Controlling fluctuations

Size: px
Start display at page:

Download "Controlling fluctuations"

Transcription

1 Controlling fluctuations Michele Parrinello Department of Chemistry and Applied Biosciences ETH Zurich and ICS, Università della Svizzera Italiana, Lugano, Switzerland

2 Today s menu Introduction Fluctuations and rare events Enhancing fluctuation via metadynamics Enhancing fluctuations with VES Entropy as a collective variable Crystallisation Calculating rates Coarse graining with VES

3 An analogical model for a complex energy landscape

4 Ancient wisdom Isaiah 40:4 Every valley shall be raised up, every mountain and hill made low; the rough ground shall become level, the rugged places a plain. Switzerland Tuscany

5 Fluctuations and rare events A B F (s) F P (s) s s k / e F F (s) = 1 logp(s)

6 Umbrella sampling Given a set of collective variables s=s(r) and their associated free energy F (s) = 1 log Z dr (s s(r))e U(R) U(R) U(R)+V (s(r)) ho(r)i = ho(r)e V (s(r)) i V he V (s(r)) i V Torrie and Valleau, J. Comp. Phys. (1977)

7 Which bias? Best choice? V (s) = F (s) Choose V (s) = (1 1 )F (s) then P V (s) / (P (s)) 1 P (s) p(s) / [P (s)] 1/

8 Constructing the bias Molecular Dynamics Metadynamics A B t4 Free Energy ΔG*>>kT CV Free Energy Laio and Parrinello PNAS (2002) Barducci, Bussi and Parrinello PRL (2008) t2 t1 A = bias potential CV B t3 P (s)! P (s) 1 R dsp (s) 1

9 The miracle of metadynamics One can build a stochastic iterative described rigorously by the Ordinary Differential Equation: where dv (s, t) dt = Z ds 0 G(s s 0 )e V (s 0 ) 1 PV (s 0,t) P V (s, t) = e (F (s)+v (s,t)) R dse (F (s)+v (s,t)) and P V (s, t!1) / P (s) 1 Laio and Parrinello PNAS (2002) Barducci, Bussi and Parrinello PRL (2008) Dama, Parrinello and Voth PRL 2014

10 Some benefits A position dependent free energy estimator Easy reweighing Tiwary and Parrinello JPC B 2014 Y. Kevrikidis, W. van Gunsteren

11 Constructing a thermodynamics functional H = E + pv E! F = F V F F V = F = 1 Z log 1 Z log dse dse Reversible work (F (s)+v (s)) F (s) pv! Z dsp(s)v (s) p(s) = F V (s) = e (F (s)+v (s)) R dse (F (s)+v (s))

12 Valsson and Parrinello, PRL (2015) A variational approach This leads to the convex functional p(s) = arbitrary normalized target distribution The functional is convex and at the minimum p(s) = e (F (s)+v (s)) R dse (F (s)+v (s)) or F (s) = V (s) 1 log p(s)

13 Optimizing the functions The force that drives the system to the minimum is:!ω!!" =!V!!"! +!V!!"! One possible choice is to expand in a convenient basis set Find the minimum V (s; ) = X i i f i (s) The free energy surfaces tend to be smooth and the expansion converges rapidly

14 A stochastic optimization Naive (t + t) = (t) (t) (t) Bach and Moulines 2013 Expand the force to linear terms around the average value (t) = 1 t Z t 0 dt 0 (t 0 ) (t + t) = (t) t ( (t) ( (t)@ (t) ( (t) (t))

15 The role of p(s) At the minimum the biased system will sample the distribution p(s) P V (s) = e (F (s)+v (s)) R e (F (s)+v (s)) ds = p(s) The freedom of selecting p(s) gives a lot of flexibility It can tailor sampling to our needs It is a natural way of introducing restrains on CVs Its choice is essential for a successful sampling

16 Two examples of p(s) Metadynamics!! =!"#$%!! =!! Well Tempered Metadynamics!! =!!!!!!!"!!!!!!!! = 1 1!!!

17 Using p(s) to accelerate convergency Alanine tetrapeptide (Ala3) in vacuum 1, 2, 3 as CVs FES convergence 8 4 UNIFORM p(s) WELL TEMPERED p(s) 0 0 ns 10 ns 20 ns 30 ns 40 ns 50 ns One can easily converge biases with ~10000 parameters!

18 What are collective variables? The notion of collective variables means different things to different people: Slow variables. Reaction paths. Order parameters. Coarse grained variables etc.. To us, in this talk, they will be a set of variables s = s(r) whose fluctuations we want to enhance

19 The CVs that I like Simple Transparent Lead to understanding and not only to a calculation They have a clear physical meaning They can be measured

20 Chemical potential Phase transitions Chemical equilibrium Electrochemistry µ T,V µ ' F (N +1,V,T) F (N,V,T)

21 Chemical potential The chemical potential is the difference in free energy between a N+1 and an N particle systems. is the energy of adding a particle at R* In Widom s method particles are added at random positions. {Easy for the reds difficult for the blues} W. Kob and H. C. Andersen Phys. Rev. Lett. (1994)

22 A collective variable In a homogeneous fluid is position independent thus: This suggests the collective variable In terms of s the chemical potential becomes:

23 The role of fluctuations Z µ ex = 1 log e s p(s)ds e s p(s) p(s) e s p(s) p(s)

24 Calculating µ ex With the standard method the convergence is slow or impossible!

25 Crystallisation In a first order phase transition there is an interplay between entropy and enthalpy Enthalpy is easy H = E + PV But entropy? Use the expansion in terms of multi particle correlation function Z 1 S 2 = 2 k B [g(r) log g(r) 0 S ex = 1X n=2 The first term depends on the pair correlation function and gives 95% of a liquid entropy S n g(r) + 1]r 2 dr

26 Sodium vs. Aluminum Na! BCC Al! FCC Liquid FCC BCC HCP

27 There is much more to it The variational approach is more than an efficient sampling method! By choosing appropriately the variational function new types of simulations can be performed. We shall show some examples: Kinetics from biased simulation Bespoke bias for nucleation Bespoke bias for free energy differences Very high dimensional biases

28 Rates for rare events!!!!!!"!!! Without bias!!!!!!"!!! With bias H. Grubmüller PRE 1995 A.Voter JCP 1997 P. Tiwary and M.P. PRL 2013 Acceleration factor of rates!!!!!! =!!!! =!!!!

29 Building a bias for kinetics Write the variational bias as V (s) =v(s) S( v(s) F c ) 1 S(x) switching function 0 0 optimize V(s) using the target distribution p(s) = S(F (s) F c ) R ds S(F (s) F c ) F (s) v(s) (iteratively updated) J. McCarthy, O. Valsson, and M.P. PRL 2015

30 * Zhang and Brüschweiler, JACS 2002 Entropy for proteins Using NMR relaxation methods the square of the generalised order parameter S 2 of the NH group can be measured. A similar order parameter can be associated to the methyl axis. S 2 measures the degree of spacial restriction of the motion. (Lipari and Szabo, JACS 1982). S 2 has been empirically related to conformational entropy. S 2 = X n S 2 n S 2 n tanh ( X k (e ro n 1,k + e r NH n 1,k ) 0.1

31 Unfolding times for chignoline D. E. Shaw el al., Science 2011

32 Discovering cryptic binding sites Human Interlukin-2

33 Ginzburg-Landau theory: a primer F = g(t ) Close to a second order described by an order parameter ψ the free energy is written a a functional of ψ Z (~r )r 2 (~r ) d~r + a(t ) Z (~r ) 2 d~r + b(t ) Z (~r ) 4 d~r g(t ) const a(t )=a c (T T c ) b(t ) const F(T, ) F(T, ) F(T, ) T>T c T=T c T<T c

34 Ginzburg-Landau theory as a coarse grained model In Ginzburg-Landau theory is is implicit a coarse graining procedure in which only the long wavelength fluctuations are considered. The rational is that close to a second order phase transition the properties of the systems are dominated by long wavelengths fluctuations. The short range fluctuations are integrated out and their effect is lumped into the parameters g(t), a(t), and b(t). (~r )= X c( ~ k)e i~ k.~r ~ k apple 2 = coarse graining length

35 From atoms to fields We will use Variational Enhanced Sampling to compute g(t), a(t), and b(t) At equilibrium F (s) = V (s) 1 log p(s) We take Simplifying the notation we write F = g(t ) Z s = (~r ) (~r )r 2 (~r ) d~r + a(t ) Z (~r ) 2 d~r + b(t ) Z (~r ) 4 d~r F = g(t )I 1 ( (~r )) + a(t )I 2 ( (~r )) + b(t )I 4 ( (~r ))

36 The variational expression F = g(t )I 1 ( (~r )) + a(t )I 2 ( (~r )) + b(t )I 4 ( (~r )) F (s) = V (s) 1 log p(s) s = (~r ) We take : V ( (~r )) = g v I 1 ( (~r )) + a v I 2 ( (~r )) + b v I 2 ( (~r )) 1 log p( (~r )) = g0 I 1 ( (~r )) + a 0 I 2 ( (~r )) At the minimum F( (~r )) (g 0 g v )I 1 ( (~r )) + (a 0 a v )I 2 ( (~r )) b v I 2 ( (~r ))

37 The role of p(s) F(T, ) F(T, ) F(T, ) T>T c Helps getting a better estimate of the quartic term coefficient b T=T c T<T c Helps reducing pbc and symmetry breaking effects.

38 The Lennard Jones case As predicted by Landau a depends linearly and rather markedly on T. T c 6= T c a(t )=a c (T T c ) but due to finite size effects T c 6= T c However all values of a can be collapsed into a single line if T is properly scaled.

39 How good is the Ginzburg-Landau Hamiltonian? Z = Z e F[ ] Binder Cumulant N=128 N=512 N=2048 N=8192 U(T )=1 I 4 3I 2 2 Use Binder cumulant to eliminate finite size effects Tc is correctly predicted! Temperature T/T c

40 Temperature Ginzburg-Landau theory in action Z = Z e F[ ] gas supercritical fluid liquid solid 0.6 non homogeneous Density T>T c T = T c T<T c

41 Acknowledgements OMAR VALSSON

42 Acknowledgements Pratyush Tiwari

43 Acknowledgements Jay MaCarty

44 Acknowledgements Ferruccio Palazzesi

45 Acknowledgements Claudio Perego

46 Acknowledgements Pablo Piaggi

47 Acknowledgements Michele Invernizzi

48 The end Thank you for your attention

Making the best of a bad situation: a multiscale approach to free energy calculation

Making the best of a bad situation: a multiscale approach to free energy calculation Making the best of a bad situation: arxiv:1901.04455v2 [physics.comp-ph] 15 Jan 2019 a multiscale approach to free energy calculation Michele Invernizzi,, and Michele Parrinello, Department of Physics,

More information

Enhanced sampling of transition states

Enhanced sampling of transition states Enhanced sampling of transition states arxiv:1812.09032v1 [physics.chem-ph] 21 Dec 2018 Jayashrita Debnath,, Michele Invernizzi,, and Michele Parrinello,,, Department of Chemistry and Applied Biosciences,

More information

Performing Metadynamics Simulations Using NAMD

Performing Metadynamics Simulations Using NAMD Performing Metadynamics Simulations Using NAMD Author: Zhaleh Ghaemi Contents 1 Introduction 2 1.1 Goals of this tutorial.......................... 2 2 Standard metadynamics simulations 3 2.1 Free energy

More information

Computing free energies with PLUMED 2.0

Computing free energies with PLUMED 2.0 Computing free energies with PLUMED 2.0 Davide Branduardi Formerly at MPI Biophysics, Frankfurt a.m. TyOutline of the talk Relevance of free energy computation Free-energy from histograms: issues Tackling

More information

Free energy calculations and the potential of mean force

Free energy calculations and the potential of mean force Free energy calculations and the potential of mean force IMA Workshop on Classical and Quantum Approaches in Molecular Modeling Mark Tuckerman Dept. of Chemistry and Courant Institute of Mathematical Science

More information

Density Functional Theory: from theory to Applications

Density Functional Theory: from theory to Applications Density Functional Theory: from theory to Applications Uni Mainz May 27, 2012 Large barrier-activated processes time-dependent bias potential extended Lagrangian formalism Basic idea: during the MD dynamics

More information

Computing free energy: Thermodynamic perturbation and beyond

Computing free energy: Thermodynamic perturbation and beyond Computing free energy: Thermodynamic perturbation and beyond Extending the scale Length (m) 1 10 3 Potential Energy Surface: {Ri} 10 6 (3N+1) dimensional 10 9 E Thermodynamics: p, T, V, N continuum ls

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

Metadynamics. Day 2, Lecture 3 James Dama

Metadynamics. Day 2, Lecture 3 James Dama Metadynamics Day 2, Lecture 3 James Dama Metadynamics The bare bones of metadynamics Bias away from previously visited configuraaons In a reduced space of collecave variables At a sequenaally decreasing

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

Sampling the free energy surfaces of collective variables

Sampling the free energy surfaces of collective variables Sampling the free energy surfaces of collective variables Jérôme Hénin Enhanced Sampling and Free-Energy Calculations Urbana, 12 September 2018 Please interrupt! struct bioinform phys chem theoretical

More information

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Preliminaries Learning Goals Phase Equilibria Phase diagrams and classical thermodynamics

More information

Exploring the Free Energy Surface of Short Peptides by Using Metadynamics

Exploring the Free Energy Surface of Short Peptides by Using Metadynamics John von Neumann Institute for Computing Exploring the Free Energy Surface of Short Peptides by Using Metadynamics C. Camilloni, A. De Simone published in From Computational Biophysics to Systems Biology

More information

Aspects of nonautonomous molecular dynamics

Aspects of nonautonomous molecular dynamics Aspects of nonautonomous molecular dynamics IMA, University of Minnesota, Minneapolis January 28, 2007 Michel Cuendet Swiss Institute of Bioinformatics, Lausanne, Switzerland Introduction to the Jarzynski

More information

Field Method of Simulation of Phase Transformations in Materials. Alex Umantsev Fayetteville State University, Fayetteville, NC

Field Method of Simulation of Phase Transformations in Materials. Alex Umantsev Fayetteville State University, Fayetteville, NC Field Method of Simulation of Phase Transformations in Materials Alex Umantsev Fayetteville State University, Fayetteville, NC What do we need to account for? Multi-phase states: thermodynamic systems

More information

What is Classical Molecular Dynamics?

What is Classical Molecular Dynamics? What is Classical Molecular Dynamics? Simulation of explicit particles (atoms, ions,... ) Particles interact via relatively simple analytical potential functions Newton s equations of motion are integrated

More information

Ab initio molecular dynamics. Simone Piccinin CNR-IOM DEMOCRITOS Trieste, Italy. Bangalore, 04 September 2014

Ab initio molecular dynamics. Simone Piccinin CNR-IOM DEMOCRITOS Trieste, Italy. Bangalore, 04 September 2014 Ab initio molecular dynamics Simone Piccinin CNR-IOM DEMOCRITOS Trieste, Italy Bangalore, 04 September 2014 What is MD? 1) Liquid 4) Dye/TiO2/electrolyte 2) Liquids 3) Solvated protein 5) Solid to liquid

More information

Computational Chemistry - MD Simulations

Computational Chemistry - MD Simulations Computational Chemistry - MD Simulations P. Ojeda-May pedro.ojeda-may@umu.se Department of Chemistry/HPC2N, Umeå University, 901 87, Sweden. May 2, 2017 Table of contents 1 Basics on MD simulations Accelerated

More information

Gibb s free energy change with temperature in a single component system

Gibb s free energy change with temperature in a single component system Gibb s free energy change with temperature in a single component system An isolated system always tries to maximize the entropy. That means the system is stable when it has maximum possible entropy. Instead

More information

Rustam Z. Khaliullin University of Zürich

Rustam Z. Khaliullin University of Zürich Rustam Z. Khaliullin University of Zürich Molecular dynamics (MD) MD is a computational method for simulating time evolution of a collection of interacting atoms by numerically integrating Newton s equation

More information

Physics 212: Statistical mechanics II Lecture XI

Physics 212: Statistical mechanics II Lecture XI Physics 212: Statistical mechanics II Lecture XI The main result of the last lecture was a calculation of the averaged magnetization in mean-field theory in Fourier space when the spin at the origin is

More information

Focus on PNA Flexibility and RNA Binding using Molecular Dynamics and Metadynamics

Focus on PNA Flexibility and RNA Binding using Molecular Dynamics and Metadynamics SUPPLEMENTARY INFORMATION Focus on PNA Flexibility and RNA Binding using Molecular Dynamics and Metadynamics Massimiliano Donato Verona 1, Vincenzo Verdolino 2,3,*, Ferruccio Palazzesi 2,3, and Roberto

More information

5th CCPN Matt Crump. Thermodynamic quantities derived from protein dynamics

5th CCPN Matt Crump. Thermodynamic quantities derived from protein dynamics 5th CCPN 2005 -Matt Crump Thermodynamic quantities derived from protein dynamics Relaxation in Liquids (briefly!) The fluctuations of each bond vector can be described in terms of an angular correlation

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems Dr. Guillaume Ducard Fall 2017 Institute for Dynamic Systems and Control ETH Zurich, Switzerland G. Ducard c 1 / 34 Outline 1 Lecture 7: Recall on Thermodynamics

More information

METAGUI A VMD EXTENSION TO ANALYZE AND VISUALIZE METADYNAMICS SIMULATIONS

METAGUI A VMD EXTENSION TO ANALYZE AND VISUALIZE METADYNAMICS SIMULATIONS METAGUI A VMD EXTENSION TO ANALYZE AND VISUALIZE METADYNAMICS SIMULATIONS Alessandro Laio SISSA & DEMOCRITOS, Trieste Coworkers: Xevi Biarnes Fabio Pietrucci Fabrizio Marinelli Metadynamics (Laio A. and

More information

Overview of phase transition and critical phenomena

Overview of phase transition and critical phenomena Overview of phase transition and critical phenomena Aims: Phase transitions are defined, and the concepts of order parameter and spontaneously broken symmetry are discussed. Simple models for magnetic

More information

Crossing the barriers - simulations of activated processes

Crossing the barriers - simulations of activated processes Crossing the barriers - simulations of activated processes Mgr. Ján Hreha for 6 th Student Colloquium and School on Mathematical Physics Faculty of Mathematics, Physics and Informatics Comenius University

More information

Relationships between WORK, HEAT, and ENERGY. Consider a force, F, acting on a block sliding on a frictionless surface. x 2

Relationships between WORK, HEAT, and ENERGY. Consider a force, F, acting on a block sliding on a frictionless surface. x 2 Relationships between WORK, HEAT, and ENERGY Consider a force, F, acting on a block sliding on a frictionless surface x x M F x Frictionless surface M dv v dt M dv dt v F F F ; v mass velocity in x direction

More information

A Nobel Prize for Molecular Dynamics and QM/MM What is Classical Molecular Dynamics? Simulation of explicit particles (atoms, ions,... ) Particles interact via relatively simple analytical potential

More information

PHYSICS 715 COURSE NOTES WEEK 1

PHYSICS 715 COURSE NOTES WEEK 1 PHYSICS 715 COURSE NOTES WEEK 1 1 Thermodynamics 1.1 Introduction When we start to study physics, we learn about particle motion. First one particle, then two. It is dismaying to learn that the motion

More information

Chapter 6 Thermodynamic Properties of Fluids

Chapter 6 Thermodynamic Properties of Fluids Chapter 6 Thermodynamic Properties of Fluids Initial purpose in this chapter is to develop from the first and second laws the fundamental property relations which underlie the mathematical structure of

More information

Metadynamics with adaptive Gaussians

Metadynamics with adaptive Gaussians Metadynamics with adaptive Gaussians Davide Branduardi Theoretical Molecular Biophysics Group, Max Planck Institute for Biophysics, Max-von-Laue strasse 5, 60438, Frankfurt am Main, Germany Giovanni Bussi

More information

The PLUMED plugin and free energy methods in electronic-structure-based molecular dynamics

The PLUMED plugin and free energy methods in electronic-structure-based molecular dynamics The PLUMED plugin and free energy methods in electronic-structure-based molecular dynamics Davide Branduardi, Theoretical Molecular Biophysics Group Max Planck for Biophysics, Frankfurt am Main, Germany

More information

Multi-Ensemble Markov Models and TRAM. Fabian Paul 21-Feb-2018

Multi-Ensemble Markov Models and TRAM. Fabian Paul 21-Feb-2018 Multi-Ensemble Markov Models and TRAM Fabian Paul 21-Feb-2018 Outline Free energies Simulation types Boltzmann reweighting Umbrella sampling multi-temperature simulation accelerated MD Analysis methods

More information

ChE 524 A. Z. Panagiotopoulos 1

ChE 524 A. Z. Panagiotopoulos 1 ChE 524 A. Z. Panagiotopoulos 1 VIRIAL EXPANSIONS 1 As derived previously, at the limit of low densities, all classical fluids approach ideal-gas behavior: P = k B T (1) Consider the canonical partition

More information

Free energy calculations using molecular dynamics simulations. Anna Johansson

Free energy calculations using molecular dynamics simulations. Anna Johansson Free energy calculations using molecular dynamics simulations Anna Johansson 2007-03-13 Outline Introduction to concepts Why is free energy important? Calculating free energy using MD Thermodynamical Integration

More information

Temperature and Pressure Controls

Temperature and Pressure Controls Ensembles Temperature and Pressure Controls 1. (E, V, N) microcanonical (constant energy) 2. (T, V, N) canonical, constant volume 3. (T, P N) constant pressure 4. (T, V, µ) grand canonical #2, 3 or 4 are

More information

Relationships between WORK, HEAT, and ENERGY. Consider a force, F, acting on a block sliding on a frictionless surface

Relationships between WORK, HEAT, and ENERGY. Consider a force, F, acting on a block sliding on a frictionless surface Introduction to Thermodynamics, Lecture 3-5 Prof. G. Ciccarelli (0) Relationships between WORK, HEAT, and ENERGY Consider a force, F, acting on a block sliding on a frictionless surface x x M F x FRICTIONLESS

More information

7 To solve numerically the equation of motion, we use the velocity Verlet or leap frog algorithm. _ V i n = F i n m i (F.5) For time step, we approxim

7 To solve numerically the equation of motion, we use the velocity Verlet or leap frog algorithm. _ V i n = F i n m i (F.5) For time step, we approxim 69 Appendix F Molecular Dynamics F. Introduction In this chapter, we deal with the theories and techniques used in molecular dynamics simulation. The fundamental dynamics equations of any system is the

More information

Lectures 16: Phase Transitions

Lectures 16: Phase Transitions Lectures 16: Phase Transitions Continuous Phase transitions Aims: Mean-field theory: Order parameter. Order-disorder transitions. Examples: β-brass (CuZn), Ferromagnetic transition in zero field. Universality.

More information

Minimum Bias Events at ATLAS

Minimum Bias Events at ATLAS Camille Bélanger-Champagne McGill University Lehman College City University of New York Thermodynamics Charged Particle and Statistical Correlations Mechanics in Minimum Bias Events at ATLAS Thermodynamics

More information

Ab initio molecular dynamics

Ab initio molecular dynamics Ab initio molecular dynamics Kari Laasonen, Physical Chemistry, Aalto University, Espoo, Finland (Atte Sillanpää, Jaakko Saukkoriipi, Giorgio Lanzani, University of Oulu) Computational chemistry is a field

More information

1 Bulk Simulations in a HCP lattice

1 Bulk Simulations in a HCP lattice 1 Bulk Simulations in a HCP lattice 1.1 Introduction This project is a continuation of two previous projects that studied the mechanism of melting in a FCC and BCC lattice. The current project studies

More information

Thermodynamics of phase transitions

Thermodynamics of phase transitions Thermodynamics of phase transitions Katarzyna Sznajd-Weron Department of Theoretical of Physics Wroc law University of Science and Technology, Poland March 12, 2017 Katarzyna Sznajd-Weron (WUST) Thermodynamics

More information

Energy Barriers and Rates - Transition State Theory for Physicists

Energy Barriers and Rates - Transition State Theory for Physicists Energy Barriers and Rates - Transition State Theory for Physicists Daniel C. Elton October 12, 2013 Useful relations 1 cal = 4.184 J 1 kcal mole 1 = 0.0434 ev per particle 1 kj mole 1 = 0.0104 ev per particle

More information

Proteins are not rigid structures: Protein dynamics, conformational variability, and thermodynamic stability

Proteins are not rigid structures: Protein dynamics, conformational variability, and thermodynamic stability Proteins are not rigid structures: Protein dynamics, conformational variability, and thermodynamic stability Dr. Andrew Lee UNC School of Pharmacy (Div. Chemical Biology and Medicinal Chemistry) UNC Med

More information

Thermodynamics of phase transitions

Thermodynamics of phase transitions Thermodynamics of phase transitions Katarzyna Sznajd-Weron Institute of Physics Wroc law University of Technology, Poland 7 Oct 2013, SF-MTPT Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions

More information

From Dynamics to Thermodynamics using Molecular Simulation

From Dynamics to Thermodynamics using Molecular Simulation From Dynamics to Thermodynamics using Molecular Simulation David van der Spoel Computational Chemistry Physical models to describe molecules Software to evaluate models and do predictions - GROMACS Model

More information

arxiv: v1 [cond-mat.stat-mech] 27 Nov 2015

arxiv: v1 [cond-mat.stat-mech] 27 Nov 2015 The solid-liquid interfacial free energy out of equilibrium arxiv:1511.8668v1 [cond-mat.stat-mech] 27 Nov 215 Bingqing Cheng, 1 Gareth A. Tribello, 2 and Michele Ceriotti 1, 1 Laboratory of Computational

More information

Modeling the Free Energy Landscape for Janus Particle Self-Assembly in the Gas Phase. Andy Long Kridsanaphong Limtragool

Modeling the Free Energy Landscape for Janus Particle Self-Assembly in the Gas Phase. Andy Long Kridsanaphong Limtragool Modeling the Free Energy Landscape for Janus Particle Self-Assembly in the Gas Phase Andy Long Kridsanaphong Limtragool Motivation We want to study the spontaneous formation of micelles and vesicles Applications

More information

Current address: Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong,

Current address: Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, Hydrolysis of Cisplatin - A Metadynamics Study Supporting Information Justin Kai-Chi Lau a and Bernd Ensing* b Department of Chemistry and Applied Bioscience, ETH Zurich, USI Campus, Computational Science,

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo ensemble averaging, no dynamics easy

More information

TSTC Lectures: Theoretical & Computational Chemistry

TSTC Lectures: Theoretical & Computational Chemistry TSTC Lectures: Theoretical & Computational Chemistry Rigoberto Hernandez May 2009, Lecture #2 Statistical Mechanics: Structure S = k B log W! Boltzmann's headstone at the Vienna Zentralfriedhof.!! Photo

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Computing free energy: Replica exchange

Computing free energy: Replica exchange Computing free energy: Replica exchange Extending the scale Length (m) 1 10 3 Potential Energy Surface: {Ri} 10 6 (3N+1) dimensional 10 9 E Thermodynamics: p, T, V, N continuum ls Macroscopic i a t e regime

More information

Thermodynamic integration

Thermodynamic integration Thermodynamic integration Localizing liquid-solid phase transitions Christoph Tavan Freie Universität Berlin / Technische Universität Berlin December 7, 2009 Overview Problem Theoretical basics Thermodynamic

More information

Phase transitions and finite-size scaling

Phase transitions and finite-size scaling Phase transitions and finite-size scaling Critical slowing down and cluster methods. Theory of phase transitions/ RNG Finite-size scaling Detailed treatment: Lectures on Phase Transitions and the Renormalization

More information

Foundations of Chemical Kinetics. Lecture 12: Transition-state theory: The thermodynamic formalism

Foundations of Chemical Kinetics. Lecture 12: Transition-state theory: The thermodynamic formalism Foundations of Chemical Kinetics Lecture 12: Transition-state theory: The thermodynamic formalism Marc R. Roussel Department of Chemistry and Biochemistry Breaking it down We can break down an elementary

More information

Determining Energy Barriers and Selectivities of a Multi-Pathway System With Infrequent Metadynamics

Determining Energy Barriers and Selectivities of a Multi-Pathway System With Infrequent Metadynamics Determining Energy Barriers and Selectivities of a Multi-Pathway System With Infrequent Metadynamics Christopher D. Fu 1, Luiz F.L. Oliveira 1 and Jim Pfaendtner 1,a) 1 Department of Chemical Engineering,

More information

Exploring the energy landscape

Exploring the energy landscape Exploring the energy landscape ChE210D Today's lecture: what are general features of the potential energy surface and how can we locate and characterize minima on it Derivatives of the potential energy

More information

Advanced sampling. fluids of strongly orientation-dependent interactions (e.g., dipoles, hydrogen bonds)

Advanced sampling. fluids of strongly orientation-dependent interactions (e.g., dipoles, hydrogen bonds) Advanced sampling ChE210D Today's lecture: methods for facilitating equilibration and sampling in complex, frustrated, or slow-evolving systems Difficult-to-simulate systems Practically speaking, one is

More information

Biomolecular modeling III

Biomolecular modeling III 2016, January 5 Déjà vu Enhanced sampling Biomolecular simulation Each atom x, y, z coordinates Déjà vu Enhanced sampling Expression for energy the force field = 1 2 + N i i k i (r i r 0 i ) 2 + 1 2 N

More information

Introduction to Phase Transitions in Statistical Physics and Field Theory

Introduction to Phase Transitions in Statistical Physics and Field Theory Introduction to Phase Transitions in Statistical Physics and Field Theory Motivation Basic Concepts and Facts about Phase Transitions: Phase Transitions in Fluids and Magnets Thermodynamics and Statistical

More information

enhanced sampling methods recovering <a> Accelerated MD Introduction to Accelerated Molecular Dynamics an enhanced sampling method

enhanced sampling methods recovering <a> Accelerated MD Introduction to Accelerated Molecular Dynamics an enhanced sampling method enhanced sampling methods Introduction to Accelerated Molecular Dynamics an enhanced sampling method Yi Wang McCammon group Aug 2011, NBCR Summer Institute Umbrella sampling B. ROUX, "The calculation of

More information

An introduction to Molecular Dynamics. EMBO, June 2016

An introduction to Molecular Dynamics. EMBO, June 2016 An introduction to Molecular Dynamics EMBO, June 2016 What is MD? everything that living things do can be understood in terms of the jiggling and wiggling of atoms. The Feynman Lectures in Physics vol.

More information

Rare Event Simulations

Rare Event Simulations Rare Event Simulations Homogeneous nucleation is a rare event (e.g. Liquid Solid) Crystallization requires supercooling (µ solid < µ liquid ) Crystal nucleus 2r Free - energy gain r 3 4! 3! GBulk = ñr!

More information

Advanced Molecular Molecular Dynamics

Advanced Molecular Molecular Dynamics Advanced Molecular Molecular Dynamics Technical details May 12, 2014 Integration of harmonic oscillator r m period = 2 k k and the temperature T determine the sampling of x (here T is related with v 0

More information

Part1B(Advanced Physics) Statistical Physics

Part1B(Advanced Physics) Statistical Physics PartB(Advanced Physics) Statistical Physics Course Overview: 6 Lectures: uesday, hursday only 2 problem sheets, Lecture overheads + handouts. Lent erm (mainly): Brief review of Classical hermodynamics:

More information

Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care)

Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care) Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care) Peter Young Talk at MPIPKS, September 12, 2013 Available on the web at http://physics.ucsc.edu/~peter/talks/mpipks.pdf

More information

Reversible Processes. Furthermore, there must be no friction (i.e. mechanical energy loss) or turbulence i.e. it must be infinitely slow.

Reversible Processes. Furthermore, there must be no friction (i.e. mechanical energy loss) or turbulence i.e. it must be infinitely slow. Reversible Processes A reversible thermodynamic process is one in which the universe (i.e. the system and its surroundings) can be returned to their initial conditions. Because heat only flows spontaneously

More information

The fate of the Wigner crystal in solids part II: low dimensional materials. S. Fratini LEPES-CNRS, Grenoble. Outline

The fate of the Wigner crystal in solids part II: low dimensional materials. S. Fratini LEPES-CNRS, Grenoble. Outline The fate of the Wigner crystal in solids part II: low dimensional materials S. Fratini LEPES-CNRS, Grenoble G. Rastelli (Università dell Aquila, Italy) P. Quémerais (LEPES-CNRS Grenoble) Outline competing

More information

Making thermodynamic functions of nanosystems intensive.

Making thermodynamic functions of nanosystems intensive. Making thermodynamic functions of nanosystems intensive. A M assimi 1 and G A Parsafar Department of Chemistry and anotechnology Research Center, Sharif University of Technology, Tehran, 11365-9516, Iran.

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 21 May 2001 with E. A. Spiegel

More information

ELECTRONICS DEVICES AND MATERIALS

ELECTRONICS DEVICES AND MATERIALS 2-2-2 ELECTRONICS DEVICES AND MATERIALS Atsunori KAMEGAWA SYLLABUS! Introduction to materials structure and dielectric physics (04/27)! Ferroelectricity involved in structural phase transitions (05/25)

More information

The Direction of Spontaneous Change: Entropy and Free Energy

The Direction of Spontaneous Change: Entropy and Free Energy The Direction of Spontaneous Change: Entropy and Free Energy Reading: from Petrucci, Harwood and Herring (8th edition): Required for Part 1: Sections 20-1 through 20-4. Recommended for Part 1: Sections

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 2 Feb 2005

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 2 Feb 2005 Topological defects and bulk melting of hexagonal ice Davide Donadio, Paolo Raiteri, and Michele Parrinello Computational Science, Department of Chemistry and Applied Biosciences, ETH Zürich, USI Campus,

More information

Mathematical analysis of an Adaptive Biasing Potential method for diffusions

Mathematical analysis of an Adaptive Biasing Potential method for diffusions Mathematical analysis of an Adaptive Biasing Potential method for diffusions Charles-Edouard Bréhier Joint work with Michel Benaïm (Neuchâtel, Switzerland) CNRS & Université Lyon 1, Institut Camille Jordan

More information

theory, which can be quite useful in more complex systems.

theory, which can be quite useful in more complex systems. Physics 7653: Statistical Physics http://www.physics.cornell.edu/sethna/teaching/653/ In Class Exercises Last correction at August 30, 2018, 11:55 am c 2017, James Sethna, all rights reserved 9.5 Landau

More information

Free energy simulations

Free energy simulations Free energy simulations Marcus Elstner and Tomáš Kubař January 14, 2013 Motivation a physical quantity that is of most interest in chemistry? free energies Helmholtz F or Gibbs G holy grail of computational

More information

Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012

Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012 Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012 K. Kremer Max Planck Institute for Polymer Research, Mainz Overview Simulations, general considerations

More information

Numerical methods for the Navier- Stokes equations

Numerical methods for the Navier- Stokes equations Numerical methods for the Navier- Stokes equations Hans Petter Langtangen 1,2 1 Center for Biomedical Computing, Simula Research Laboratory 2 Department of Informatics, University of Oslo Dec 6, 2012 Note:

More information

Thermodynamic Functions at Isobaric Process of van der Waals Gases

Thermodynamic Functions at Isobaric Process of van der Waals Gases Thermodynamic Functions at Isobaric Process of van der Waals Gases Akira Matsumoto Department of Material Sciences, College of Integrated Arts Sciences, Osaka Prefecture University, Sakai, Osaka, 599-853,

More information

arxiv: v2 [physics.comp-ph] 4 Feb 2016

arxiv: v2 [physics.comp-ph] 4 Feb 2016 Sampling Free Energy Surfaces as Slices by Combining Umbrella Sampling and Metadynamics Shalini Awasthi, Venkat Kapil and Nisanth N. Nair 1 arxiv:1507.06764v2 [physics.comp-ph] 4 Feb 2016 Department of

More information

New from Ulf in Berzerkeley

New from Ulf in Berzerkeley New from Ulf in Berzerkeley from crystallization to statistics of density fluctuations Ulf Rørbæk Pedersen Department of Chemistry, University of California, Berkeley, USA Roskilde, December 16th, 21 Ulf

More information

Bacterial Outer Membrane Porins as Electrostatic Nanosieves: Exploring Transport Rules of Small Polar Molecules

Bacterial Outer Membrane Porins as Electrostatic Nanosieves: Exploring Transport Rules of Small Polar Molecules Bacterial Outer Membrane Porins as Electrostatic Nanosieves: Exploring Transport Rules of Small Polar Molecules Harsha Bajaj, Silvia Acosta Gutiérrez, Igor Bodrenko, Giuliano Malloci, Mariano Andrea Scorciapino,

More information

Title Theory of solutions in the energy r of the molecular flexibility Author(s) Matubayasi, N; Nakahara, M Citation JOURNAL OF CHEMICAL PHYSICS (2003), 9702 Issue Date 2003-11-08 URL http://hdl.handle.net/2433/50354

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 23 March 2001 with E. A. Spiegel

More information

Molecular Dynamics. A very brief introduction

Molecular Dynamics. A very brief introduction Molecular Dynamics A very brief introduction Sander Pronk Dept. of Theoretical Physics KTH Royal Institute of Technology & Science For Life Laboratory Stockholm, Sweden Why computer simulations? Two primary

More information

PHYS 352 Homework 2 Solutions

PHYS 352 Homework 2 Solutions PHYS 352 Homework 2 Solutions Aaron Mowitz (, 2, and 3) and Nachi Stern (4 and 5) Problem The purpose of doing a Legendre transform is to change a function of one or more variables into a function of variables

More information

Stochas(c Infla(on and Primordial Black Holes

Stochas(c Infla(on and Primordial Black Holes Stochas(c Infla(on and Primordial Black Holes Vincent Vennin IHP Trimester, «Analy(cal Methods» Paris, 17th September 2018 Outline Quantum State of Cosmological Perturba(ons The Stochas(c-δN Infla(on Formalism

More information

Thermodynamics. Thermo : heat dynamics : motion Thermodynamics is the study of motion of heat. Time and Causality Engines Properties of matter

Thermodynamics. Thermo : heat dynamics : motion Thermodynamics is the study of motion of heat. Time and Causality Engines Properties of matter Thermodynamics Thermo : heat dynamics : motion Thermodynamics is the study of motion of heat. Time and Causality Engines Properties of matter Graeme Ackland Lecture 1: Systems and state variables September

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Essential physics for game developers Introduction The primary issues Let s move virtual objects Kinematics: description

More information

CHAPTER 7. An Introduction to Numerical Methods for. Linear and Nonlinear ODE s

CHAPTER 7. An Introduction to Numerical Methods for. Linear and Nonlinear ODE s A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 1 A COLLECTION OF HANDOUTS ON FIRST ORDER ORDINARY DIFFERENTIAL

More information

A self-learning algorithm for biased molecular dynamics

A self-learning algorithm for biased molecular dynamics A self-learning algorithm for biased molecular dynamics Tribello, G. A., Ceriotti, M., & Parrinello, M. (2010). A self-learning algorithm for biased molecular dynamics. Proceedings of the National Academy

More information

Thermodynamics at Small Scales. Signe Kjelstrup, Sondre Kvalvåg Schnell, Jean-Marc Simon, Thijs Vlugt, Dick Bedeaux

Thermodynamics at Small Scales. Signe Kjelstrup, Sondre Kvalvåg Schnell, Jean-Marc Simon, Thijs Vlugt, Dick Bedeaux Thermodynamics at Small Scales Signe Kjelstrup, Sondre Kvalvåg Schnell, Jean-Marc Simon, Thijs Vlugt, Dick Bedeaux At small scales: 1. The systematic method of Hill 2. Small systems: surface energies 3.

More information

Ab initio Berechungen für Datenbanken

Ab initio Berechungen für Datenbanken J Ab initio Berechungen für Datenbanken Jörg Neugebauer University of Paderborn Lehrstuhl Computational Materials Science Computational Materials Science Group CMS Group Scaling Problem in Modeling length

More information

The role of water and steric constraints in the kinetics of cavity-ligand unbinding

The role of water and steric constraints in the kinetics of cavity-ligand unbinding The role of water and steric constraints in the kinetics of cavity-ligand unbinding However, apart from one recent work [12], to the best of our knowledge there is no reported study in which the timescales

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems Dr. Guillaume Ducard Fall 2017 Institute for Dynamic Systems and Control ETH Zurich, Switzerland G. Ducard c 1 / 46 Outline 1 Lecture 6: Electromechanical Systems

More information

Optimized statistical ensembles for slowly equilibrating classical and quantum systems

Optimized statistical ensembles for slowly equilibrating classical and quantum systems Optimized statistical ensembles for slowly equilibrating classical and quantum systems IPAM, January 2009 Simon Trebst Microsoft Station Q University of California, Santa Barbara Collaborators: David Huse,

More information

High-Temperature Criticality in Strongly Constrained Quantum Systems

High-Temperature Criticality in Strongly Constrained Quantum Systems High-Temperature Criticality in Strongly Constrained Quantum Systems Claudio Chamon Collaborators: Claudio Castelnovo - BU Christopher Mudry - PSI, Switzerland Pierre Pujol - ENS Lyon, France PRB 2006

More information