e 1 2 A(ξ,ξ) D[ξ] = e aξ 1ξ 2 dξ 1 dξ 2 = a Pfaffian as functional integral: antisymmetric quadratic form Pf (A) = e 1 2 A(ξ,ξ) D[ξ] Method to treat Majorana fermions in the Euclidean setting

9 Fermionic part of SM Lagrangian Explicit computation of 1 2 J ξ, D A ξ gives part of SM Larangian with L Hf = coupling of Higgs to fermions L gf = coupling of gauge bosons to fermions L f = fermion terms

10 Bosonic part of the spectral action S = 1 π 2 (48 f 4 Λ 4 f 2 Λ 2 c + f 0 g 4 d) d 4 x + 96 f 2 Λ 2 f 0 c 24π 2 R g d 4 x f π 2 ( 11 6 R R 3 C µνρσ C µνρσ ) g d 4 x + ( 2 a f 2 Λ 2 + e f 0 ) π 2 ϕ 2 g d 4 x + f 0a 2 π 2 D µ ϕ 2 g d 4 x f 0 a 12 π 2 R ϕ 2 g d 4 x + f 0b 2 π 2 ϕ 4 g d 4 x f π 2 (g3 2 Gµν i G µνi + g2 2 Fµν α F µνα g 1 2 B µν B µν ) g d 4 x,

11 Parameters: f 0, f 2, f 4 free parameters, f 0 = f (0) and, for k > 0, f k = 0 f (v)v k 1 dv. a, b, c, d, e functions of Yukawa parameters of νmsm a = Tr(Y ν Y ν + Y e Y e + 3(Y u Y u + Y d Y d)) b = Tr((Y ν Y ν ) 2 + (Y e Y e ) 2 + 3(Y u Y u ) 2 + 3(Y d Y d) 2 ) c = Tr(MM ) d = Tr((MM ) 2 ) e = Tr(MM Y ν Y ν ).

12 Gilkey s theorem using DA 2 = E Differential operator P = (g µν I µ ν + A µ µ + B) with A, B bundle endomorphisms, m = dim M Tr e tp n 0 t n m 2 P = E and E ; µ µ := µ µ E M a n (x, P) dv(x) µ = µ + ω µ, ω µ = 1 2 g µν(a ν + Γ ν id) Seeley-DeWitt coefficients E = B g µν ( µ ω ν + ω µ ω ν Γ ρ µν ω ρ) Ω µν = µ ω ν ν ω µ + [ω µ, ω ν] a 0 (x, P) = (4π) m/2 Tr(id) a 2 (x, P) = (4π) m/2 Tr ( R 6 id + E) a 4 (x, P) = (4π) m/ Tr( 12R ;µ µ + 5R 2 2R µν R µν + 2R µνρσ R µνρσ 60 R E E E ; µ µ + 30 Ω µν Ω µν )

13 Normalization and coefficients Rescale Higgs field H = a f0 π ϕ to normalize kinetic term 1 2 D µh 2 g d 4 x Normalize Yang-Mills terms 1 4 G µνg i µνi F µνf α µνα B µνb µν Normalized form: 1 S = 2κ 2 R g g d 4 x + γ 0 d 4 x 0 + α 0 C µνρσ C µνρσ g d 4 x + τ 0 R R g d 4 x + 1 DH 2 g d 4 x µ 2 0 H 2 g d 4 x 2 ξ 0 R H 2 g d 4 x + λ 0 H 4 g d 4 x + 1 (Gµν i G µνi + Fµν α F µνα + B µν B µν ) g d 4 x 4 where R R = 1 4 ɛµνρσ ɛ αβγδ R αβ µνr γδ ρσ integrates to the Euler characteristic χ(m) and C µνρσ Weyl curvature

14 Coefficients 1 = 96f 2Λ 2 f 0 c 2κ π 2 γ 0 = 1 π 2 (48f 4Λ 4 f 2 Λ 2 c + f 0 4 d) α 0 = 3f 0 10π 2 τ 0 = 11f 0 60π 2 µ 2 0 = 2f 2Λ 2 e a f 0 λ 0 = π2 b 2f 0 a 2 ξ 0 = 1 12 Energy scale: Unification ( GeV) g 2 f 0 2π 2 = 1 4 Preferred energy scale, unification of coupling constants

15 1-loop RGE equations for νmsn variable t = log(λ/m Z ) Coupling constants: t x i (t) = β xi (x(t)) β 1 = 41 96π 2 g 3 1, β 2 = 19 96π 2 g 3 2, β 3 = 7 16π 2 g 3 3 at 1-loop decoupled from other equations (Notation: g 2 1 = 5 3 g 2 1 ) Yukawa parameters: 16π 2 β Yu = Y u ( 3 2 Y u Y u 3 2 Y d Y d + a g g 2 2 8g 2 3 ) 16π 2 β Yd = Y d ( 3 2 Y d Y d 3 2 Y u Y u + a 1 4 g g 2 2 8g 2 3 ) 16π 2 β Yν = Y ν ( 3 2 Y ν Y ν 3 2 Y e Y e + a 9 20 g g 2 2 ) 16π 2 β Ye = Y e ( 3 2 Y e Y e 3 2 Y ν Y ν + a 9 4 g g 2 2 )

16 Majorana mass terms: Higgs self coupling: 16π 2 β M = Y ν Y ν M + M(Y ν Y ν ) T 16π 2 β λ = 6λ 2 3λ(3g g 2 1 ) + 3g (g g 2 2 ) 2 + 4λa 8b MSM approximation: top quark Yukawa parameter dominant term: in λ running neglect all terms except coupling constants g i and Yukawa parameter of top quark y t β λ = 1 16π 2 ( 24λ λy 2 9λ(g g 2 1 ) 6y g g g 2 2 g 2 1 where Yukawa parameter for the top quark runs by β y = 1 ( 9 16π 2 2 y 3 8g3 2 y 9 4 g 2 2 y 17 ) 12 g 1 2 y )

17 Renormalization group flow The coefficients a, b, c, d, e (depend on Yukawa parameters) run with the RGE flow Initial conditions at unification energy: compatibility with physics at low energies RGE in the MSM case Running of coupling constants at one loop: α i = g 2 i /(4π) β gi = (4π) 2 b i g 3 i, with b i = ( 41 6, 19 6, 7), α 1 1 (Λ) = α 1 1 (M Z ) 41 12π log α 1 2 (Λ) = α 1 2 (M Z ) π log α 1 3 (Λ) = α 1 3 (M Z ) π log M Z GeV mass of Z 0 boson Λ M Z Λ M Z Λ M Z

18 At one loop RGE for coupling constants decouples from Yukawa parameters (not at 2 loops!) Couplings 5 3 Α Α2 Α log 10 Μ GeV Well known triangle problem: with known low energy values constants don t meet at unification g 2 3 = g 2 2 = 5g 2 1 /3

19 Geometry point of view At one loop coupling constants decouple from Yukawa parameters Solving for coupling constants, RGE flow defines a vector field on moduli space C 3 C 1 of Dirac operators on the finite NC space F Subvarieties invariant under flow are relations between the SM parameters that hold at all energies At two loops or higher, RGE flow on a rank three vector bundle (fiber = coupling constants) over the moduli space C 3 C 1 Geometric problem: studying the flow and the geometry of invariant subvarieties on the moduli space

20 Constraints at unification The geometry of the model imposes conditions at unification energy: specific to this NCG model λ parameter constraint Higgs vacuum constraint af0 λ(λ unif ) = π2 2f 0 b(λ unif ) a(λ unif ) 2 π = 2M W g See-saw mechanism and c constraint 2f 2 Λ 2 unif c(λ unif ) 6f 2Λ 2 unif f 0 f 0 Mass relation at unification (mν 2 + me 2 + 3mu 2 + 3md 2 ) Λ=Λ unif = 8MW 2 Λ=Λ unif generations Need to have compatibility with low energy behavior

21 Mass relation at unification Y 2 (S) = 4g 2 Y 2 = σ (y σ ν ) 2 + (y σ e ) (y σ u ) (y σ d )2 (k ( 3) ) σκ = g 2M mσ u δσ κ (k ( 3) ) σκ = g 2M mµ d C σµδµc ρ ρκ (k ( 1) ) σκ = g 2M mσ ν δσ κ (k ( 1) ) σκ = g 2M mµ e U lep σµδµu ρ lep ρκ δ j i = Kronecker delta, then constraint: Tr(k ( 1) k ( 1) + k ( 1) k ( 1) + 3(k ( 3) k ( 3) + k ( 3) k ( 3))) = 2 g 2 mass matrices satisfy (mν σ ) 2 + (me σ ) (mu σ ) (md σ )2 = 8 M 2 σ

22 See-saw mechanism: D = D(Y ) Dirac 0 M ν M R 0 M ν M R 0 0 M ν 0 0 M ν 0 on subspace (ν R, ν L, ν R, ν L ): largest eigenvalue of M R Λ unification scale. Take M R = x k R in flat space, Higgs vacuum v small (w/resp to unif scale) u Tr(f (D A /Λ)) = 0 u = x 2 Dirac mass M ν Fermi energy v x 2 = 2 f 2 Λ 2 Tr(k R k R) f 0 Tr((k R k R) 2 ) 1 2 (±m R ± m 2 R + 4 v 2 ) two eigenvalues ±m R and two ± v 2 m R Compare with estimates (m R ) GeV, (m R ) GeV, (m R ) GeV

23 Low energy limit: compatibilities and predictions Running of top Yukawa coupling (dominant term): v 2 (y σ ) = (m σ ), dy t dt = 1 [ 9 16π 2 2 y t 3 ( ] a g1 2 + b g2 2 + c g3 2 ) yt, (a, b, c) = ( 17 12, 9 4, 8) value of top quark mass agrees with known (1.04 times if neglect other Yukawa couplings)

24 Top quark running using mass relation at unification yt yt log 10 Μ GeV correction to MSM flow by yν σ for τ neutrino (allowed to be comparably large by see-saw) lowers value

25 Higgs mass prediction using RGE for MSM Higgs scattering parameter: f 0 2 π 2 b ϕ 4 g d 4 x = π2 2 f 0 b a 2 H 4 g d 4 x relation at unification ( λ is H 4 coupling) λ(λ) = g 2 3 b a 2 Running of Higgs scattering parameter: dλ dt = λγ + 1 8π 2 (12λ2 + B) γ = 1 16π 2 (12y 2 t 9g 2 2 3g 2 1 ) B = 3 16 (3g g 2 1 g g 4 1 ) 3y 4 t

26 Higgs estimate (in MSM approximation for RGE flow) m 2 H = 8λ M2 g 2, m H = 2λ 2M g x log 10 Μ GeV 0.28 Λ log Μ MZ x 0.2 λ(m Z ) and Higgs mass 170 GeV (w/correction from see-saw 168 GeV)... Problem: wrong Higgs mass! too heavy

Early Universe Models

Early Universe Models Ma148b Spring 2016 Topics in Mathematical Physics This lecture based on, Elena Pierpaoli, Early universe models from Noncommutative Geometry, Advances in Theoretical and Mathematical Physics, Vol.14 (2010)

More information

EARLY UNIVERSE MODELS FROM NONCOMMUTATIVE GEOMETRY

EARLY UNIVERSE MODELS FROM NONCOMMUTATIVE GEOMETRY EARLY UNIVERSE MODELS FROM NONCOMMUTATIVE GEOMETRY MATILDE MARCOLLI AND ELENA PIERPAOLI Abstract. We investigate cosmological predictions on the early universe based on the noncommutative geometry models

More information

ASYMPTOTIC SAFETY, HYPERGEOMETRIC FUNCTIONS, AND THE HIGGS MASS IN SPECTRAL ACTION MODELS

ASYMPTOTIC SAFETY, HYPERGEOMETRIC FUNCTIONS, AND THE HIGGS MASS IN SPECTRAL ACTION MODELS ASYMPTOTIC SAFETY, HYPERGEOMETRIC FUNCTIONS, AND THE HIGGS MASS IN SPECTRAL ACTION MODELS CHRISTOPHER ESTRADA AND MATILDE MARCOLLI Abstract. We study the renormalization group flow for the Higgs self coupling

More information

The Spectral Geometry of the Standard Model

The Spectral Geometry of the Standard Model Ma148b Spring 2016 Topics in Mathematical Physics References A.H. Chamseddine, A. Connes, M. Marcolli, Gravity and the Standard Model with Neutrino Mixing, Adv. Theor. Math. Phys., Vol.11 (2007) 991 1090

More information

BOUNDARY CONDITIONS OF THE RGE FLOW IN THE NONCOMMUTATIVE GEOMETRY APPROACH TO PARTICLE PHYSICS AND COSMOLOGY

BOUNDARY CONDITIONS OF THE RGE FLOW IN THE NONCOMMUTATIVE GEOMETRY APPROACH TO PARTICLE PHYSICS AND COSMOLOGY BOUNDARY CONDITIONS OF THE RGE FLOW IN THE NONCOMMUTATIVE GEOMETRY APPROACH TO PARTICLE PHYSICS AND COSMOLOGY DANIEL KOLODRUBETZ AND MATILDE MARCOLLI Abstract. We investigate the effect of varying boundary

More information

Spectral Triples and Pati Salam GUT

Spectral Triples and Pati Salam GUT Ma148b Spring 2016 Topics in Mathematical Physics References A.H. Chamseddine, A. Connes, W. van Suijlekom, Beyond the Spectral Standard Model: Emergence of Pati-Salam Unification, JHEP 1311 (2013) 132

More information

!"" #$%&"'()&*+,"-./%*+0/%1"23456""

! #$%&'()&*+,-./%*+0/%123456 BUILDING COSMOLOGICAL MODELS VIA NONCOMMUTATIVE GEOMETRY MATILDE MARCOLLI!"",, " (from Changsha, 1925) #$%&"'()&*+,"-./%*+/%1"23456"" Abstract. This is an overview of new and ongoing research developments

More information

and the seeds of quantisation

and the seeds of quantisation noncommutative spectral geometry algebra doubling and the seeds of quantisation m.s.,.,, stabile, vitiello, PRD 84 (2011) 045026 mairi sakellariadou king s college london noncommutative spectral geometry

More information

Cosmology and the Poisson summation formula

Cosmology and the Poisson summation formula Bonn, June 2010 This talk is based on: MPT M. Marcolli, E. Pierpaoli, K. Teh, The spectral action and cosmic topology, arxiv:1005.2256. The NCG standard model and cosmology CCM A. Chamseddine, A. Connes,

More information

NONCOMMUTATIVE GEOMETRY AND THE STANDARD MODEL WITH NEUTRINO MIXING

NONCOMMUTATIVE GEOMETRY AND THE STANDARD MODEL WITH NEUTRINO MIXING NONCOMMUTATIVE GEOMETRY AND THE STANDARD MODEL WITH NEUTRINO MIXING ALAIN CONNES Abstract. We show that allowing the metric dimension of a space to be independent of its KO-dimension and turning the finite

More information

Spectral Triples and Supersymmetry

Spectral Triples and Supersymmetry Ma148b Spring 2016 Topics in Mathematical Physics Reference: Wim Beenakker, Thijs van den Broek, Walter van Suijlekom, Supersymmetry and Noncommutative Geometry, Springer, 2015 (also all images in this

More information

arxiv: v1 [hep-ph] 7 May 2009

arxiv: v1 [hep-ph] 7 May 2009 arxiv:0905.0997v1 [hep-ph] 7 May 9 BEYOND THE STANDARD MODEL: A NONCOMMUTATIVE APPROACH C.A. STEPHAN Institut für Mathematik, Universität Potsdam 14469 Potsdam, Germany During the last two decades Alain

More information

Spectral action, scale anomaly. and the Higgs-Dilaton potential

Spectral action, scale anomaly. and the Higgs-Dilaton potential Spectral action, scale anomaly and the Higgs-Dilaton potential Fedele Lizzi Università di Napoli Federico II Work in collaboration with A.A. Andrianov (St. Petersburg) and M.A. Kurkov (Napoli) JHEP 1005:057,2010

More information

Grand Unification in the Spectral Pati Salam Model

Grand Unification in the Spectral Pati Salam Model Grand Unification in the Spectral Pati Salam Model Ali H Chamseddine 1,3, Alain Connes 2,3,4 and Walter D van Suijlekom 5 1 Physics Department, American University of Beirut, Lebanon 2 College de France,

More information

Noncommutative geometry and the spectral model of space-time

Noncommutative geometry and the spectral model of space-time Séminaire Poincaré X (2007) 79 202 Séminaire Poincaré Noncommutative geometry and the spectral model of space-time Alain Connes IHÉS 35, route de Chartres 9440 Bures-sur-Yvette - France Abstract. This

More information

Scale Invariance in the Spectral Action

Scale Invariance in the Spectral Action Scale Invariance in the Spectral Action Ali H. Chamseddine 1, Alain Connes 2,3,4 1 Center for Advanced Mathematical Sciences and Physics Department, American University of Beirut, Lebanon. 2 College de

More information

Connes NCG Physics and E8

Connes NCG Physics and E8 Connes NCG Physics and E8 Frank Dodd (Tony) Smith, Jr. - vixra 1511.0098 Connes has constructed a realistic physics model in 4-dim spacetime based on NonCommutative Geometry (NCG) of M x F where M = 4-dim

More information

arxiv:hep-th/ v1 3 Jun 1996

arxiv:hep-th/ v1 3 Jun 1996 The Spectral Action Principle arxiv:hep-th/9606001v1 3 Jun 1996 Ali H. Chamseddine 1,2 and Alain Connes 2 1. Theoretische Physik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland 2. I.H.E.S., F-91440 Bures-sur-Yvette,

More information

Noncommutative geometry, Grand Symmetry and twisted spectral triple

Noncommutative geometry, Grand Symmetry and twisted spectral triple Journal of Physics: Conference Series PAPER OPEN ACCESS Noncommutative geometry, Grand Symmetry and twisted spectral triple To cite this article: Agostino Devastato 2015 J. Phys.: Conf. Ser. 634 012008

More information

Rethinking Gauge Theory through Connes Noncommutative Geometry

Rethinking Gauge Theory through Connes Noncommutative Geometry Rethinking Gauge Theory through Connes Noncommutative Geometry Chen Sun Virginia Tech October 24, 2015 Chen Sun @ Duke Gauge Theory through NCG October 24, 2015 1 / 44 Work with Ufuk Aydemir, Djordje Minic,

More information

Cosmology and the Poisson summation formula

Cosmology and the Poisson summation formula Adem Lectures, Mexico City, January 2011 This talk is based on: MPT M. Marcolli, E. Pierpaoli, K. Teh, The spectral action and cosmic topology, arxiv:1005.2256 (to appear in CMP) MPT2 M. Marcolli, E. Pierpaoli,

More information

NONCOMMUTATIVE GEOMETRY IN THE LHC-ERA

NONCOMMUTATIVE GEOMETRY IN THE LHC-ERA NONCOMMUTATIVE GEOMETRY IN THE LHC-ERA C.A. STEPHAN Institut für Mathematik, Universität Potsdam, Am Neuen Palais 0, 4469 Potsdam, Germany Noncommutative geometry allows to unify the basic building blocks

More information

Duality between shapes and spectra The music of shapes

Duality between shapes and spectra The music of shapes Duality between shapes and spectra The music of shapes A. Connes How to specify our location in space. Vibrations of shapes. Hearing simple shapes. Isospectral shapes and CKM invariant. Towards a musical

More information

Spectral Action from Anomalies

Spectral Action from Anomalies Spectral Action from Anomalies Fedele Lizzi Università di Napoli Federico II and Insitut de Ciencies del Cosmo, Universitat de Barcelona Work in collaboration with A.A. Andrianov & M. Kurkov (St. Petersburg)

More information

The Standard Model in Noncommutative Geometry: fermions as internal Dirac spinors

The Standard Model in Noncommutative Geometry: fermions as internal Dirac spinors 1/21 The Standard Model in Noncommutative Geometry: fermions as internal Dirac spinors Ludwik Dabrowski SISSA, Trieste (I) (based on JNCG in print with F. D Andrea) Corfu, 22 September 2015 Goal Establish

More information

Quantum Fields in Curved Spacetime

Quantum Fields in Curved Spacetime Quantum Fields in Curved Spacetime Lecture 3 Finn Larsen Michigan Center for Theoretical Physics Yerevan, August 22, 2016. Recap AdS 3 is an instructive application of quantum fields in curved space. The

More information

Lectures on Standard Model Effective Field Theory

Lectures on Standard Model Effective Field Theory Lectures on Standard Model Effective Field Theory Yi Liao Nankai Univ SYS Univ, July 24-28, 2017 Page 1 Outline 1 Lecture 4: Standard Model EFT: Dimension-six Operators SYS Univ, July 24-28, 2017 Page

More information

The spectral action for Dirac operators with torsion

The spectral action for Dirac operators with torsion The spectral action for Dirac operators with torsion Christoph A. Stephan joint work with Florian Hanisch & Frank Pfäffle Institut für athematik Universität Potsdam Tours, ai 2011 1 Torsion Geometry, Einstein-Cartan-Theory

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information

Noncommutative Geometry in Physics

Noncommutative Geometry in Physics Noncommutative Geometry in Physics Ali H Chamseddine American University of Beirut (AUB) & Instiut des Hautes Etudes Scientifique (IHES) Frontiers of Fundamental Physics FFP14, Math Phys July 16, 2014

More information

Regularization Physics 230A, Spring 2007, Hitoshi Murayama

Regularization Physics 230A, Spring 2007, Hitoshi Murayama Regularization Physics 3A, Spring 7, Hitoshi Murayama Introduction In quantum field theories, we encounter many apparent divergences. Of course all physical quantities are finite, and therefore divergences

More information

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books Burgess-Moore, Chapter Weiberg, Chapter 5 Donoghue, Golowich, Holstein Chapter 1, 1 Free field Lagrangians

More information

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov Gauge coupling unification without leptoquarks Mikhail Shaposhnikov March 9, 2017 Work with Georgios Karananas, 1703.02964 Heidelberg, March 9, 2017 p. 1 Outline Motivation Gauge coupling unification without

More information

Lecture 9: RR-sector and D-branes

Lecture 9: RR-sector and D-branes Lecture 9: RR-sector and D-branes José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 6, 2013 José D. Edelstein (USC) Lecture 9: RR-sector and D-branes 6-mar-2013

More information

Summary. Talk based on: Keywords Standard Model, Morita equivalence, spectral triples. Summary of the talk: 1 Spectral action / Spectral triples.

Summary. Talk based on: Keywords Standard Model, Morita equivalence, spectral triples. Summary of the talk: 1 Spectral action / Spectral triples. Summary The Standard Model in Noncommutative Geometry and Morita equivalence Francesco D Andrea 27/02/2017 Talk based on: FD & L. Dabrowski, J. Noncommut. Geom. 10 (2016) 551 578. L. Dabrowski, FD & A.

More information

Particle Physics I Lecture Exam Question Sheet

Particle Physics I Lecture Exam Question Sheet Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?

More information

Physics 215B QFT Winter 2018 Assignment 9

Physics 215B QFT Winter 2018 Assignment 9 University of California at San Diego Department of Physics Prof. John McGreevy Physics 215B QFT Winter 2018 Assignment 9 Due 12:30pm Wednesday, March 21, 2018 1. Emergence of the Dirac equation. Consider

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In the h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass

More information

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included Pati-Salam, 73; Georgi-Glashow, 74 Grand Unification Strong, weak, electromagnetic unified at Q M X M Z Simple group G M X SU(3) SU() U(1) Gravity not included (perhaps not ambitious enough) α(q ) α 3

More information

Noncommutative geometry and cosmology

Noncommutative geometry and cosmology Beijing, August 2013 This talk is based on: MPT M. Marcolli, E. Pierpaoli, K. Teh, The spectral action and cosmic topology, arxiv:1005.2256, CMP 304 (2011) 125-174 MPT2 M. Marcolli, E. Pierpaoli, K. Teh,

More information

Problems for SM/Higgs (I)

Problems for SM/Higgs (I) Problems for SM/Higgs (I) 1 Draw all possible Feynman diagrams (at the lowest level in perturbation theory) for the processes e + e µ + µ, ν e ν e, γγ, ZZ, W + W. Likewise, draw all possible Feynman diagrams

More information

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Chern-Simons Theory and Its Applications The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Maxwell Theory Maxwell Theory: Gauge Transformation and Invariance Gauss Law Charge Degrees of

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

The Music of Shapes. Alain Connes. and Viatcheslav Mukhanov. Pisa, September 2014

The Music of Shapes. Alain Connes. and Viatcheslav Mukhanov. Pisa, September 2014 The Music of Shapes Alain Connes Joint work with Ali Chamseddine and Viatcheslav Mukhanov Pisa, September 2014 1 Our goal is to understand the very elaborate Lagrangian given by gravity coupled with the

More information

The Spectral Model. A. Connes Leiden, October 2013

The Spectral Model. A. Connes Leiden, October 2013 The Spectral Model Joint work with Ali Chamseddine A. Connes Leiden, October 2013 1 Space-Time Our knowledge of spacetime is described by two existing theories : General Relativity The Standard Model of

More information

The Standard Model in Noncommutative Geometry and Morita equivalence

The Standard Model in Noncommutative Geometry and Morita equivalence The Standard Model in Noncommutative Geometry and Morita equivalence Francesco D Andrea e + u u W + ν g d Geometry, Symmetry and Quantum Field Theory Vietri, 30-31 March 2015 The spectral action approach

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass rather

More information

Triplet Higgs Scenarios

Triplet Higgs Scenarios Triplet Higgs Scenarios Jack Gunion U.C. Davis Grenoble Higgs Workshop, March 2, 203 Higgs-like LHC Signal Fits with MVA CMS suggest we are heading towards the SM, but it could simply be a decoupling limit

More information

The Standard model Higgs boson as the inflaton

The Standard model Higgs boson as the inflaton The Standard model Higgs boson as the inflaton F. Bezrukov M. Shaposhnikov EPFL, Lausanne, Suisse Institute for Nuclear Research, Moscow, Russia PONT d Avignon 08 23 May 2008 Phys. Lett. B 659, 703 (2008)

More information

Theory of Elementary Particles homework VIII (June 04)

Theory of Elementary Particles homework VIII (June 04) Theory of Elementary Particles homework VIII June 4) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report like II-1, II-3, IV- ).

More information

Physics 582, Problem Set 1 Solutions

Physics 582, Problem Set 1 Solutions Physics 582, Problem Set 1 Solutions TAs: Hart Goldman and Ramanjit Sohal Fall 2018 1. THE DIRAC EQUATION [20 PTS] Consider a four-component fermion Ψ(x) in 3+1D, L[ Ψ, Ψ] = Ψ(i/ m)ψ, (1.1) where we use

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 998971 Allowed tools: mathematical tables 1. Spin zero. Consider a real, scalar field

More information

Potential Discoveries at the Large Hadron Collider. Chris Quigg

Potential Discoveries at the Large Hadron Collider. Chris Quigg Potential Discoveries at the Large Hadron Collider Chris Quigg Fermilab quigg@fnal.gov XXIII Taiwan Spring School Tainan 31 March - 3 April 2010 Electroweak theory successes Theoretical Physics Department,

More information

PHY 396 K. Solutions for problem set #6. Problem 1(a): Starting with eq. (3) proved in class and applying the Leibniz rule, we obtain

PHY 396 K. Solutions for problem set #6. Problem 1(a): Starting with eq. (3) proved in class and applying the Leibniz rule, we obtain PHY 396 K. Solutions for problem set #6. Problem 1(a): Starting with eq. (3) proved in class and applying the Leibniz rule, we obtain γ κ γ λ, S µν] = γ κ γ λ, S µν] + γ κ, S µν] γ λ = γ κ( ig λµ γ ν ig

More information

RG flow of the Higgs potential. Holger Gies

RG flow of the Higgs potential. Holger Gies RG flow of the Higgs potential Holger Gies Helmholtz Institute Jena & Friedrich-Schiller-Universität Jena & C. Gneiting, R. Sondenheimer, PRD 89 (2014) 045012, [arxiv:1308.5075], & S. Rechenberger, M.M.

More information

D-term Dynamical SUSY Breaking. Nobuhito Maru (Keio University)

D-term Dynamical SUSY Breaking. Nobuhito Maru (Keio University) D-term Dynamical SUSY Breaking Nobuhito Maru (Keio University) with H. Itoyama (Osaka City University) Int. J. Mod. Phys. A27 (2012) 1250159 [arxiv: 1109.2276 [hep-ph]] 12/6/2012 SCGT2012@Nagoya University

More information

perturbativity Pankaj Sharma Based on : arxiv: st September, 2012 Higgs-electroweak precision, vacuum stability and perturbativity

perturbativity Pankaj Sharma Based on : arxiv: st September, 2012 Higgs-electroweak precision, vacuum stability and perturbativity 21st September, 2012 PLAN Type II Seesaw Particle Spectrum Vacuum Stabilty and. RG evolution of couplings Electroweak precision data (EWPD). enhancement. Conclusion. A 125 GeV Higgs has been discovered

More information

New Model of massive spin-2 particle

New Model of massive spin-2 particle New Model of massive spin-2 particle Based on Phys.Rev. D90 (2014) 043006, Y.O, S. Akagi, S. Nojiri Phys.Rev. D90 (2014) 123013, S. Akagi, Y.O, S. Nojiri Yuichi Ohara QG lab. Nagoya univ. Introduction

More information

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams III. Quantization of constrained systems and Maxwell s theory 1. The

More information

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16 As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16 Masses for Vectors: the Higgs mechanism April 6, 2012 The momentum-space propagator

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 99890701 Allowed tools: mathematical tables Some formulas can be found on p.2. 1. Concepts.

More information

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E PHY 396 L. Solutions for homework set #19. Problem 1a): Let us start with the superficial degree of divergence. Scalar QED is a purely bosonic theory where all propagators behave as 1/q at large momenta.

More information

Running quark and lepton masses

Running quark and lepton masses Running quark and lepton masses ------Tables of updated values Shun Zhou MPI für Physik, München Based on the work: Z.Z. Xing, H. Zhang & S.Z., Phys. Rev. D 77, 113016 (2008) 48 th Winter School on Theoretical

More information

Effective Field Theory

Effective Field Theory Effective Field Theory Iain Stewart MIT The 19 th Taiwan Spring School on Particles and Fields April, 2006 Physics compartmentalized Quantum Field Theory String Theory? General Relativity short distance

More information

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov Minimal Extension of the Standard Model of Particle Physics Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia 14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

More information

Noncommutative Geometry for Quantum Spacetime

Noncommutative Geometry for Quantum Spacetime Noncommutative Geometry for Quantum Spacetime The view from below Fedele Lizzi Università di Napoli Federico II Institut de Ciencies del Cosmo, Barcelona SIGrav, Alessandria 2014 I think we would all agree

More information

arxiv:hep-th/ v3 20 Jun 2006

arxiv:hep-th/ v3 20 Jun 2006 INNER FLUCTUTIONS OF THE SPECTRL CTION LIN CONNES ND LI H. CHMSEDDINE arxiv:hep-th/65 v3 2 Jun 26 bstract. We prove in the general framework of noncommutative geometry that the inner fluctuations of the

More information

HIGHER SPIN PROBLEM IN FIELD THEORY

HIGHER SPIN PROBLEM IN FIELD THEORY HIGHER SPIN PROBLEM IN FIELD THEORY I.L. Buchbinder Tomsk I.L. Buchbinder (Tomsk) HIGHER SPIN PROBLEM IN FIELD THEORY Wroclaw, April, 2011 1 / 27 Aims Brief non-expert non-technical review of some old

More information

TPP entrance examination (2012)

TPP entrance examination (2012) Entrance Examination Theoretical Particle Physics Trieste, 18 July 2012 Ì hree problems and a set of questions are given. You are required to solve either two problems or one problem and the set of questions.

More information

2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC)

2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC) 2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC) hep-th/0606045 Success of 2T-physics for particles on worldlines. Field theory version of 2T-physics. Standard Model in 4+2 dimensions.

More information

Electroweak physics and the LHC an introduction to the Standard Model

Electroweak physics and the LHC an introduction to the Standard Model Electroweak physics and the LHC an introduction to the Standard Model Paolo Gambino INFN Torino LHC School Martignano 12-18 June 2006 Outline Prologue on weak interactions Express review of gauge theories

More information

Scalar mass stability bound in a simple Yukawa-theory from renormalisation group equations

Scalar mass stability bound in a simple Yukawa-theory from renormalisation group equations Scalar mass stability bound in a simple Yuawa-theory from renormalisation group equations (arxiv:1508.06774) Antal Jaovác, István Kaposvári, András Patós Department of Atomic Physics Eötvös University,

More information

Asymptotic safety of gravity and the Higgs boson mass. Mikhail Shaposhnikov Quarks 2010, Kolomna, June 6-12, 2010

Asymptotic safety of gravity and the Higgs boson mass. Mikhail Shaposhnikov Quarks 2010, Kolomna, June 6-12, 2010 Asymptotic safety of gravity and the Higgs boson mass Mikhail Shaposhnikov Quarks 2010, Kolomna, June 6-12, 2010 Based on: C. Wetterich, M. S., Phys. Lett. B683 (2010) 196 Quarks-2010, June 8, 2010 p.

More information

RG flow of the Higgs potential. Holger Gies

RG flow of the Higgs potential. Holger Gies RG flow of the Higgs potential Holger Gies Helmholtz Institute Jena & Friedrich-Schiller-Universität Jena & C. Gneiting, R. Sondenheimer, PRD 89 (2014) 045012, [arxiv:1308.5075], & S. Rechenberger, M.M.

More information

Lagrangian. µ = 0 0 E x E y E z 1 E x 0 B z B y 2 E y B z 0 B x 3 E z B y B x 0. field tensor. ν =

Lagrangian. µ = 0 0 E x E y E z 1 E x 0 B z B y 2 E y B z 0 B x 3 E z B y B x 0. field tensor. ν = Lagrangian L = 1 4 F µνf µν j µ A µ where F µν = µ A ν ν A µ = F νµ. F µν = ν = 0 1 2 3 µ = 0 0 E x E y E z 1 E x 0 B z B y 2 E y B z 0 B x 3 E z B y B x 0 field tensor. Note that F µν = g µρ F ρσ g σν

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

φ µ = g µν φ ν. p µ = 1g 1 4 φ µg 1 4,

φ µ = g µν φ ν. p µ = 1g 1 4 φ µg 1 4, Lecture 8 supersymmetry and index theorems bosonic sigma model Let us consider a dynamical system describing a motion of a particle in a Riemannian manifold M. The motion is a map φ : R M. By choosing

More information

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model Scalar from November 24, 2014 1 2 3 4 5 What is the? Gauge theory that explains strong weak, and electromagnetic forces SU(3) C SU(2) W U(1) Y Each generation (3) has 2 quark flavors (each comes in one

More information

Instantons (Preliminary version)

Instantons (Preliminary version) Instantons (Preliminary version Zhong-Zhi Xianyu Center for High Energy Physics, Tsinghua University, Beijing, 100084 November 13, 2011 Abstract In this talk I would like to introduce some basics of instanton

More information

Magnetic Charge as a Hidden Gauge Symmetry. Abstract

Magnetic Charge as a Hidden Gauge Symmetry. Abstract Magnetic Charge as a Hidden Gauge Symmetry D. Singleton Department of Physics, University of Virginia, Charlottesville, VA 901 (January 14, 1997) Abstract A theory containing both electric and magnetic

More information

An Introduction to. Michael E. Peskin. Stanford Linear Accelerator Center. Daniel V. Schroeder. Weber State University. Advanced Book Program

An Introduction to. Michael E. Peskin. Stanford Linear Accelerator Center. Daniel V. Schroeder. Weber State University. Advanced Book Program An Introduction to Quantum Field Theory Michael E. Peskin Stanford Linear Accelerator Center Daniel V. Schroeder Weber State University 4B Advanced Book Program TT Addison-Wesley Publishing Company Reading,

More information

July 2, SISSA Entrance Examination. PhD in Theoretical Particle Physics Academic Year 2018/2019. olve two among the three problems presented.

July 2, SISSA Entrance Examination. PhD in Theoretical Particle Physics Academic Year 2018/2019. olve two among the three problems presented. July, 018 SISSA Entrance Examination PhD in Theoretical Particle Physics Academic Year 018/019 S olve two among the three problems presented. Problem I Consider a theory described by the Lagrangian density

More information

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B Neutrino Masses & Flavor Mixing Zhi-zhong Xing 邢志忠 (IHEP, Beijing) @Schladming Winter School 2010, Styria, Austria Lecture B Lepton Flavors & Nobel Prize 2 1975 1936 = 1936 1897 = 39 Positron: Predicted

More information

Asymptotically free nonabelian Higgs models. Holger Gies

Asymptotically free nonabelian Higgs models. Holger Gies Asymptotically free nonabelian Higgs models Holger Gies Friedrich-Schiller-Universität Jena & Helmholtz-Institut Jena & Luca Zambelli, PRD 92, 025016 (2015) [arxiv:1502.05907], arxiv:16xx.yyyyy Prologue:

More information

Pati-Salam unification from noncommutative geometry and the TeV-scale WR boson

Pati-Salam unification from noncommutative geometry and the TeV-scale WR boson Pati-Salam unification from noncommutative geometry and the TeV-scale WR boson Ufuk Aydemir Department of Physics and Astronomy, Uppsala University Collaborators: Djordje Minic, Tatsu Takeuchi, Chen Sun

More information

An extended standard model and its Higgs geometry from the matrix model

An extended standard model and its Higgs geometry from the matrix model An extended standard model and its Higgs geometry from the matrix model Jochen Zahn Universität Wien based on arxiv:1401.2020 joint work with Harold Steinacker Bayrischzell, May 2014 Motivation The IKKT

More information

RG flow of the Higgs potential. Holger Gies

RG flow of the Higgs potential. Holger Gies RG flow of the Higgs potential Holger Gies Helmholtz Institute Jena & TPI, Friedrich-Schiller-Universität Jena & C. Gneiting, R. Sondenheimer, PRD 89 (2014) 045012, [arxiv:1308.5075], & S. Rechenberger,

More information

The Phase Diagram of the BMN Matrix Model

The Phase Diagram of the BMN Matrix Model Denjoe O Connor School of Theoretical Physics Dublin Institute for Advanced Studies Dublin, Ireland Workshop on Testing Fundamental Physics Principles Corfu2017, 22-28th September 2017 Background: V. Filev

More information

Lecture 8: 1-loop closed string vacuum amplitude

Lecture 8: 1-loop closed string vacuum amplitude Lecture 8: 1-loop closed string vacuum amplitude José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 5, 2013 José D. Edelstein (USC) Lecture 8: 1-loop vacuum

More information

Asymptotic Safety in the ADM formalism of gravity

Asymptotic Safety in the ADM formalism of gravity Asymptotic Safety in the ADM formalism of gravity Frank Saueressig Research Institute for Mathematics, Astrophysics and Particle Physics Radboud University Nijmegen J. Biemans, A. Platania and F. Saueressig,

More information

Finite-temperature Field Theory

Finite-temperature Field Theory Finite-temperature Field Theory Aleksi Vuorinen CERN Initial Conditions in Heavy Ion Collisions Goa, India, September 2008 Outline Further tools for equilibrium thermodynamics Gauge symmetry Faddeev-Popov

More information

Higher dimensional operators. in supersymmetry

Higher dimensional operators. in supersymmetry I. Antoniadis CERN Higher dimensional operators in supersymmetry with E. Dudas, D. Ghilencea, P. Tziveloglou Planck 2008, Barcelona Outline Effective operators from new physics integrating out heavy states

More information

Reφ = 1 2. h ff λ. = λ f

Reφ = 1 2. h ff λ. = λ f I. THE FINE-TUNING PROBLEM A. Quadratic divergence We illustrate the problem of the quadratic divergence in the Higgs sector of the SM through an explicit calculation. The example studied is that of the

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

Two Fundamental Principles of Nature s Interactions

Two Fundamental Principles of Nature s Interactions Two Fundamental Principles of Nature s Interactions Tian Ma, Shouhong Wang Supported in part by NSF, ONR and Chinese NSF http://www.indiana.edu/ fluid I. Gravity and Principle of Interaction Dynamics PID)

More information

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises SM, EWSB & Higgs MITP Summer School 017 Joint Challenges for Cosmology and Colliders Homework & Exercises Ch!"ophe Grojean Ch!"ophe Grojean DESY (Hamburg) Humboldt University (Berlin) ( christophe.grojean@desy.de

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Monday 7 June, 004 1.30 to 4.30 PAPER 48 THE STANDARD MODEL Attempt THREE questions. There are four questions in total. The questions carry equal weight. You may not start

More information

Solar and atmospheric neutrino mass splitting with SMASH model

Solar and atmospheric neutrino mass splitting with SMASH model Solar and atmospheric neutrino mass splitting with SMASH model C.R. Das 1, Katri Huitu, Timo Kärkkäinen 3 1 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Joliot-Curie

More information