H Estimation. Speaker : R.Lakshminarayanan Guide : Prof. K.Giridhar. H Estimation p.1/34

Size: px
Start display at page:

Download "H Estimation. Speaker : R.Lakshminarayanan Guide : Prof. K.Giridhar. H Estimation p.1/34"

Transcription

1 H Estimation Speaker : R.Lakshminarayanan Guide : Prof. K.Giridhar H Estimation p.1/34

2 H Motivation The Kalman and Wiener Filters minimize the mean squared error between the true value and estimated values of any random process (Stationary in the case of wiener). Kalman extended the Wiener solution to non-stationary and time varying systems by incorporating a finite-dimensional state model into the estimation problem. x k+1 = A k x k + B k r k E(r k r l ) = δ kli y k = C k x k + D k r k E((x 0 x 0 )(x 0 x 0 ) ) = P 0 H Estimation p.2/34

3 H Motivation The Kalman filter operates and gives the best performance under the assumption of known covariance matrices of the process and observation noise, Q and R respectively, where Q = E[v k v k ], v k = B k r k and R = E[w k w k ], w k = D k r k The filter performance deteriorates considerability under modelling uncertainities (despite the fact that the process noise is introduced to accomodate for our ignorance of the underlying process) H Estimation p.3/34

4 Kalman Filter and Model Uncertainity Hence the Kalman Filter which is well tuned to a nominal plant behaves poorly for a perturbed one. Example : In a practical communications scenario, for a channel estimation problem, Additive noise variance could vary considerably. Modelling the doppler spectrum with a finite length AR process always has modelling uncertainities associated with it. A varying doppler introduces additional parametric uncertainities. H Estimation p.4/34

5 Beyond the Kalman Filter The goal is to design a filter that bounds the error norm of an entire class of perturbations. Various approaches to designing robust kalman filters: Set membership Kalman filtering. H filters. Design of Kalman filters based on Linear Matrix Inequalities.... H Estimation p.5/34

6 Transfer Function Norms H 2 norm : For any stable SISO linear systems with transfer function G(s), the H 2 -norm is defined as G 2 = ( 1 2π G(jw) 2 dw) 1/2 (1) From (1), G 2 can be interpreted as the average system gain over all frequencies. H Estimation p.6/34

7 Transfer Function Norms H norm :For stable SISO linear systems with transfer function G(s), the H 2 -norm is defined as G = sup w G(jw) (2) The H norm is the largest factor by which any sinusoid is magnified by the system. H Estimation p.7/34

8 Transfer Function Norms H norm in terms of the effect of G(s) on the space of input signals with bounded l 2 norms. Consider the system G(S) with input v(s) and output is given by z(s) = G(s)v(s) H Estimation p.8/34

9 Transfer Function Norms H norm in terms of the effect of G(s) on the space of input signals with bounded l 2 norms. Consider the system G(S) with input v(s) and output is given by z(s) = G(s)v(s) Now, Gv 2 = = ( 1 2π ( 1 2π G(jw)v(jw) 2 dw G(jw) 2 v(jw) 2 dw ) 1/2 ) 1/2 H Estimation p.9/34

10 Induced Norms Gv 2 sup w G(jw) ( 1 2π v(jw) 2 dw) 1/2 = G v 2 H Estimation p.10/34

11 Induced Norms Gv 2 sup w G(jw) ( 1 2π v(jw) 2 dw) 1/2 = G v 2 Hence G Gv 2 v 2,v 0 H Estimation p.11/34

12 Induced Norms Gv 2 sup w G(jw) ( 1 2π v(jw) 2 dw) 1/2 = G v 2 Hence G Gv 2 v 2,v 0 In fact, G = sup { } Gv 2,v 0 v 2 sup w {σ max (G(e jw ))} (3) Equation (3) is known as the induced second norm. sup w R σ max (G(jw)) is the maximum singular value of the transfer function matrix as a function of frequency. H Estimation p.12/34

13 A few Observations Therefore, the H -norm of G(s), namely G = sup w G(jw), is equivalent to the induced 2-norm of G(s), i.e., the maximum amplification of the energy of the input signal. Induced norms are used to specify the error bounds of an transfer operator. H Estimation p.13/34

14 Some Math... Vector Norms: The p-norm of a vector x = [x(1),x(2),...x(n))] R n as, for 1 p <, x p n x(j) p j=1 The infinity norm of x R n is defined as, (4) x max x(j) (5) j [1,n] H Estimation p.14/34

15 Norms for sequences For a sequence x = x 1,x 2,... with x i R n,i = 1, 2, 3,..., the p th and infinity norms of the sequence are defined respectively as, x p x(j) p p j=1 (6) x sup j x(j) (7) H Estimation p.15/34

16 Space of bounded sequences The space l n p for 1 p <, is defined as the p th and infinity norms of the sequence are defined respectively as, l n p {x = (x 1,x 2,...) x i R n,i = 1, 2, 3,..., x p < } (8) For p =, the space l is defined as l n {x = (x 1,x 2,...) x i R n,i = 1, 2, 3,..., x < } (9) H Estimation p.16/34

17 Induced Norms between normed spaces For an operator T, a mapping between two normed spaces X and Y, with norms. α and. β, the induced (α,β)) norm of T is given by T i(β,α) = sup x 0 T x β x α = sup T x β x α 1 = sup T x β x α =1 The maximum or supremum value of the norm is attained for a particular value of x. H Estimation p.17/34

18 Minimizing Induced Norms The induced norms represent the worst-case gain and measure of the maximum amplification that the mapping can exert on a bounded input signal. H Estimation p.18/34

19 Minimizing Induced Norms The induced norms represent the worst-case gain and measure of the maximum amplification that the mapping can exert on a bounded input signal. Minimizing induced norms amounts to minimizing the worst case effect of the transfer operator and guarantees the worst case result. H Estimation p.19/34

20 Transfer Operator T Every estimation method (G) has some estimation error associated with it. Consider the transfer operator T that maps input disturbances to estimation errors. T is function of the estimation method G. H Estimation p.20/34

21 Transfer Function, Transfer Operator H Estimation p.21/34

22 Robust Estimation Problem Objective: To design a filter G such that the induced norm of the mapping (T ) from the inputs r,x 0 and x 0 x 0 to the estimation error, e, is bounded for all possible perturbations (of parameters in the state and observation equations). Assumption: Perturbations and inputs (disturbance) are norm bounded. The time-varying state space model is x k+1 = A k x k + B k r k E(r k r l ) = δ kli e k = M k (x k x k ) E(r k (x 0 x 0 ) ) = 0 y k = C k x k + D k r k E((x 0 x 0 )(x 0 x 0 ) ) = P 0 v k = B k r k,q = E[v k v k ],w k = D k r k,q = E[w k w k ] H Estimation p.22/34

23 Robust Estimation Problem, Mathematically Knowledge of the Q and R assumed unknown. The cost to be minimized is J = T i2 sup (r,x 0 x 0 ) 1 M k (x k x k ) 2 r 2 + x 0 x 0 2 P 1 0 (10) J might not have a minima, ie., H problem has no solution. Consider the sub-optimal H problem of making J 1 = T i2 sup (r,x 0 x 0 ) 0 sup { r 2 + x 0 x 0 2 P 1 0 e 2 r 2 + x 0 x 0 2 P 1 0 1} γ e 2 (11) H Estimation p.23/34

24 Sub-Optimal Robust Estimation Problem, Mathematically (γ - a positive constant), incorporating a state space structure for F. Smaller γ is, better is the estimation strategy. Game theoretic Solution: Optimization problem solved in two steps. Maximize J 1 with respect to r,x 0. Minimize J 1 with respect to x 0. In short min x k max r,x 0 J 1, J 1 = e 2 (12) H Estimation p.24/34

25 Robust Estimation Problem, Mathematically Why maximize with respect to (r,x 0 ) before minimizing with respect to K(Filter Gain)? Answer: The supremum value of the induced norm is maximum only for a particular value of input. Choose the input sequence for which the cost attains supremum value (so maximize J 1 with respect to r,x 0 ). Then minimize it with respect to K. H Estimation p.25/34

26 Estimator Derivation Estimator structure: x k+1 = A k x k + K k (y k C k x k ) The estimation problem is : min x k max r,x 0 J 1, J 1 = e 2 given x k+1 = A k x k + B k r k r 2 + x 0 x 0 P (13) Solution Method: Augment the constraint cost function J 1 with the constraint with lagrange multipliers... H Estimation p.26/34

27 + (K k D k )(K k D k ) (14) H Estimator Equations The resulting filter equations are: x k+1 = x k + K k (y k C k x k ) K k = H k C k (C k H k C k + D kd k ) P k+1 = (I K k C k )H k (I K k C k ) H 1 k P 1 k γ 2 M k M k (15) H Estimation p.27/34

28 H Estimator Equation Discussion The set of equations describing H are just identical to that of the Kalman filter but for the term H k in the H filter in place of P k term in the Kalman filter. k - Measure of information about state prior to observation. P 1 In H estimator, H k = (P 1 k information available. γ 2 M k M k) 1 - less Smaller γ, lesser our faith in the model parameters. As γ, H k = P k. The H estimator Kalman estimator. γ γ, det(h k (γ )) = 0. More information cannot be extracted. P k+1 becomes indefinite. H Estimation p.28/34

29 Kalman Filter Equations x k+1 = x k + K k (y k C k x k ) K k = P k C k (C k P k C k + D kd k ) P k+1 = (I K k C k )P k (I K k C k ) + (K k D k )(K k D k ) (16) H Estimation p.29/34

30 The MMSE estimator minimizes E(e(n) e(n)) = R ee (0) Comparing H Estimation with = 1 2π = 1 2π = 1 2π +π π +π π +π π MMSE Estimation trace ( S ee (e jw ) ) dw trace ( G ve (e jw )G ve(e jw ) ) dw ( N i=1 σ 2 i ( Gve (e jw )) )) dw = T ve 2 2 (17) The equation (17) gives the 2-norm of the transfer operator. H Estimation p.30/34

31 Comparing H Estimation with MMSE Estimation Hence, MMSE estimator minimizes the 2-norm (average energy over all the frequencies) of the transfer function between the disturbance and the estimation error with respect to the estimator s transfer function. H Estimation p.31/34

32 Comparing H Estimation with MMSE Estimation The H estimator minimizes the induced 2-norm of the transfer function between the disturbance and the estimation error. It minimizes the H norm of the transfer function, namely T = sup σ max (H(jw)) (18) w R It minimizes the maximum singular value of the transfer function matrix as a function of frequency (or maximum gain from the input distubance to the estimation error) H Estimation p.32/34

33 Before I Wind-up... In a subsequent presentation, the following topics will be explored. H filter for systems with uncertain state models. Comparing the H and the Kalman filter for the OFDM channel estimation problem. Its relation to indefinite quadratic programming and risk-sensitive estimation. H Estimation p.33/34

34 Thank you H Estimation p.34/34

Mathematics for Control Theory

Mathematics for Control Theory Mathematics for Control Theory H 2 and H system norms Hanz Richter Mechanical Engineering Department Cleveland State University Reading materials We will use: Michael Green and David Limebeer, Linear Robust

More information

OPTIMAL CONTROL AND ESTIMATION

OPTIMAL CONTROL AND ESTIMATION OPTIMAL CONTROL AND ESTIMATION Robert F. Stengel Department of Mechanical and Aerospace Engineering Princeton University, Princeton, New Jersey DOVER PUBLICATIONS, INC. New York CONTENTS 1. INTRODUCTION

More information

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities.

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities. 19 KALMAN FILTER 19.1 Introduction In the previous section, we derived the linear quadratic regulator as an optimal solution for the fullstate feedback control problem. The inherent assumption was that

More information

Subject: Optimal Control Assignment-1 (Related to Lecture notes 1-10)

Subject: Optimal Control Assignment-1 (Related to Lecture notes 1-10) Subject: Optimal Control Assignment- (Related to Lecture notes -). Design a oil mug, shown in fig., to hold as much oil possible. The height and radius of the mug should not be more than 6cm. The mug must

More information

X t = a t + r t, (7.1)

X t = a t + r t, (7.1) Chapter 7 State Space Models 71 Introduction State Space models, developed over the past 10 20 years, are alternative models for time series They include both the ARIMA models of Chapters 3 6 and the Classical

More information

APPROXIMATE SOLUTION OF A SYSTEM OF LINEAR EQUATIONS WITH RANDOM PERTURBATIONS

APPROXIMATE SOLUTION OF A SYSTEM OF LINEAR EQUATIONS WITH RANDOM PERTURBATIONS APPROXIMATE SOLUTION OF A SYSTEM OF LINEAR EQUATIONS WITH RANDOM PERTURBATIONS P. Date paresh.date@brunel.ac.uk Center for Analysis of Risk and Optimisation Modelling Applications, Department of Mathematical

More information

A METHOD OF ADAPTATION BETWEEN STEEPEST- DESCENT AND NEWTON S ALGORITHM FOR MULTI- CHANNEL ACTIVE CONTROL OF TONAL NOISE AND VIBRATION

A METHOD OF ADAPTATION BETWEEN STEEPEST- DESCENT AND NEWTON S ALGORITHM FOR MULTI- CHANNEL ACTIVE CONTROL OF TONAL NOISE AND VIBRATION A METHOD OF ADAPTATION BETWEEN STEEPEST- DESCENT AND NEWTON S ALGORITHM FOR MULTI- CHANNEL ACTIVE CONTROL OF TONAL NOISE AND VIBRATION Jordan Cheer and Stephen Daley Institute of Sound and Vibration Research,

More information

EL2520 Control Theory and Practice

EL2520 Control Theory and Practice So far EL2520 Control Theory and Practice r Fr wu u G w z n Lecture 5: Multivariable systems -Fy Mikael Johansson School of Electrical Engineering KTH, Stockholm, Sweden SISO control revisited: Signal

More information

EL2520 Control Theory and Practice

EL2520 Control Theory and Practice EL2520 Control Theory and Practice Lecture 8: Linear quadratic control Mikael Johansson School of Electrical Engineering KTH, Stockholm, Sweden Linear quadratic control Allows to compute the controller

More information

Exercise 8: Frequency Response of MIMO Systems

Exercise 8: Frequency Response of MIMO Systems Exercise 8: Frequency Response of MIMO Systems 8 Singular Value Decomposition (SVD The Singular Value Decomposition plays a central role in MIMO frequency response analysis Let s recall some concepts from

More information

Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents

Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents Navtech Part #s Volume 1 #1277 Volume 2 #1278 Volume 3 #1279 3 Volume Set #1280 Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents Volume 1 Preface Contents

More information

Mathematical Theory of Control Systems Design

Mathematical Theory of Control Systems Design Mathematical Theory of Control Systems Design by V. N. Afarias'ev, V. B. Kolmanovskii and V. R. Nosov Moscow University of Electronics and Mathematics, Moscow, Russia KLUWER ACADEMIC PUBLISHERS DORDRECHT

More information

Riccati difference equations to non linear extended Kalman filter constraints

Riccati difference equations to non linear extended Kalman filter constraints International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 1 Riccati difference equations to non linear extended Kalman filter constraints Abstract Elizabeth.S 1 & Jothilakshmi.R

More information

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Evan Kwiatkowski, Jan Mandel University of Colorado Denver December 11, 2014 OUTLINE 2 Data Assimilation Bayesian Estimation

More information

Further Results on Model Structure Validation for Closed Loop System Identification

Further Results on Model Structure Validation for Closed Loop System Identification Advances in Wireless Communications and etworks 7; 3(5: 57-66 http://www.sciencepublishinggroup.com/j/awcn doi:.648/j.awcn.735. Further esults on Model Structure Validation for Closed Loop System Identification

More information

Robust Least-Squares Filtering With a Relative Entropy Constraint

Robust Least-Squares Filtering With a Relative Entropy Constraint Robust Least-Squares Filtering With a Relative Entropy Constraint Bernard C. Levy ECE Department University of California Davis, CA 95616 USA and Abstract Ramine Nikoukhah INRIA Domaine de Voluceau Rocquencourt

More information

Pure Random process Pure Random Process or White Noise Process: is a random process {X t, t 0} which has: { σ 2 if k = 0 0 if k 0

Pure Random process Pure Random Process or White Noise Process: is a random process {X t, t 0} which has: { σ 2 if k = 0 0 if k 0 MODULE 9: STATIONARY PROCESSES 7 Lecture 2 Autoregressive Processes 1 Moving Average Process Pure Random process Pure Random Process or White Noise Process: is a random process X t, t 0} which has: E[X

More information

A NUMERICAL METHOD TO SOLVE A QUADRATIC CONSTRAINED MAXIMIZATION

A NUMERICAL METHOD TO SOLVE A QUADRATIC CONSTRAINED MAXIMIZATION A NUMERICAL METHOD TO SOLVE A QUADRATIC CONSTRAINED MAXIMIZATION ALIREZA ESNA ASHARI, RAMINE NIKOUKHAH, AND STEPHEN L. CAMPBELL Abstract. The problem of maximizing a quadratic function subject to an ellipsoidal

More information

Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31

Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31 Introduction Classical Control Robust Control u(t) y(t) G u(t) G + y(t) G : nominal model G = G + : plant uncertainty Uncertainty sources : Structured : parametric uncertainty, multimodel uncertainty Unstructured

More information

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3.0 INTRODUCTION The purpose of this chapter is to introduce estimators shortly. More elaborated courses on System Identification, which are given

More information

Denis ARZELIER arzelier

Denis ARZELIER   arzelier COURSE ON LMI OPTIMIZATION WITH APPLICATIONS IN CONTROL PART II.2 LMIs IN SYSTEMS CONTROL STATE-SPACE METHODS PERFORMANCE ANALYSIS and SYNTHESIS Denis ARZELIER www.laas.fr/ arzelier arzelier@laas.fr 15

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

Discrete-Time H Gaussian Filter

Discrete-Time H Gaussian Filter Proceedings of the 17th World Congress The International Federation of Automatic Control Discrete-Time H Gaussian Filter Ali Tahmasebi and Xiang Chen Department of Electrical and Computer Engineering,

More information

PCA with random noise. Van Ha Vu. Department of Mathematics Yale University

PCA with random noise. Van Ha Vu. Department of Mathematics Yale University PCA with random noise Van Ha Vu Department of Mathematics Yale University An important problem that appears in various areas of applied mathematics (in particular statistics, computer science and numerical

More information

Iterative Learning Control Analysis and Design I

Iterative Learning Control Analysis and Design I Iterative Learning Control Analysis and Design I Electronics and Computer Science University of Southampton Southampton, SO17 1BJ, UK etar@ecs.soton.ac.uk http://www.ecs.soton.ac.uk/ Contents Basics Representations

More information

CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER

CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER 114 CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER 5.1 INTRODUCTION Robust control is a branch of control theory that explicitly deals with uncertainty in its approach to controller design. It also refers

More information

Feedback Control of Turbulent Wall Flows

Feedback Control of Turbulent Wall Flows Feedback Control of Turbulent Wall Flows Dipartimento di Ingegneria Aerospaziale Politecnico di Milano Outline Introduction Standard approach Wiener-Hopf approach Conclusions Drag reduction A model problem:

More information

Linear Optimum Filtering: Statement

Linear Optimum Filtering: Statement Ch2: Wiener Filters Optimal filters for stationary stochastic models are reviewed and derived in this presentation. Contents: Linear optimal filtering Principle of orthogonality Minimum mean squared error

More information

Chapter Robust Performance and Introduction to the Structured Singular Value Function Introduction As discussed in Lecture 0, a process is better desc

Chapter Robust Performance and Introduction to the Structured Singular Value Function Introduction As discussed in Lecture 0, a process is better desc Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter Robust

More information

Lecture 4: Analysis of MIMO Systems

Lecture 4: Analysis of MIMO Systems Lecture 4: Analysis of MIMO Systems Norms The concept of norm will be extremely useful for evaluating signals and systems quantitatively during this course In the following, we will present vector norms

More information

Computation. For QDA we need to calculate: Lets first consider the case that

Computation. For QDA we need to calculate: Lets first consider the case that Computation For QDA we need to calculate: δ (x) = 1 2 log( Σ ) 1 2 (x µ ) Σ 1 (x µ ) + log(π ) Lets first consider the case that Σ = I,. This is the case where each distribution is spherical, around the

More information

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control Chapter 3 LQ, LQG and Control System H 2 Design Overview LQ optimization state feedback LQG optimization output feedback H 2 optimization non-stochastic version of LQG Application to feedback system design

More information

Lecture 10 Linear Quadratic Stochastic Control with Partial State Observation

Lecture 10 Linear Quadratic Stochastic Control with Partial State Observation EE363 Winter 2008-09 Lecture 10 Linear Quadratic Stochastic Control with Partial State Observation partially observed linear-quadratic stochastic control problem estimation-control separation principle

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Instructor: Farid Alizadeh Author: Ai Kagawa 12/12/2012

More information

Riccati Equations and Inequalities in Robust Control

Riccati Equations and Inequalities in Robust Control Riccati Equations and Inequalities in Robust Control Lianhao Yin Gabriel Ingesson Martin Karlsson Optimal Control LP4 2014 June 10, 2014 Lianhao Yin Gabriel Ingesson Martin Karlsson (LTH) H control problem

More information

minimize x x2 2 x 1x 2 x 1 subject to x 1 +2x 2 u 1 x 1 4x 2 u 2, 5x 1 +76x 2 1,

minimize x x2 2 x 1x 2 x 1 subject to x 1 +2x 2 u 1 x 1 4x 2 u 2, 5x 1 +76x 2 1, 4 Duality 4.1 Numerical perturbation analysis example. Consider the quadratic program with variables x 1, x 2, and parameters u 1, u 2. minimize x 2 1 +2x2 2 x 1x 2 x 1 subject to x 1 +2x 2 u 1 x 1 4x

More information

Applications of Robust Optimization in Signal Processing: Beamforming and Power Control Fall 2012

Applications of Robust Optimization in Signal Processing: Beamforming and Power Control Fall 2012 Applications of Robust Optimization in Signal Processing: Beamforg and Power Control Fall 2012 Instructor: Farid Alizadeh Scribe: Shunqiao Sun 12/09/2012 1 Overview In this presentation, we study the applications

More information

H-INFINITY CONTROLLER DESIGN FOR A DC MOTOR MODEL WITH UNCERTAIN PARAMETERS

H-INFINITY CONTROLLER DESIGN FOR A DC MOTOR MODEL WITH UNCERTAIN PARAMETERS Engineering MECHANICS, Vol. 18, 211, No. 5/6, p. 271 279 271 H-INFINITY CONTROLLER DESIGN FOR A DC MOTOR MODEL WITH UNCERTAIN PARAMETERS Lukáš Březina*, Tomáš Březina** The proposed article deals with

More information

ADAPTIVE FILTER THEORY

ADAPTIVE FILTER THEORY ADAPTIVE FILTER THEORY Fifth Edition Simon Haykin Communications Research Laboratory McMaster University Hamilton, Ontario, Canada International Edition contributions by Telagarapu Prabhakar Department

More information

Chapter Stability Robustness Introduction Last chapter showed how the Nyquist stability criterion provides conditions for the stability robustness of

Chapter Stability Robustness Introduction Last chapter showed how the Nyquist stability criterion provides conditions for the stability robustness of Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter Stability

More information

Lecture 6. Chapter 8: Robust Stability and Performance Analysis for MIMO Systems. Eugenio Schuster.

Lecture 6. Chapter 8: Robust Stability and Performance Analysis for MIMO Systems. Eugenio Schuster. Lecture 6 Chapter 8: Robust Stability and Performance Analysis for MIMO Systems Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture 6 p. 1/73 6.1 General

More information

MIMO analysis: loop-at-a-time

MIMO analysis: loop-at-a-time MIMO robustness MIMO analysis: loop-at-a-time y 1 y 2 P (s) + + K 2 (s) r 1 r 2 K 1 (s) Plant: P (s) = 1 s 2 + α 2 s α 2 α(s + 1) α(s + 1) s α 2. (take α = 10 in the following numerical analysis) Controller:

More information

Computer Vision Group Prof. Daniel Cremers. 3. Regression

Computer Vision Group Prof. Daniel Cremers. 3. Regression Prof. Daniel Cremers 3. Regression Categories of Learning (Rep.) Learnin g Unsupervise d Learning Clustering, density estimation Supervised Learning learning from a training data set, inference on the

More information

Design of Norm-Optimal Iterative Learning Controllers: The Effect of an Iteration-Domain Kalman Filter for Disturbance Estimation

Design of Norm-Optimal Iterative Learning Controllers: The Effect of an Iteration-Domain Kalman Filter for Disturbance Estimation Design of Norm-Optimal Iterative Learning Controllers: The Effect of an Iteration-Domain Kalman Filter for Disturbance Estimation Nicolas Degen, Autonomous System Lab, ETH Zürich Angela P. Schoellig, University

More information

State estimation of linear dynamic system with unknown input and uncertain observation using dynamic programming

State estimation of linear dynamic system with unknown input and uncertain observation using dynamic programming Control and Cybernetics vol. 35 (2006) No. 4 State estimation of linear dynamic system with unknown input and uncertain observation using dynamic programming by Dariusz Janczak and Yuri Grishin Department

More information

Structured Uncertainty and Robust Performance

Structured Uncertainty and Robust Performance Structured Uncertainty and Robust Performance ELEC 571L Robust Multivariable Control prepared by: Greg Stewart Devron Profile Control Solutions Outline Structured uncertainty: motivating example. Structured

More information

Classifier Complexity and Support Vector Classifiers

Classifier Complexity and Support Vector Classifiers Classifier Complexity and Support Vector Classifiers Feature 2 6 4 2 0 2 4 6 8 RBF kernel 10 10 8 6 4 2 0 2 4 6 Feature 1 David M.J. Tax Pattern Recognition Laboratory Delft University of Technology D.M.J.Tax@tudelft.nl

More information

Optimal discrete-time H /γ 0 filtering and control under unknown covariances

Optimal discrete-time H /γ 0 filtering and control under unknown covariances International Journal of Control ISSN: 0020-7179 (Print) 1366-5820 (Online) Journal homepage: http://www.tandfonline.com/loi/tcon20 Optimal discrete-time H filtering and control under unknown covariances

More information

Gaussian channel. Information theory 2013, lecture 6. Jens Sjölund. 8 May Jens Sjölund (IMT, LiU) Gaussian channel 1 / 26

Gaussian channel. Information theory 2013, lecture 6. Jens Sjölund. 8 May Jens Sjölund (IMT, LiU) Gaussian channel 1 / 26 Gaussian channel Information theory 2013, lecture 6 Jens Sjölund 8 May 2013 Jens Sjölund (IMT, LiU) Gaussian channel 1 / 26 Outline 1 Definitions 2 The coding theorem for Gaussian channel 3 Bandlimited

More information

DISCRETE-TIME ADAPTIVE LQG/LTR CONTROL

DISCRETE-TIME ADAPTIVE LQG/LTR CONTROL DISCRETE-TIME ADAPTIVE LQG/LTR CONTROL DARIUSZ HORLA Poznan University of Technology Inst. of Control and Inf. Eng. ul. Piotrowo 3a, 6-965 Poznan POLAND ANDRZEJ KRÓLIKOWSKI Poznan University of Technology

More information

Probability and Statistics for Final Year Engineering Students

Probability and Statistics for Final Year Engineering Students Probability and Statistics for Final Year Engineering Students By Yoni Nazarathy, Last Updated: May 24, 2011. Lecture 6p: Spectral Density, Passing Random Processes through LTI Systems, Filtering Terms

More information

OPTIMAL ESTIMATION of DYNAMIC SYSTEMS

OPTIMAL ESTIMATION of DYNAMIC SYSTEMS CHAPMAN & HALL/CRC APPLIED MATHEMATICS -. AND NONLINEAR SCIENCE SERIES OPTIMAL ESTIMATION of DYNAMIC SYSTEMS John L Crassidis and John L. Junkins CHAPMAN & HALL/CRC A CRC Press Company Boca Raton London

More information

Singular Value Decomposition Analysis

Singular Value Decomposition Analysis Singular Value Decomposition Analysis Singular Value Decomposition Analysis Introduction Introduce a linear algebra tool: singular values of a matrix Motivation Why do we need singular values in MIMO control

More information

Estimation, Detection, and Identification CMU 18752

Estimation, Detection, and Identification CMU 18752 Estimation, Detection, and Identification CMU 18752 Graduate Course on the CMU/Portugal ECE PhD Program Spring 2008/2009 Instructor: Prof. Paulo Jorge Oliveira pjcro @ isr.ist.utl.pt Phone: +351 21 8418053

More information

INVERSE MODEL APPROACH TO DISTURBANCE REJECTION AND DECOUPLING CONTROLLER DESIGN. Leonid Lyubchyk

INVERSE MODEL APPROACH TO DISTURBANCE REJECTION AND DECOUPLING CONTROLLER DESIGN. Leonid Lyubchyk CINVESTAV Department of Automatic Control November 3, 20 INVERSE MODEL APPROACH TO DISTURBANCE REJECTION AND DECOUPLING CONTROLLER DESIGN Leonid Lyubchyk National Technical University of Ukraine Kharkov

More information

Advanced Digital Signal Processing -Introduction

Advanced Digital Signal Processing -Introduction Advanced Digital Signal Processing -Introduction LECTURE-2 1 AP9211- ADVANCED DIGITAL SIGNAL PROCESSING UNIT I DISCRETE RANDOM SIGNAL PROCESSING Discrete Random Processes- Ensemble Averages, Stationary

More information

LQR, Kalman Filter, and LQG. Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin

LQR, Kalman Filter, and LQG. Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin LQR, Kalman Filter, and LQG Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin May 2015 Linear Quadratic Regulator (LQR) Consider a linear system

More information

Lecture 7 Introduction to Statistical Decision Theory

Lecture 7 Introduction to Statistical Decision Theory Lecture 7 Introduction to Statistical Decision Theory I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 20, 2016 1 / 55 I-Hsiang Wang IT Lecture 7

More information

Auxiliary signal design for failure detection in uncertain systems

Auxiliary signal design for failure detection in uncertain systems Auxiliary signal design for failure detection in uncertain systems R. Nikoukhah, S. L. Campbell and F. Delebecque Abstract An auxiliary signal is an input signal that enhances the identifiability of a

More information

A brief introduction to robust H control

A brief introduction to robust H control A brief introduction to robust H control Jean-Marc Biannic System Control and Flight Dynamics Department ONERA, Toulouse. http://www.onera.fr/staff/jean-marc-biannic/ http://jm.biannic.free.fr/ European

More information

arzelier

arzelier COURSE ON LMI OPTIMIZATION WITH APPLICATIONS IN CONTROL PART II.1 LMIs IN SYSTEMS CONTROL STATE-SPACE METHODS STABILITY ANALYSIS Didier HENRION www.laas.fr/ henrion henrion@laas.fr Denis ARZELIER www.laas.fr/

More information

Lecture 7: Weak Duality

Lecture 7: Weak Duality EE 227A: Conve Optimization and Applications February 7, 2012 Lecture 7: Weak Duality Lecturer: Laurent El Ghaoui 7.1 Lagrange Dual problem 7.1.1 Primal problem In this section, we consider a possibly

More information

Numerical atmospheric turbulence models and LQG control for adaptive optics system

Numerical atmospheric turbulence models and LQG control for adaptive optics system Numerical atmospheric turbulence models and LQG control for adaptive optics system Jean-Pierre FOLCHER, Marcel CARBILLET UMR6525 H. Fizeau, Université de Nice Sophia-Antipolis/CNRS/Observatoire de la Côte

More information

Chapter 7 Interconnected Systems and Feedback: Well-Posedness, Stability, and Performance 7. Introduction Feedback control is a powerful approach to o

Chapter 7 Interconnected Systems and Feedback: Well-Posedness, Stability, and Performance 7. Introduction Feedback control is a powerful approach to o Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 7 Interconnected

More information

ADAPTIVE FILTER THEORY

ADAPTIVE FILTER THEORY ADAPTIVE FILTER THEORY Fourth Edition Simon Haykin Communications Research Laboratory McMaster University Hamilton, Ontario, Canada Front ice Hall PRENTICE HALL Upper Saddle River, New Jersey 07458 Preface

More information

Lecture 6 Positive Definite Matrices

Lecture 6 Positive Definite Matrices Linear Algebra Lecture 6 Positive Definite Matrices Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Spring 2017 2017/6/8 Lecture 6: Positive Definite Matrices

More information

9 Multi-Model State Estimation

9 Multi-Model State Estimation Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof. N. Shimkin 9 Multi-Model State

More information

Chapter 9 Robust Stability in SISO Systems 9. Introduction There are many reasons to use feedback control. As we have seen earlier, with the help of a

Chapter 9 Robust Stability in SISO Systems 9. Introduction There are many reasons to use feedback control. As we have seen earlier, with the help of a Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 9 Robust

More information

2.6 The optimum filtering solution is defined by the Wiener-Hopf equation

2.6 The optimum filtering solution is defined by the Wiener-Hopf equation .6 The optimum filtering solution is defined by the Wiener-opf equation w o p for which the minimum mean-square error equals J min σ d p w o () Combine Eqs. and () into a single relation: σ d p p 1 w o

More information

H 1 optimisation. Is hoped that the practical advantages of receding horizon control might be combined with the robustness advantages of H 1 control.

H 1 optimisation. Is hoped that the practical advantages of receding horizon control might be combined with the robustness advantages of H 1 control. A game theoretic approach to moving horizon control Sanjay Lall and Keith Glover Abstract A control law is constructed for a linear time varying system by solving a two player zero sum dierential game

More information

Math 220: Summer Midterm 1 Questions

Math 220: Summer Midterm 1 Questions Math 220: Summer 2015 Midterm 1 Questions MOST questions will either look a lot like a Homework questions This lists draws your attention to some important types of HW questions. SOME questions will have

More information

Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering. Funded by the NASA Aviation Safety Program June 16, 2003

Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering. Funded by the NASA Aviation Safety Program June 16, 2003 Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering Dan Simon Electrical Engineering Dept. Cleveland State University Cleveland, Ohio Donald L. Simon US Army Research Laboratory

More information

Closed-loop system 2/1/2016. Generally MIMO case. Two-degrees-of-freedom (2 DOF) control structure. (2 DOF structure) The closed loop equations become

Closed-loop system 2/1/2016. Generally MIMO case. Two-degrees-of-freedom (2 DOF) control structure. (2 DOF structure) The closed loop equations become Closed-loop system enerally MIMO case Two-degrees-of-freedom (2 DOF) control structure (2 DOF structure) 2 The closed loop equations become solving for z gives where is the closed loop transfer function

More information

I. D. Landau, A. Karimi: A Course on Adaptive Control Adaptive Control. Part 9: Adaptive Control with Multiple Models and Switching

I. D. Landau, A. Karimi: A Course on Adaptive Control Adaptive Control. Part 9: Adaptive Control with Multiple Models and Switching I. D. Landau, A. Karimi: A Course on Adaptive Control - 5 1 Adaptive Control Part 9: Adaptive Control with Multiple Models and Switching I. D. Landau, A. Karimi: A Course on Adaptive Control - 5 2 Outline

More information

Constrained optimization

Constrained optimization Constrained optimization DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Compressed sensing Convex constrained

More information

RICE UNIVERSITY. System Identication for Robust Control. Huipin Zhang. A Thesis Submitted. in Partial Fulfillment of the. Requirements for the Degree

RICE UNIVERSITY. System Identication for Robust Control. Huipin Zhang. A Thesis Submitted. in Partial Fulfillment of the. Requirements for the Degree RICE UNIVERSITY System Identication for Robust Control by Huipin Zhang A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Master of Science Approved, Thesis Committee: Athanasios

More information

CE 191: Civil and Environmental Engineering Systems Analysis. LEC 05 : Optimality Conditions

CE 191: Civil and Environmental Engineering Systems Analysis. LEC 05 : Optimality Conditions CE 191: Civil and Environmental Engineering Systems Analysis LEC : Optimality Conditions Professor Scott Moura Civil & Environmental Engineering University of California, Berkeley Fall 214 Prof. Moura

More information

A Tutorial on Data Reduction. Principal Component Analysis Theoretical Discussion. By Shireen Elhabian and Aly Farag

A Tutorial on Data Reduction. Principal Component Analysis Theoretical Discussion. By Shireen Elhabian and Aly Farag A Tutorial on Data Reduction Principal Component Analysis Theoretical Discussion By Shireen Elhabian and Aly Farag University of Louisville, CVIP Lab November 2008 PCA PCA is A backbone of modern data

More information

Optimal State Estimators for Linear Systems with Unknown Inputs

Optimal State Estimators for Linear Systems with Unknown Inputs Optimal tate Estimators for Linear ystems with Unknown Inputs hreyas undaram and Christoforos N Hadjicostis Abstract We present a method for constructing linear minimum-variance unbiased state estimators

More information

Network Degree Distribution Inference Under Sampling

Network Degree Distribution Inference Under Sampling Network Degree Distribution Inference Under Sampling Aleksandrina Goeva 1 Eric Kolaczyk 1 Rich Lehoucq 2 1 Department of Mathematics and Statistics, Boston University 2 Sandia National Labs August 18,

More information

Robust Efficient Frontier Analysis with a Separable Uncertainty Model

Robust Efficient Frontier Analysis with a Separable Uncertainty Model Robust Efficient Frontier Analysis with a Separable Uncertainty Model Seung-Jean Kim Stephen Boyd October 2007 Abstract Mean-variance (MV) analysis is often sensitive to model mis-specification or uncertainty,

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #11 Wednesday, January 28, 2004 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Relative Stability: Stability

More information

Tutorial on Convex Optimization: Part II

Tutorial on Convex Optimization: Part II Tutorial on Convex Optimization: Part II Dr. Khaled Ardah Communications Research Laboratory TU Ilmenau Dec. 18, 2018 Outline Convex Optimization Review Lagrangian Duality Applications Optimal Power Allocation

More information

IDENTIFICATION FOR CONTROL

IDENTIFICATION FOR CONTROL IDENTIFICATION FOR CONTROL Raymond A. de Callafon, University of California San Diego, USA Paul M.J. Van den Hof, Delft University of Technology, the Netherlands Keywords: Controller, Closed loop model,

More information

Lecture 9: Input Disturbance A Design Example Dr.-Ing. Sudchai Boonto

Lecture 9: Input Disturbance A Design Example Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand d u g r e u K G y The sensitivity S is the transfer function

More information

Structures in Seismic Zones. J. Georey Chase 2. This paper presents the ndings of a study devoted to a comparison of the eectiveness

Structures in Seismic Zones. J. Georey Chase 2. This paper presents the ndings of a study devoted to a comparison of the eectiveness Comparison of LQR and H1 Algorithms for Vibration Control of Structures in Seismic Zones Abstract H. Allison Smith 1 (Assoc. Member) J. Georey Chase 2 This paper presents the ndings of a study devoted

More information

Online monitoring of MPC disturbance models using closed-loop data

Online monitoring of MPC disturbance models using closed-loop data Online monitoring of MPC disturbance models using closed-loop data Brian J. Odelson and James B. Rawlings Department of Chemical Engineering University of Wisconsin-Madison Online Optimization Based Identification

More information

Robust portfolio selection under norm uncertainty

Robust portfolio selection under norm uncertainty Wang and Cheng Journal of Inequalities and Applications (2016) 2016:164 DOI 10.1186/s13660-016-1102-4 R E S E A R C H Open Access Robust portfolio selection under norm uncertainty Lei Wang 1 and Xi Cheng

More information

Track-Following Control Design and Implementation for Hard Disk Drives with Missing Samples

Track-Following Control Design and Implementation for Hard Disk Drives with Missing Samples Track-Following Control Design and Implementation for Hard Disk Drives with Missing Samples Jianbin Nie Edgar Sheh Roberto Horowitz Department of Mechanical Engineering, University of California, Berkeley,

More information

ROBUST STABILITY AND PERFORMANCE ANALYSIS* [8 # ]

ROBUST STABILITY AND PERFORMANCE ANALYSIS* [8 # ] ROBUST STABILITY AND PERFORMANCE ANALYSIS* [8 # ] General control configuration with uncertainty [8.1] For our robustness analysis we use a system representation in which the uncertain perturbations are

More information

Constrained data assimilation. W. Carlisle Thacker Atlantic Oceanographic and Meteorological Laboratory Miami, Florida USA

Constrained data assimilation. W. Carlisle Thacker Atlantic Oceanographic and Meteorological Laboratory Miami, Florida USA Constrained data assimilation W. Carlisle Thacker Atlantic Oceanographic and Meteorological Laboratory Miami, Florida 33149 USA Plan Range constraints: : HYCOM layers have minimum thickness. Optimal interpolation:

More information

Stationary Graph Processes: Nonparametric Spectral Estimation

Stationary Graph Processes: Nonparametric Spectral Estimation Stationary Graph Processes: Nonparametric Spectral Estimation Santiago Segarra, Antonio G. Marques, Geert Leus, and Alejandro Ribeiro Dept. of Signal Theory and Communications King Juan Carlos University

More information

Robust Internal Model Control for Impulse Elimination of Singular Systems

Robust Internal Model Control for Impulse Elimination of Singular Systems International Journal of Control Science and Engineering ; (): -7 DOI:.59/j.control.. Robust Internal Model Control for Impulse Elimination of Singular Systems M. M. Share Pasandand *, H. D. Taghirad Department

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

Control For Hard Disk Drives With An Irregular Sampling Rate

Control For Hard Disk Drives With An Irregular Sampling Rate 211 American Control Conference on O'Farrell Street, San Francisco, CA, USA June 29 - July 1, 211 Optimal H Control For Hard Disk Drives With An Irregular Sampling Rate Jianbin Nie, Edgar Sheh, and Roberto

More information

6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski. Solutions to Problem Set 1 1. Massachusetts Institute of Technology

6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski. Solutions to Problem Set 1 1. Massachusetts Institute of Technology Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Solutions to Problem Set 1 1 Problem 1.1T Consider the

More information

Subspace-based Identification

Subspace-based Identification of Infinite-dimensional Multivariable Systems from Frequency-response Data Department of Electrical and Electronics Engineering Anadolu University, Eskişehir, Turkey October 12, 2008 Outline 1 2 3 4 Noise-free

More information

Singular Value Decomposition of the frequency response operator

Singular Value Decomposition of the frequency response operator Measures of input-output amplification (across frequency) Largest singular value Hilbert-Schmidt norm (power spectral density) Systems with one spatial variable Two point boundary value problems EE 8235:

More information

Stability theory is a fundamental topic in mathematics and engineering, that include every

Stability theory is a fundamental topic in mathematics and engineering, that include every Stability Theory Stability theory is a fundamental topic in mathematics and engineering, that include every branches of control theory. For a control system, the least requirement is that the system is

More information

FIXED-INTERVAL smoothers (see [1] [10]) can outperform

FIXED-INTERVAL smoothers (see [1] [10]) can outperform IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 54, NO 3, MARCH 2006 1069 Optimal Robust Noncausal Filter Formulations Garry A Einicke, Senior Member, IEEE Abstract The paper describes an optimal minimum-variance

More information