METAGUI A VMD EXTENSION TO ANALYZE AND VISUALIZE METADYNAMICS SIMULATIONS

Size: px
Start display at page:

Download "METAGUI A VMD EXTENSION TO ANALYZE AND VISUALIZE METADYNAMICS SIMULATIONS"

Transcription

1 METAGUI A VMD EXTENSION TO ANALYZE AND VISUALIZE METADYNAMICS SIMULATIONS Alessandro Laio SISSA & DEMOCRITOS, Trieste Coworkers: Xevi Biarnes Fabio Pietrucci Fabrizio Marinelli

2 Metadynamics (Laio A. and Parrinello M., 2002). Filling the free energy wells with computational sand choose a collective variable s(x) (in the example s(x)=x) Bias the dynamics with a potential of the form V G ( s( x), t) = w t dt'exp s ( x) s( x( t') ) 2δs 0 2 V G (s,t) for large t is an approximation of F(s) 2 Other methods based on similar ideas: Taboo search: Cvijovic, D.; Klinowski, J. Local elevation: T. Huber, A.E. Torda and W.F. van Gunsteren Adaptive force bias: E. Darve and A. Pohorille Wang and Landau

3 Limitations " It is difficult to know in advance all the relevant variables " If one is forgotten histeresis!!! " Even if you know all: the filling speed decreases exponentially with the dimensionality of the free energy.

4 Bias-exchange metadynamics Run several metadynamics each biasing a different collective variable: Replica 1: collective variable a, bias potential V a (x,t) Replica 2: collective variable b, bias potential V b (x,t) Replica 3:. Attempt swapping the coordinates between the two replicas. Accept the move with a probability P=min[1,exp(-β(V a (x b,t)+v b (x a,t)-v a (x a,t)+v b (x b,t))] Parallelel reconstruction of F(s) in a virtually unlimited number of CVs The accuracy of each F(s) is greatly enhanced by the jumps in CV space due to the exchanges. S. Piana and AL, JPCB, 111, 4553 (2007) Related works: Replica exchange on proteins: Sugita, Y.; Okamoto, Y. Chem. Phys. Lett. 314, (1999). Replica exchange+ metadynamics: G. Bussi, F.L. Gervasio, AL and M. Parrinello, JACS 128, (2006)

5 Bias Exchange Metadyn. 6 replicas 6 Collective Variable 6 Bias Potential (1D) Piana and Laio, J Phys Chem B 2007 Marinelli et al, PLoS Comp Biol XYZ 6 COLVAR 6 HILLS

6 From NR one-dimensional free energies To an NR-dimensional free energy hypersurface

7 Select a subset of the biased CVs for the analysis Divide the CV space in hypercubes Collective variable 1 Collective variable 2

8 The structures belonging to each hypercube define a microstate Collective variable 1 Collective variable 2

9 The structures belonging to each hypercube define a microstate Structures belonging to a microstate MUST be similiar Collective variable 1 Collective variable 2

10 BIASED POPULATIONS (n α ) to be corrected by the metadynamics bias (V α ) Combine different estimates of p α by WHAM: Marinelli et al, PLoS Comp Biol 2009

11 Free energy of the microstates: test on 3ALA Cluster analysis in the 6- dimensional CV space: ~ clusters. For each cluster we compute the free energy from the 1800 ns of normal MD and by the WHAM procedure on the biasexchange results

12 Transition Rate Matrix Ø Eigenvalues How many relevant basins? Ø Eigenvectors Which microstates belong to a basin? Marinelli et al, PLOS Comp Biol 2009

13 Ø Metadynamics output files Ø Coordinates Trajectories (XYZ) 1)Find the microstates Ø Collective Variables Trajectories Ø Time dependent Bias Potentials Collective variable 1 Collective variable 2

14 Ø Metadynamics output files Ø Coordinates Trajectories (XYZ) 2)Check their structural consistency Ø Collective Variables Trajectories Ø Time dependent Bias Potentials Collective variable 1 Collective variable 2

15 Ø Metadynamics output files Ø Coordinates Trajectories (XYZ) 3) Compute their free energy by WHAM 4) Find the kinetic basins Ø Collective Variables Trajectories Ø Time dependent Bias Potentials

16 1) Structural clustering of the trajectories VMD (TCL/TK) + FORTRAN90 2) Compute the free energy hypersurface 3) Identify the main basins 4) Interactively explore the structures of the system Biarnés et al, CPC 2011

17 Ø METAGUI simplifies the analysis of metadynamics simulations, and directly connects CV based results onto 3D structures. Ø ex. 2D Free Energy Surface of an enzymatic reaction --> click at any point and show the structure. bond 2 cleavage bond 1 formation

18 pubs.acs.org/jacs Multidimensional View of Amyloid Fibril Nucleation in Atomistic 2 Detail Fahimeh Baftizadeh, Xevi Biarnes, Fabio Pietrucci, Fabio Affinito, and Alessandro Laio*, SISSA, Via Bonomea 265, Trieste, Italy Institut Quimic di Sarria Universitat Ramon Llull, Barcelona, Spain Centre Europe en de Calcul Atomique et Mole culaire, EPFL, Lausanne, Switzerland CINECA, Bologna, Italy energy as a function the number of β-strands. Sof Supporting 8 * Information ABSTRACT: Starting from a disordered aggregate, we have simulated the formation of ordered amyloid-like beta structures in a system formed by 18 polyvaline chains in explicit solvent, employing molecular dynamics accelerated by bias-exchange metadynamics. We exploited 8 different collective variables to compute the free energy of hundreds of putative aggregate structures, with variable content of parallel and antiparallel β-sheets and different packing among the sheets. This allowed characterizing in detail a possible nucleation pathway for the formation of amyloid fibrils: first the system forms a relatively large ordered nucleus of antiparallel β-sheets, and then a few parallel sheets start appearing. The relevant nucleation process culminates at this point: when a sufficient number of parallel sheets is formed, the free energy starts to decrease toward a new minimum in which this structure is predominant. The complex nucleation pathway we found cannot be described within classical nucleation theory, namely employing a unique simple reaction coordinate like the total content of β-sheets. 8 collective variables describing parallel and antiparallel packing, etc. 500 ns on 8 replicas incorporating them into macrocycles. Fibril formation is often INTRODUCTION described by a nucleation and growth mechanism, in which the 26 Amyloid fibrils are large protein aggregates characterized by a proteins form intermediate oligomeric aggregates before they 27 high content of β-sheets. Their presence is a hallmark of several organize and grow into ordered fibrils with the characteristic 28 neurodegenerative disorders, including Alzheimer's, Huntington's, 1 cross-beta structure.12 Intraresidue contacts have been mea29 Parkinson's, and prion diseases. The precise pathological role of sured by fluorescence to probe the process of self-assembly fibrillar species is not completely understood. However, amyloid Quasi-elastic light scattering spectroscopy16,17 has also been 31 protofibrils as well as oligomers have been suggested to lead to 2 used for the same scope. Despite all these advances, the exact 32 neuronal cell death. Moreover, interruption of fibril formation energy as a function of three CVs: CV-C is the number of antiparallel β-sheets, CV-Emolecular is the number of parallel β-sheets,fibril andremains CV-H isa matter of assembly of a nascent 33 prevented cell damage, suggesting that the early oligomers in the antiparallel steric zippers. The red isosurface represents3 the region of CV space explored the simulation. The blue debate,during and computer simulations have isosurface played an important 34 fibrillation process are probably toxic. Unlike other protein a free energy of 3.3 kcal/mol per chain and contains the global minimum, a disordered aggregate. The orange isosurface, at 5.8 kcal/mol role in addressing this question. Intermediate-resolution 35 quaternary structures, amyloid fibrils involve a conformation, models with coarse-grained force fields or implicit ights a plateau region (region 2) connected to region 1 and another basin (region 3), which is separated from regions 1 and 2 by asolvent have 36 known as cross-beta structure, that is basically sequence 5 7 been successfully investigated For instance, the aggrega

19 Folding free energy landscape of the GB3 protein Daniele Granata, Carlo Camilloni, Michele Vendruscolo 6 collective variables describing hydrophobic packing, alpha and beta fraction, etc. One CV describing the consistency with experimental chemical shifts. 400 ns on 7 replicas

20 Thanks: Xevi Biarnes Fabio Pietrucci Fabrizio Marinelli Available at:

Characterization of the free-energy landscapes of proteins by NMR-guided metadynamics

Characterization of the free-energy landscapes of proteins by NMR-guided metadynamics Characterization of the free-energy landscapes of proteins by NMR-guided metadynamics B Results and Discussion BIOPHYSICS ND COMPUTTIONL BIOLOGY SI Text Inset B χ χ Inset SI Text Inset C Folding of GB3

More information

Performing Metadynamics Simulations Using NAMD

Performing Metadynamics Simulations Using NAMD Performing Metadynamics Simulations Using NAMD Author: Zhaleh Ghaemi Contents 1 Introduction 2 1.1 Goals of this tutorial.......................... 2 2 Standard metadynamics simulations 3 2.1 Free energy

More information

Computing free energies with PLUMED 2.0

Computing free energies with PLUMED 2.0 Computing free energies with PLUMED 2.0 Davide Branduardi Formerly at MPI Biophysics, Frankfurt a.m. TyOutline of the talk Relevance of free energy computation Free-energy from histograms: issues Tackling

More information

Application of Computational Modelling to Protein Folding and Aggregation Studies

Application of Computational Modelling to Protein Folding and Aggregation Studies Application of Computational Modelling to Protein Folding and Aggregation Studies NEVENA TODOROVA, ANDREW HUNG AND IRENE YAROVSKY School of Applied Sciences RMIT University GPO Box 2476V Melbourne Victoria

More information

Molecular dynamics simulations of anti-aggregation effect of ibuprofen. Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov

Molecular dynamics simulations of anti-aggregation effect of ibuprofen. Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov Biophysical Journal, Volume 98 Supporting Material Molecular dynamics simulations of anti-aggregation effect of ibuprofen Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov Supplemental

More information

Controlling fluctuations

Controlling fluctuations Controlling fluctuations Michele Parrinello Department of Chemistry and Applied Biosciences ETH Zurich and ICS, Università della Svizzera Italiana, Lugano, Switzerland Today s menu Introduction Fluctuations

More information

The PLUMED plugin and free energy methods in electronic-structure-based molecular dynamics

The PLUMED plugin and free energy methods in electronic-structure-based molecular dynamics The PLUMED plugin and free energy methods in electronic-structure-based molecular dynamics Davide Branduardi, Theoretical Molecular Biophysics Group Max Planck for Biophysics, Frankfurt am Main, Germany

More information

a micro PLUMED Tutorial for FHI-aims users PLUMED: portable plugin for free-energy calculations with molecular dynamics

a micro PLUMED Tutorial for FHI-aims users PLUMED: portable plugin for free-energy calculations with molecular dynamics a micro PLUMED Tutorial for FHI-aims users PLUMED: portable plugin for free-energy calculations with molecular dynamics Density functional theory and beyond: Computational materials science for real materials

More information

Distinct Dimerization for Various Alloforms of the Amyloid-Beta Protein: Aβ 1 40,Aβ 1 42, and Aβ 1 40 (D23N)

Distinct Dimerization for Various Alloforms of the Amyloid-Beta Protein: Aβ 1 40,Aβ 1 42, and Aβ 1 40 (D23N) pubs.acs.org/jpcb Distinct Dimerization for Various Alloforms of the Amyloid-Beta Protein: Aβ 1 40,Aβ 1 42, and Aβ 1 40 (D23N) Se bastien Co te, Rozita Laghaei, Philippe Derreumaux, and Normand Mousseau*,

More information

Exploring the Free Energy Surface of Short Peptides by Using Metadynamics

Exploring the Free Energy Surface of Short Peptides by Using Metadynamics John von Neumann Institute for Computing Exploring the Free Energy Surface of Short Peptides by Using Metadynamics C. Camilloni, A. De Simone published in From Computational Biophysics to Systems Biology

More information

a micro PLUMED Tutorial for FHI-aims users PLUMED: portable plugin for free-energy calculations with molecular dynamics

a micro PLUMED Tutorial for FHI-aims users PLUMED: portable plugin for free-energy calculations with molecular dynamics a micro PLUMED Tutorial for FHI-aims users PLUMED: portable plugin for free-energy calculations with molecular dynamics FHI-aims Developers and Users Meeting Organized by Fritz Haber Institute, CECAM-mm1p,

More information

Amyloid fibril polymorphism is under kinetic control. Supplementary Information

Amyloid fibril polymorphism is under kinetic control. Supplementary Information Amyloid fibril polymorphism is under kinetic control Supplementary Information Riccardo Pellarin Philipp Schütz Enrico Guarnera Amedeo Caflisch Department of Biochemistry, University of Zürich, Winterthurerstrasse

More information

GROMACS Implementation of Metadynamics in Essential Coordinates

GROMACS Implementation of Metadynamics in Essential Coordinates GROMACS implementation of metadynamics in essential coordinates 1 GROMACS Implementation of Metadynamics in Essential Coordinates Contact: Vojtěch Spiwok Centre for Glycomics Chemical Department, Slovak

More information

Fibril Elongation by Aβ : Kinetic Network Analysis of Hybrid- Resolution Molecular Dynamics Simulations

Fibril Elongation by Aβ : Kinetic Network Analysis of Hybrid- Resolution Molecular Dynamics Simulations pubs.acs.org/jacs Terms of Use Fibril Elongation by Aβ 17 42 : Kinetic Network Analysis of Hybrid- Resolution Molecular Dynamics Simulations Wei Han, and Klaus Schulten*,,, Beckman Institute, Center for

More information

Biology Chemistry & Physics of Biomolecules. Examination #1. Proteins Module. September 29, Answer Key

Biology Chemistry & Physics of Biomolecules. Examination #1. Proteins Module. September 29, Answer Key Biology 5357 Chemistry & Physics of Biomolecules Examination #1 Proteins Module September 29, 2017 Answer Key Question 1 (A) (5 points) Structure (b) is more common, as it contains the shorter connection

More information

Density Functional Theory: from theory to Applications

Density Functional Theory: from theory to Applications Density Functional Theory: from theory to Applications Uni Mainz May 27, 2012 Large barrier-activated processes time-dependent bias potential extended Lagrangian formalism Basic idea: during the MD dynamics

More information

Hierarchical Metastable States and Kinetic Transition Networks: Trajectory Mapping and Clustering

Hierarchical Metastable States and Kinetic Transition Networks: Trajectory Mapping and Clustering Hierarchical Metastable States and Kinetic Transition Networks: Trajectory Mapping and Clustering Xin Zhou xzhou@gucas.ac.cn Graduate University of Chinese Academy of Sciences, Beijing 2012.6.5 KITP, Santa

More information

Outline. The ensemble folding kinetics of protein G from an all-atom Monte Carlo simulation. Unfolded Folded. What is protein folding?

Outline. The ensemble folding kinetics of protein G from an all-atom Monte Carlo simulation. Unfolded Folded. What is protein folding? The ensemble folding kinetics of protein G from an all-atom Monte Carlo simulation By Jun Shimada and Eugine Shaknovich Bill Hawse Dr. Bahar Elisa Sandvik and Mehrdad Safavian Outline Background on protein

More information

Computer Simulation Studies of Abnormal Protein Aggregation

Computer Simulation Studies of Abnormal Protein Aggregation Computer Simulation Studies of Abnormal Protein Aggregation ANDREW HUNG, NEVENA TODOROVA AND IRENE YAROVSKY School of Applied Sciences RMIT University GPO Box 2476V Melbourne Victoria 3001 AUSTRALIA irene.yarovsky@rmit.edu.au

More information

GROMETA 2.0. Carlo Camilloni and Davide Provasi. Doing metadynamics with GROMACS

GROMETA 2.0. Carlo Camilloni and Davide Provasi. Doing metadynamics with GROMACS Carlo Camilloni and Davide Provasi GROMETA 2.0 Doing metadynamics with GROMACS May 8, 2008 Protein Physics Research Group Physics Department, University of Milano via Celoria, 16-20133 Milano - Italy Table

More information

Protein amyloid self assembly: nucleation, growth, and breakage

Protein amyloid self assembly: nucleation, growth, and breakage CMMP11, Manchester December 011 Protein amyloid self assembly: nucleation, growth, and breakage Chiu Fan Lee 1, Létitia Jean, and David J. Vaux 1 Max Planck Institute for the Physics of Complex Systems

More information

Supporting Information

Supporting Information Supporting Information The effect of strong acid functional groups on electrode rise potential in capacitive mixing by double layer expansion Marta C. Hatzell, a Muralikrishna Raju, b Valerie J. Watson,

More information

Computing free energy: Replica exchange

Computing free energy: Replica exchange Computing free energy: Replica exchange Extending the scale Length (m) 1 10 3 Potential Energy Surface: {Ri} 10 6 (3N+1) dimensional 10 9 E Thermodynamics: p, T, V, N continuum ls Macroscopic i a t e regime

More information

Computing free energy: Thermodynamic perturbation and beyond

Computing free energy: Thermodynamic perturbation and beyond Computing free energy: Thermodynamic perturbation and beyond Extending the scale Length (m) 1 10 3 Potential Energy Surface: {Ri} 10 6 (3N+1) dimensional 10 9 E Thermodynamics: p, T, V, N continuum ls

More information

Structural Biology of Parkinson s disease: structural and functional insights into the interaction of toxic oligomeric α synuclein with membranes

Structural Biology of Parkinson s disease: structural and functional insights into the interaction of toxic oligomeric α synuclein with membranes International Society for Neurochemistry CAEN grant Category 1B 2012 2013 Research report Dr María Soledad Celej Structural Biology of Parkinson s disease: structural and functional insights into the interaction

More information

Secondary structure stability, beta-sheet formation & stability

Secondary structure stability, beta-sheet formation & stability Protein Physics 2016 Lecture 6, February 5 Secondary structure stability, beta-sheet formation & stability Magnus Andersson magnus.andersson@scilifelab.se Theoretical & Computational Biophysics Recap of

More information

Protein Folding Prof. Eugene Shakhnovich

Protein Folding Prof. Eugene Shakhnovich Protein Folding Eugene Shakhnovich Department of Chemistry and Chemical Biology Harvard University 1 Proteins are folded on various scales As of now we know hundreds of thousands of sequences (Swissprot)

More information

arxiv: v1 [q-bio.bm] 9 Jul 2007

arxiv: v1 [q-bio.bm] 9 Jul 2007 Exploring the Protein G Helix Free Energy Surface by Solute Tempering Metadynamics Carlo Camilloni, 1, 2 Davide Provasi, 1, 2 Guido Tiana, 1, 2, and Ricardo A. Broglia 1,2,3 1 Department of Physics, University

More information

arxiv: v3 [physics.comp-ph] 30 Apr 2009

arxiv: v3 [physics.comp-ph] 30 Apr 2009 PLUMED: a portable plugin for free-energy calculations with molecular dynamics arxiv:0902.0874v3 [physics.comp-ph] 30 Apr 2009 Massimiliano Bonomi, 1 Davide Branduardi, 1 Giovanni Bussi, 2 Carlo Camilloni,

More information

Aggregation of the Amyloid-β Protein: Monte Carlo Optimization Study

Aggregation of the Amyloid-β Protein: Monte Carlo Optimization Study John von Neumann Institute for Computing Aggregation of the Amyloid-β Protein: Monte Carlo Optimization Study S. M. Gopal, K. V. Klenin, W. Wenzel published in From Computational Biophysics to Systems

More information

Advanced sampling. fluids of strongly orientation-dependent interactions (e.g., dipoles, hydrogen bonds)

Advanced sampling. fluids of strongly orientation-dependent interactions (e.g., dipoles, hydrogen bonds) Advanced sampling ChE210D Today's lecture: methods for facilitating equilibration and sampling in complex, frustrated, or slow-evolving systems Difficult-to-simulate systems Practically speaking, one is

More information

Internet Electronic Journal of Molecular Design

Internet Electronic Journal of Molecular Design ISSN 1538 6414 Internet Electronic Journal of Molecular Design September 2003, Volume 2, Number 9, Pages 564 577 Editor: Ovidiu Ivanciuc Special issue dedicated to Professor Nenad Trinajsti on the occasion

More information

Govardhan Reddy. John E. Straub. D. Thirumalai*

Govardhan Reddy. John E. Straub. D. Thirumalai* 1162 J. Phys. Chem. B 2009, 113, 1162 1172 Influence of Preformed Asp23-Lys28 Salt Bridge on the Conformational Fluctuations of Monomers and Dimers of Aβ Peptides with Implications for ates of Fibril Formation

More information

Supplementary Information

Supplementary Information 1 Supplementary Information Figure S1 The V=0.5 Harker section of an anomalous difference Patterson map calculated using diffraction data from the NNQQNY crystal at 1.3 Å resolution. The position of the

More information

M.J. Buehler, Strength in numbers, Nature Nanotechnology, Vol. 5, pp ,

M.J. Buehler, Strength in numbers, Nature Nanotechnology, Vol. 5, pp , 1 M.J. Buehler, Strength in numbers, Nature Nanotechnology, Vol. 5, pp. 172-174, 2010 NANOMATERIALS Strength in numbers Self-assembly of proteins commonly associated with neurodegenerative diseases can

More information

Investigation of the Polymeric Properties of α-synuclein and Comparison with NMR Experiments: A Replica Exchange Molecular Dynamics Study

Investigation of the Polymeric Properties of α-synuclein and Comparison with NMR Experiments: A Replica Exchange Molecular Dynamics Study pubs.acs.org/jctc Investigation of the Polymeric Properties of α-synuclein and Comparison with NMR Experiments: A Replica Exchange Molecular Dynamics Study Chitra Narayanan, Daniel S. Weinstock, Kuen-Phon

More information

Essential dynamics sampling of proteins. Tuorial 6 Neva Bešker

Essential dynamics sampling of proteins. Tuorial 6 Neva Bešker Essential dynamics sampling of proteins Tuorial 6 Neva Bešker Relevant time scale Why we need enhanced sampling? Interconvertion between basins is infrequent at the roomtemperature: kinetics and thermodynamics

More information

Amyloid formation: interface influence

Amyloid formation: interface influence Amyloid formation: interface influence Article Accepted Version Hamley, I. W. (2010) Amyloid formation: interface influence. Nature Chemistry, 2. pp. 707 708. ISSN 1755 4330 doi: https://doi.org/10.1038/nchem.816

More information

Lecture 14: Advanced Conformational Sampling

Lecture 14: Advanced Conformational Sampling Lecture 14: Advanced Conformational Sampling Dr. Ronald M. Levy ronlevy@temple.edu Multidimensional Rough Energy Landscapes MD ~ ns, conformational motion in macromolecules ~µs to sec Interconversions

More information

Mean-field Master Equations for Multi-stage Amyloid Formation 1. Mean-field Master Equations for Multi-stage Amyloid Formation. Blake C.

Mean-field Master Equations for Multi-stage Amyloid Formation 1. Mean-field Master Equations for Multi-stage Amyloid Formation. Blake C. Mean-field Master Equations for Multi-stage myloid Formation 1 Mean-field Master Equations for Multi-stage myloid Formation lake C. ntos Department of Physics, Drexel University, Philadelphia, P 19104,

More information

Bacterial Outer Membrane Porins as Electrostatic Nanosieves: Exploring Transport Rules of Small Polar Molecules

Bacterial Outer Membrane Porins as Electrostatic Nanosieves: Exploring Transport Rules of Small Polar Molecules Bacterial Outer Membrane Porins as Electrostatic Nanosieves: Exploring Transport Rules of Small Polar Molecules Harsha Bajaj, Silvia Acosta Gutiérrez, Igor Bodrenko, Giuliano Malloci, Mariano Andrea Scorciapino,

More information

Dimerization of Fibril-forming Segments of α-synuclein

Dimerization of Fibril-forming Segments of α-synuclein Dimerization of α-synuclein Bull. Korean Chem. Soc. 09, Vol. 30, No. 8 1845 Dimerization of Fibril-forming Segments of α-synuclein Jeseong Yoon, Soonmin Jang, Kyunghee Lee, and Seokmin Shin * School of

More information

Modeling the Free Energy of Polypeptides in Different Environments

Modeling the Free Energy of Polypeptides in Different Environments John von Neumann Institute for Computing Modeling the Free Energy of Polypeptides in Different Environments G. La Penna, S. Furlan, A. Perico published in From Computational Biophysics to Systems Biology

More information

Unfolding CspB by means of biased molecular dynamics

Unfolding CspB by means of biased molecular dynamics Chapter 4 Unfolding CspB by means of biased molecular dynamics 4.1 Introduction Understanding the mechanism of protein folding has been a major challenge for the last twenty years, as pointed out in the

More information

mechanisms: Discrete molecular dynamics study

mechanisms: Discrete molecular dynamics study Elucidation of amyloid β -protein oligomerization mechanisms: Discrete molecular dynamics study B. Urbanc 1, M. Betnel 2, L. Cruz 1, G. Bitan 3,4, and D. B. Teplow 3,4 1 Department of Physics, Drexel University,

More information

Conformational Diversity of the Fibrillogenic Fusion Peptide B18 in Different Environments from Molecular Dynamics Simulations

Conformational Diversity of the Fibrillogenic Fusion Peptide B18 in Different Environments from Molecular Dynamics Simulations J. Phys. Chem. B 2007, 111, 4161-4170 4161 Conformational Diversity of the Fibrillogenic Fusion Peptide B18 in Different Environments from Molecular Dynamics Simulations Volker Knecht,* Helmut Mo1hwald,

More information

Protein Folding experiments and theory

Protein Folding experiments and theory Protein Folding experiments and theory 1, 2,and 3 Protein Structure Fig. 3-16 from Lehninger Biochemistry, 4 th ed. The 3D structure is not encoded at the single aa level Hydrogen Bonding Shared H atom

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 2 Feb 2005

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 2 Feb 2005 Topological defects and bulk melting of hexagonal ice Davide Donadio, Paolo Raiteri, and Michele Parrinello Computational Science, Department of Chemistry and Applied Biosciences, ETH Zürich, USI Campus,

More information

Coarse-Grained Molecular Dynamics Simulations of Peptide Aggregation on Surfaces

Coarse-Grained Molecular Dynamics Simulations of Peptide Aggregation on Surfaces UNIVERSITY OF CALIFORNIA Santa Barbara Coarse-Grained Molecular Dynamics Simulations of Peptide Aggregation on Surfaces A dissertation submitted in partial satisfaction of the requirements for the degree

More information

Application of the Markov State Model to Molecular Dynamics of Biological Molecules. Speaker: Xun Sang-Ni Supervisor: Prof. Wu Dr.

Application of the Markov State Model to Molecular Dynamics of Biological Molecules. Speaker: Xun Sang-Ni Supervisor: Prof. Wu Dr. Application of the Markov State Model to Molecular Dynamics of Biological Molecules Speaker: Xun Sang-Ni Supervisor: Prof. Wu Dr. Jiang Introduction Conformational changes of proteins : essential part

More information

Sampling the free energy surfaces of collective variables

Sampling the free energy surfaces of collective variables Sampling the free energy surfaces of collective variables Jérôme Hénin Enhanced Sampling and Free-Energy Calculations Urbana, 12 September 2018 Please interrupt! struct bioinform phys chem theoretical

More information

Metadynamics. Day 2, Lecture 3 James Dama

Metadynamics. Day 2, Lecture 3 James Dama Metadynamics Day 2, Lecture 3 James Dama Metadynamics The bare bones of metadynamics Bias away from previously visited configuraaons In a reduced space of collecave variables At a sequenaally decreasing

More information

Supporting Information

Supporting Information 1 Supporting Information 2 3 4 Hydrothermal Decomposition of Amino Acids and Origins of Prebiotic Meteoritic Organic Compounds 5 6 7 Fabio Pietrucci 1, José C. Aponte 2,3,*, Richard Starr 2,4, Andrea Pérez-Villa

More information

Convergence of replica exchange molecular dynamics

Convergence of replica exchange molecular dynamics THE JOURNAL OF CHEMICAL PHYSICS 123, 154105 2005 Convergence of replica exchange molecular dynamics Wei Zhang and Chun Wu Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware

More information

a micro PLUMED2.0 Tutorial for ESPResSo users PLUMED2.0: portable plugin for free-energy calculations with molecular dynamics

a micro PLUMED2.0 Tutorial for ESPResSo users PLUMED2.0: portable plugin for free-energy calculations with molecular dynamics a micro PLUMED2.0 Tutorial for ESPResSo users PLUMED2.0: portable plugin for free-energy calculations with molecular dynamics ESPResSo summer school 2013 Organized by CECAM, SimTech, ICP and University

More information

DISCRETE TUTORIAL. Agustí Emperador. Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING:

DISCRETE TUTORIAL. Agustí Emperador. Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING: DISCRETE TUTORIAL Agustí Emperador Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING: STRUCTURAL REFINEMENT OF DOCKING CONFORMATIONS Emperador

More information

Polypeptide Folding Using Monte Carlo Sampling, Concerted Rotation, and Continuum Solvation

Polypeptide Folding Using Monte Carlo Sampling, Concerted Rotation, and Continuum Solvation Polypeptide Folding Using Monte Carlo Sampling, Concerted Rotation, and Continuum Solvation Jakob P. Ulmschneider and William L. Jorgensen J.A.C.S. 2004, 126, 1849-1857 Presented by Laura L. Thomas and

More information

Statistical Mechanical Treatments of Protein Amyloid Formation

Statistical Mechanical Treatments of Protein Amyloid Formation Int. J. Mol. Sci. 2013, 14, 17420-17452; doi:10.3390/ijms140917420 Review OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Statistical Mechanical Treatments

More information

The Molecular Dynamics Method

The Molecular Dynamics Method The Molecular Dynamics Method Thermal motion of a lipid bilayer Water permeation through channels Selective sugar transport Potential Energy (hyper)surface What is Force? Energy U(x) F = d dx U(x) Conformation

More information

Characterizing Structure and Free Energy Landscape of Proteins by NMR-guided Metadynamics

Characterizing Structure and Free Energy Landscape of Proteins by NMR-guided Metadynamics SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI Molecular and Statistical BioPhysics Sector PhD in Physics and Chemistry of Biological Systems Characterizing Structure and Free Energy Landscape of Proteins

More information

Role of Electrostatic Interactions in Amyloid b-protein (Ab) Oligomer Formation: A Discrete Molecular Dynamics Study

Role of Electrostatic Interactions in Amyloid b-protein (Ab) Oligomer Formation: A Discrete Molecular Dynamics Study 4064 Biophysical Journal Volume 92 June 2007 4064 4077 Role of Electrostatic Interactions in Amyloid b-protein (Ab) Oligomer Formation: A Discrete Molecular Dynamics Study SijungYun,*B.Urbanc,*L.Cruz,*G.Bitan,

More information

Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water?

Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water? Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water? Ruhong Zhou 1 and Bruce J. Berne 2 1 IBM Thomas J. Watson Research Center; and 2 Department of Chemistry,

More information

Nature Structural & Molecular Biology: doi: /nsmb.3194

Nature Structural & Molecular Biology: doi: /nsmb.3194 Supplementary Figure 1 Mass spectrometry and solution NMR data for -syn samples used in this study. (a) Matrix-assisted laser-desorption and ionization time-of-flight (MALDI-TOF) mass spectrum of uniformly-

More information

Free Energy Landscape of Protein Folding in Water: Explicit vs. Implicit Solvent

Free Energy Landscape of Protein Folding in Water: Explicit vs. Implicit Solvent PROTEINS: Structure, Function, and Genetics 53:148 161 (2003) Free Energy Landscape of Protein Folding in Water: Explicit vs. Implicit Solvent Ruhong Zhou* IBM T.J. Watson Research Center, Yorktown Heights,

More information

Kinetics of Amyloid Aggregation: A Study of the GNNQQNY Prion Sequence

Kinetics of Amyloid Aggregation: A Study of the GNNQQNY Prion Sequence Kinetics of Amyloid Aggregation: A Study of the GNNQQNY Prion Sequence Jessica Nasica-Labouze*, Normand Mousseau* Département de Physique and GÉPROM, Université de Montréal, Montréal, Québec, Canada Abstract

More information

TECHNIQUES TO LOCATE A TRANSITION STATE

TECHNIQUES TO LOCATE A TRANSITION STATE 32 III. TECHNIQUES TO LOCATE A TRANSITION STATE In addition to the location of minima, the calculation of transition states and reaction pathways is an interesting task for Quantum Chemistry (QC). The

More information

Computational Studies of the Photoreceptor Rhodopsin. Scott E. Feller Wabash College

Computational Studies of the Photoreceptor Rhodopsin. Scott E. Feller Wabash College Computational Studies of the Photoreceptor Rhodopsin Scott E. Feller Wabash College Rhodopsin Photocycle Dark-adapted Rhodopsin hn Isomerize retinal Photorhodopsin ~200 fs Bathorhodopsin Meta-II ms timescale

More information

Structural and mechanistic insight into the substrate. binding from the conformational dynamics in apo. and substrate-bound DapE enzyme

Structural and mechanistic insight into the substrate. binding from the conformational dynamics in apo. and substrate-bound DapE enzyme Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 215 Structural and mechanistic insight into the substrate binding from the conformational

More information

Protein Structure. Hierarchy of Protein Structure. Tertiary structure. independently stable structural unit. includes disulfide bonds

Protein Structure. Hierarchy of Protein Structure. Tertiary structure. independently stable structural unit. includes disulfide bonds Protein Structure Hierarchy of Protein Structure 2 3 Structural element Primary structure Secondary structure Super-secondary structure Domain Tertiary structure Quaternary structure Description amino

More information

Characterizing the First Steps of Amyloid Formation for the ccβ Peptide

Characterizing the First Steps of Amyloid Formation for the ccβ Peptide 9998 J. Phys. Chem. B 2008, 112, 9998 10004 Characterizing the First Steps of Amyloid Formation for the ccβ Peptide Birgit Strodel, Anthony W. Fitzpatrick, Michele Vendruscolo, Christopher M. Dobson, and

More information

Chun Wu 1, Michael T. Bowers 1, Joan-Emma Shea 1,2 * Abstract. Introduction

Chun Wu 1, Michael T. Bowers 1, Joan-Emma Shea 1,2 * Abstract. Introduction Molecular Structures of Quiescently Grown and Brain- Derived Polymorphic Fibrils of the Alzheimer Amyloid Ab 9-40 Peptide: A Comparison to Agitated Fibrils Chun Wu 1, Michael T. Bowers 1, Joan-Emma Shea

More information

From peptide chains to chains of peptides: multiscale modelling of self-assembling fibril-forming polypeptides Schor, M.

From peptide chains to chains of peptides: multiscale modelling of self-assembling fibril-forming polypeptides Schor, M. UvA-DARE (Digital Academic Repository) From peptide chains to chains of peptides: multiscale modelling of self-assembling fibril-forming polypeptides Schor, M. Link to publication Citation for published

More information

Monitoring neurite morphology and synapse formation in primary neurons for neurotoxicity assessments and drug screening

Monitoring neurite morphology and synapse formation in primary neurons for neurotoxicity assessments and drug screening APPLICATION NOTE ArrayScan High Content Platform Monitoring neurite morphology and synapse formation in primary neurons for neurotoxicity assessments and drug screening Suk J. Hong and Richik N. Ghosh

More information

QM/MM MD simulations on the enzymatic pathway of the human flap endonuclease (hfen1) elucidate common cleavage pathways to RNase H enzymes.

QM/MM MD simulations on the enzymatic pathway of the human flap endonuclease (hfen1) elucidate common cleavage pathways to RNase H enzymes. SUPPORTING INFORMATION QM/MM MD simulations on the enzymatic pathway of the human flap endonuclease (hfen1) elucidate common cleavage pathways to RNase H enzymes. Jacopo Sgrignani a and Alessandra Magistrato

More information

Biochemistry: Concepts and Connections

Biochemistry: Concepts and Connections Biochemistry: Concepts and Connections Dean R. Appling Spencer J. Anthony-Cahill Christopher K. Mathews Chapter 6 The Three Dimensional Structure of Proteins Cartoon representation of myoglobin, showing

More information

Energy Landscapes and Accelerated Molecular- Dynamical Techniques for the Study of Protein Folding

Energy Landscapes and Accelerated Molecular- Dynamical Techniques for the Study of Protein Folding Energy Landscapes and Accelerated Molecular- Dynamical Techniques for the Study of Protein Folding John K. Prentice Boulder, CO BioMed Seminar University of New Mexico Physics and Astronomy Department

More information

High Temperature Unfolding Simulations of the TRPZ1 Peptide

High Temperature Unfolding Simulations of the TRPZ1 Peptide 4444 Biophysical Journal Volume 94 June 2008 4444 4453 High Temperature Unfolding Simulations of the TRPZ1 Peptide Giovanni Settanni and Alan R. Fersht Centre for Protein Engineering, Cambridge, United

More information

Free energy calculations and the potential of mean force

Free energy calculations and the potential of mean force Free energy calculations and the potential of mean force IMA Workshop on Classical and Quantum Approaches in Molecular Modeling Mark Tuckerman Dept. of Chemistry and Courant Institute of Mathematical Science

More information

Routine access to millisecond timescale events with accelerated molecular dynamics

Routine access to millisecond timescale events with accelerated molecular dynamics Routine access to millisecond timescale events with accelerated molecular dynamics Levi C.T. Pierce, Romelia Salomon-Ferrer, Cesar Augusto F. de Oliveira #, J. Andrew McCammon #, Ross C. Walker * SUPPORTING

More information

arxiv: v2 [physics.comp-ph] 4 Feb 2016

arxiv: v2 [physics.comp-ph] 4 Feb 2016 Sampling Free Energy Surfaces as Slices by Combining Umbrella Sampling and Metadynamics Shalini Awasthi, Venkat Kapil and Nisanth N. Nair 1 arxiv:1507.06764v2 [physics.comp-ph] 4 Feb 2016 Department of

More information

Molecular dynamics (MD) and the Monte Carlo simulation

Molecular dynamics (MD) and the Monte Carlo simulation Escaping free-energy minima Alessandro Laio and Michele Parrinello* Centro Svizzero di Calcolo Scientifico, Via Cantonale, CH-6928 Manno, Switzerland; and Department of Chemistry, Eidgenössische Technische

More information

A self-learning algorithm for biased molecular dynamics

A self-learning algorithm for biased molecular dynamics A self-learning algorithm for biased molecular dynamics Gareth A. Tribello, Michele Ceriotti and Michele Parrinello Computational Science, Department of Chemistry and Applied Biosciences, ETHZ Zurich USI-Campus,

More information

Many proteins spontaneously refold into native form in vitro with high fidelity and high speed.

Many proteins spontaneously refold into native form in vitro with high fidelity and high speed. Macromolecular Processes 20. Protein Folding Composed of 50 500 amino acids linked in 1D sequence by the polypeptide backbone The amino acid physical and chemical properties of the 20 amino acids dictate

More information

Testing Convergence of Different Free-Energy Methods in a Simple Analytical System with Hidden Barriers

Testing Convergence of Different Free-Energy Methods in a Simple Analytical System with Hidden Barriers computation Article Testing Convergence of Different Free-Energy Methods in a Simple Analytical System with Hidden Barriers S. Alexis Paz 1, ID and Cameron F. Abrams 3, * ID 1 Departamento de Química Teórica

More information

Supplementary Information

Supplementary Information Supplementary Information Computer Simulation of Dendronized Polymers: Organization and Characterization at the Atomistic Level Oscar Bertran, 1,* Baozhong Zhang, 2 A. Dieter Schlüter, 2 Avraham Halperin,

More information

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Projection onto 2-dim subspace: v 2 v 1 Trajectory x(t) in 3N-dim configuration space A 100-dimensional data set viewed at random orientation Example: Conformational

More information

Metadynamics with adaptive Gaussians

Metadynamics with adaptive Gaussians Metadynamics with adaptive Gaussians Davide Branduardi Theoretical Molecular Biophysics Group, Max Planck Institute for Biophysics, Max-von-Laue strasse 5, 60438, Frankfurt am Main, Germany Giovanni Bussi

More information

Exploring the Changes in the Structure of α-helical Peptides Adsorbed onto Carbon and Boron Nitride based Nanomaterials

Exploring the Changes in the Structure of α-helical Peptides Adsorbed onto Carbon and Boron Nitride based Nanomaterials Exploring the Changes in the Structure of α-helical Peptides Adsorbed onto Carbon and Boron Nitride based Nanomaterials Dr. V. Subramanian Chemical Laboratory, IPC Division CSIR-Central Leather Research

More information

Exploring the early steps of aggregation of amyloid-forming peptide KFFE

Exploring the early steps of aggregation of amyloid-forming peptide KFFE INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 16 (2004) S5047 S5054 PII: S0953-8984(04)87012-7 Exploring the early steps of aggregation of amyloid-forming

More information

Asymmetric folding pathways and transient misfolding in a coarse-grained model of proteins

Asymmetric folding pathways and transient misfolding in a coarse-grained model of proteins May 2011 EPL, 94 (2011) 48005 doi: 10.1209/0295-5075/94/48005 www.epljournal.org Asymmetric folding pathways and transient misfolding in a coarse-grained model of proteins K. Wolff 1(a), M. Vendruscolo

More information

Supporting Information for. Ab Initio Metadynamics Study of VO + 2 /VO2+ Redox Reaction Mechanism at the Graphite. Edge Water Interface

Supporting Information for. Ab Initio Metadynamics Study of VO + 2 /VO2+ Redox Reaction Mechanism at the Graphite. Edge Water Interface Supporting Information for Ab Initio Metadynamics Study of VO + 2 /VO2+ Redox Reaction Mechanism at the Graphite Edge Water Interface Zhen Jiang, Konstantin Klyukin, and Vitaly Alexandrov,, Department

More information

A self-learning algorithm for biased molecular dynamics

A self-learning algorithm for biased molecular dynamics A self-learning algorithm for biased molecular dynamics Tribello, G. A., Ceriotti, M., & Parrinello, M. (2010). A self-learning algorithm for biased molecular dynamics. Proceedings of the National Academy

More information

Atomistic Picture for the Folding Pathway of a Hybrid-1 Type Human Telomeric DNA G-quadruplex

Atomistic Picture for the Folding Pathway of a Hybrid-1 Type Human Telomeric DNA G-quadruplex Atomistic Picture for the Folding Pathway of a Hybrid-1 Type Human Telomeric DNA G-quadruplex Yunqiang Bian 1, Cheng Tan 1, Jun Wang 1, Yuebiao Sheng 2, Jian Zhang 1 *, Wei Wang 1 * 1 National Laboratory

More information

Probing α/β Balances in Modified Amber Force Fields from a Molecular Dynamics Study on a ββα Model Protein (1FSD)

Probing α/β Balances in Modified Amber Force Fields from a Molecular Dynamics Study on a ββα Model Protein (1FSD) Benchmark Study of Modified Amber Force Fields on ββα Protein Bull. Korean Chem. Soc. 214, Vol. 35, No. 6 1713 http://dx.doi.org/1.512/bkcs.214.35.6.1713 Probing α/β Balances in Modified Amber Force Fields

More information

Molecular Dynamics in Principal Component Space

Molecular Dynamics in Principal Component Space pubs.acs.org/jpcb Molecular Dynamics in Principal Component Space Servaas Michielssens,*, Titus S. van Erp, Carsten Kutzner, Arnout Ceulemans, and Bert L. de Groot Department of Chemistry and Centre for

More information

PLUMED: a portable plugin for free-energy calculations with molecular dynamics

PLUMED: a portable plugin for free-energy calculations with molecular dynamics PLUMED: a portable plugin for free-energy calculations with molecular dynamics Massimiliano Bonomi,a, Davide Branduardi a, Giovanni Bussi b,carlo Camilloni c,davideprovasi d, Paolo Raiteri e, Davide Donadio

More information

Papers listed: Cell2. This weeks papers. Chapt 4. Protein structure and function. The importance of proteins

Papers listed: Cell2. This weeks papers. Chapt 4. Protein structure and function. The importance of proteins 1 Papers listed: Cell2 During the semester I will speak of information from several papers. For many of them you will not be required to read these papers, however, you can do so for the fun of it (and

More information

Introduction to Computational Structural Biology

Introduction to Computational Structural Biology Introduction to Computational Structural Biology Part I 1. Introduction The disciplinary character of Computational Structural Biology The mathematical background required and the topics covered Bibliography

More information

SUPPLEMENTARY INFORMATION An Empirical IR Frequency Map for Ester C=O Stretching Vibrations

SUPPLEMENTARY INFORMATION An Empirical IR Frequency Map for Ester C=O Stretching Vibrations SUPPLEMENTARY INFORMATION An Empirical IR Frequency Map for Ester C=O Stretching Vibrations Sean C. Edington, Jennifer C. Flanagan, Carlos R. Baiz* Department of Chemistry, University of Texas at Austin

More information

Determination of the structure and dynamics of proteins using NMR chemical shifts (CS) and CS enhanced protein data bank (CS-PDB)

Determination of the structure and dynamics of proteins using NMR chemical shifts (CS) and CS enhanced protein data bank (CS-PDB) Determination of the structure and dynamics of proteins using NMR chemical shifts (CS) and CS enhanced protein data bank (CS-PDB) Biao Fu The Vendruscolo group, Uni. Of Cambridge Intensive Training Course,

More information