INVERSE MODEL APPROACH TO DISTURBANCE REJECTION AND DECOUPLING CONTROLLER DESIGN. Leonid Lyubchyk

Size: px
Start display at page:

Download "INVERSE MODEL APPROACH TO DISTURBANCE REJECTION AND DECOUPLING CONTROLLER DESIGN. Leonid Lyubchyk"

Transcription

1 CINVESTAV Department of Automatic Control November 3, 20 INVERSE MODEL APPROACH TO DISTURBANCE REJECTION AND DECOUPLING CONTROLLER DESIGN Leonid Lyubchyk National Technical University of Ukraine Kharkov Polytechnic Institute

2 2 CONTENTS Disturbance decoupling controller design problem UIO based disturbance observer design Structural synthesis Parametric synthesis Disturbance decoupling controller (DDC) design DDC existence conditions Structural singularity: DDC with fast filter Closed-loop system with DDC analysis

3 Methods of disturbance influence reduction Disturbance attenuation methods 3 - Methods LQ and LQG optimization, N. Wiener, R. Kalman - Methods H optimization, G. Zames, J. Doyle, B. Francis - Methods of invariant sets, F. Blanchini, A.B. Kurzhansky - Invariant ellipsoids technique, B.T. Polyak, A.S. Poznyak - liner matrix inequalities, S. Boyd Disturbance rejection methods - Feed-forward control, Jean-Victor Poncelet, Invariance theory, G.V. Shipanov, Combined control, A.G. Ivachnenko, Two channelship principle, B.N. Petrov, Disturbance observer, C. Johnson, 97 - Internal model control, B. Francis, W. Wonham, Disturbance absorption, Ya.Z. Tsypkin, 99

4 4 Disturbance rejection problem Plant (controlled object) x y Ax Cx, Bu y m Nw Mx Disturbance w w w c } Control law u F y ) w ( m { w Control process w y, performance index v ( y) Find control u u, so that v( y ) min, u u and closed-loop system x Ax BF ( ym ) Nw will be stable. v ( y ) 0 absolute invariance v ( y ) - invariance under the stability and robustness requirements Attainable level of disturbance rejection lim v( y ) v( y ) ( w, ), w w, { A, B, C}

5 Control structures for disturbance rejection 5 Feedback control Disturbance attenuation Feedback / feedforward control Disturbance compensation

6 Control system with disturbance observer structure 6

7 Output control problem 7 Consider a linear multivariable system described by the state-space model x( t ) Ax( t ) Bu( t ) Nf ( x( t ),t ), y ( t ) Cx( t ), y ( t ) Mx( t ), c m () q R - unknown distur- n m where x(t ) R - state vector, u(t ) R - control, f ( x(t ),t ) bance from certain class f ( x( t ),t ) = f, f c f x c f, 2 c r y ( t ) R, y m( t ) p R, - output controlled and measured variables respectively. We will assume that rank B m, rank C r, rank N q, rank M p. S ( ) CA B, Matrices CB S MN( 2 ) MA N are known as Markov parameters of system (). The integers, 2 are relative orders of control and disturbance transfer functions i.e. the minimal integers so that S CB( ) 0, S MN( 2 ) 0. 2

8 8 Output control problem Let the following assumptions take place: (a) rank B rank S ( ) r, CB (b) rank N rank S ( ) p. MN 2 (2) Without loss of generality for simplicity reason we will assume that 2 and use the notation S CB( ) S CB, S MN( ) S MN. The control problem is to find the control u( t ), depending from the measured variables, which ensure the reference signal reference model disturbances from certain class. Formally the control goal is * * y ( t ) tracking, which formed by the given y ( t ) A y ( t ) y ref ( t ) and disturbance f (( x ),t ) decoupling for all lim e (t ), t, where e c(t ) y (t ) y c(t ) - control error, constant. c * * - pre-established sufficiently small

9 Inverse model based disturbance observer design 9 The first step of the DDC design procedure is the state and disturbance observer n p design using UIO approach. Let z(t ) Rx(t ) R be an aggregated auxiliary variables, where R is the appropriate aggregate matrix such as Then the state vector estimation may be obtained as follows T T rank M R n. y m z M R x, M R ( P Q), ˆx(t ) Py m(t ) Qx(t ) (3) where matrices n p n n p P R, Q R are defined as MP I, RQ I, PM QR I, p n p n MQ 0, RP 0. p,n p n p,p (4)

10 Unknown input observer. Structural synthesis 0 The aggregated vector estimation x( t ) is given by minimal-order UIO x( t ) Fx( t ) G y ( t ) Hy ( t ) G u( t ). (5) m m 0 The UIO parameters are determined from invariance conditions R HM A F R HM GM, RN HMN 0,G RB 0,G G FH. 0 (6) If assumption (2b) takes place, a solution of (5) may be obtained as F RΠ AQ, G RB, G RΠ AP, N 0 H RNS, Π I BS M, MN N n MN N (7)

11 Inverse model-based disturbance observer Taking the unknown disturbance estimation in the form ˆ ˆ ˆ f ( t ) N x( t ) Ax( t ) Bu( t ). (8) The minimal-order state and disturbance observer (SDO) equation: x(t ) RΠN AQx(t ) RΠN APy m(t ) RNSMN y m(t ) RΠN Bu(t ), ˆf ( t ) C ( y ( t ) MAQx( t ) MAPy ( t ) S u( t )), N m m MB C S N PΩ. N MN N The estimation errors x e (t ) x(t ) x(t ˆ ), e ˆ f ( t ) f ( x,t ) f ( t ) (9) e ( t ) F R e ( t ), e ( t ) Qe ( t ), x x x x e ( t ) C MAQe ( t ). f N x (0)

12 Unknown input observer. Parametric synthesis Concretely define the matrices P I, Q, than with p 0 p,n p P Q P Q, P Q 2 2 R Q2 P2 I n p and P, Q 2 2 are arbitrary matrices with det Q 2 0. For system representation A A N A, M I, N A A N 2 p 0n p,p the observer dynamics matrix has the form: F R Q A P A Q, A A, A A N N A 2 N Ω I N N. N q p n p () (2)

13 Unknown input observer. Parametric synthesis 3 Thus the matrix Q 2 defines the similarity transformation and doesn t change the n p p spectrum of F R, which completely determined by arbitrary matrixp 2 R. The last may be choused by pole placement method if pair ( A 22,A 2) is observable. Such a condition is equivalent to the well-known UIO design solvability condition, namely observable of matrix pair ( Π, M ). The aggregate matrix R is determined up to an N arbitrary nonsingular matrix Q 2. F R) Q( A P A ) Q ( P2 Tuning parameters UIO pole placement Solvability conditions ( F( P * * * 2)) (... n p ) ( A 22, A 2 ) is observable

14 Regularized disturbance observer design 4 The observability condition is violated in the case when p q. Ω N 0 and F( R ) doesn t depend from P 2. At that In such singular case for the tuning properties guarantee it is possible to use the socalled regularized UIO, which ensure the appriximately invariance with respect the the unknown disturbance where 2 2 RN HCN H min (3) H 0 -regularization parameter. Then T T q MN MN N n H RNS I S S, Π I H M (4)

15 Regularized SDO design problem solution 5 F A P Ω A, A A N Ψ A, N 22 2 N N 2 T T q Ψ N I N N, T T T N q q q Ω I N N I N N I N N. (5) Estimation error equations for the regularized state and disturbance observer are the following: T x x q MN MN e ( t ) F e ( t ) RN I S S f ( x,t ), e ( t ) N PΩ H MAQe ( t ) f N N x T n q MN MN N I PM I S S f ( x,t ) and for small value of may be done sufficiently small. (6)

16 Disturbance compensator design 6 The disturbance compensative control is a function of reference signal and disturbance estimation in the form of TDF controller. In the usual case of square plant (r m ) under the assumption (2a) * u ( t ) S ( y ( t ) C x( t ) S ˆf ( t )), C A C CA. (7) CB ref Aˆ CN A If system structure non-singularity condition take place rank S m q, S m CB CN I S S S S I MN MB q (8) then disturbance estimation may be eliminated from the controller equation and DDC has the form of two-degree-of-freedom controller.

17 Disturbance decoupling controller design DDC equations are: S CN 0 0 N N N m N B ref CB ref A CB A N N m x( t ) F x( t ) RΠ A ( PΩ H )y ( t ) Π H y ( t ), (9) * det S ( C, B, N, M ) 0, u ( t ) S ( y ( t ) C Qx( t )) S C ( PΩ H )y ( t )), N B A B CB N MN F RΠ A Q, A A H C, H BS, H NS. det S ( C, B, N, M ) 0 The realizable controller may be obtained using the disturbance estimations dynamically transformed by the internal dynamic filter: * u ( t ) S CB( y ( t ) CAx( ˆ t ) SCN f ( t )) 0, 0 - small filter parameters (20) f ( t ) f ( t ) ( ) ˆf ( t ), DDC equations are: * u( t ) u( t ) ( )( ( t ) SCBS CN 2( t )), u ( t ) u( t ) ( t ), CB ref Aˆ 2 N m m ( t ) S ( y ( t ) C x( t )), ( t ) C ( y ( t ) MAQx( t ) MAPy ( t )). 0 7 (2)

18 Disturbance decoupling controller with fast filter structure 8

19 Closed-loop system with disturbance decoupling controller analysis 9 If system structural matrix S is nonsingular, the closed-loop system equation is: 0 0 x( t ) A x( t ) Π Nf ( t ) H y ( t ) Le ( t ), B B ref x A A H C Π A H A C, B A B B * (22) * The control goal is achieved with 0, if closed-loop system (22) is stable, e (t ) tends to zero due to properties of UIO. because x 0 For nonminimum-phase systems, matrix A is unstable. The problem of closedloop system stabilizing arises, moreover simple additional state feedback * ˆ u(t ) u (t ) Kx(t ) doesn t change closed-loop matrix spectrum because Π ( A BK ) 0. B In such a case the local optimal control method may be applied.

20 Local optimal control for disturbance rejection y ( t ) C Ax( ˆ t ) S u( t ) S ˆf ( t ) u( t ) min (23) ref A CB CN The corresponding control law is given by u * u ( t ) D y ( t ) C Ax( ˆ t ) S ˆf ( t ) ref A CN * T T CB m CB CB CB D S u ( t ), D I S S S, (24) From (23) the equation of closed-loop system follows 0 0 x( t ) A ( )x( t ) BD y ( t ) Π Nf ( x,t ) L e ( t ), B n A B ref B x A ( ) A BD C Π A BD A C, Π I BD C. * (25)

21 Closed-loop system properties 2 Using the combined control * ˆ u(t ) u (t ) Kx(t ) find that T 0 0 m CB CB A (,K ) A ( ) B K, B B I S S, Closed-loop system with combined control may be stabilized, if matrix pair A 0( ), B is controllable. The control error is given by * T * c c CB m CB CB e ( t ) A e ( t ) S I S S u ( t ) (26) and control goal is achieved with * ( ). Attainable accuracy of control

22 22 Closed-loop two-time-scale system For the structural singular plant closed-loop system with DDC includes internal filter Singular perturbation 0 x( t ) A x( t ) Nf ( x( t ),t ) H S f ( t ) H y ( t ) Le ( t ), B CN B ref x f ( t ) f ( t ) ( ) f ( x( t ),t ) ( )e ( t ) (27) f The closed-loop system (27) is two-time scale system, in which slow motion under 0 coincides with the process in the system with ideal DDC and the fast one satisfied the dynamic equation: 0 0 E( )x( t ) A x( t ) B f ( x( t )). (28) 0 0 B CN 0 In 0 A H S N E( ), A, B. 0 I 0 I ( )I m q,n q q

23 Robust decoupling controller design 23 Fast motion stability problem reduced to the absolute stability problem of system (28) with nonlinearities from certain class. For the particular case of linear state-dependent uncertain disturbance f ( x(t ),t ) Ax(t ), where A, A c A is the system () dynamic matrix perturbation 0 0 A N A HBSCN A ( A ) (29) ( ) A Iq and fast motion stability analysis reduced to the robust stability problem 0 Re ( A ( )) -, c. (30) A A A

24 Disturbance decoupling controller existence conditions 24 Invertability conditions (a) rank B rank S ( ) r, CB (b) rank N rank S ( ) p. MN 2 Structural nonsingularity conditions rank S m q, S m C S CB CN I S S I N MB q Input (strong) observability conditions det 0, Iq CN SMBSCBSCN NA, M is observable (detectable)

25 DD existence conditions extension 25

26 Example. Magnetic suspension disturbance rejection control Linearized mathematical model of the system x ( t ) x ( t ) 0 0 x 2( t ) 0 0 h x 2( t ) 0 0 u( t ) f 2( t ), x ( t ) a a a 0 x ( t ) b f ( t ) v f ( t ) c m m 3 y ( t ) x ( t ), y ( t ) x ( t ), y ( t ) x ( t ) where input f ( t) ( t) and state-dependent disturbances f 2 ( t) f ( x( t), u( t)), characterized the external forces and system's non-stationary parameters variations. 26 Control problem: using the measurements y m ( t) x( t), y m ( t) x3( t) find the control function u (t) so that the controlled output y c(t ) x (t ) (deviation from the desired position) tracks the signal, generated by reference model y (t ) 2y (t ) y (t ) 0y (t ) 0. 2

27 27

28 28

29 29

30 30

31 3

32 32

33 33

34 34

35 35 The designed DD controller has the structure of multivariable PI-controller with small parameters

36 PI controller Simulation results 36

37 Disturbance estimation by PI and UI observers 37

38 UIO based disturbance compensative controller 38

39 Disturbance decoupling controller 39

40 Example. Chaotic oscillator synchronisation 40

41 4

42 42

43 / 43

44 Conclusion 44 Disturbance decoupling compensator (DDC) design method for multivariable systems measurements is proposed using the UIO technique. The design procedure includes state and disturbance observer design and disturbance compensator design. If system structure non-singularity conditions take place, the disturbance estimation may be eliminated from the control law and DDC equations are obtained in the explicit form. For the case when such a conditions are violated the realizable form of the DDC should be included additional internal dynamic filter with small time constant. For two-time-scale closed-loop system if the fast motion is stable the slow one coincides with the processes in the system with ideal compensator.

45 Thank you for your attention! 45

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:

More information

Design Methods for Control Systems

Design Methods for Control Systems Design Methods for Control Systems Maarten Steinbuch TU/e Gjerrit Meinsma UT Dutch Institute of Systems and Control Winter term 2002-2003 Schedule November 25 MSt December 2 MSt Homework # 1 December 9

More information

Spectral factorization and H 2 -model following

Spectral factorization and H 2 -model following Spectral factorization and H 2 -model following Fabio Morbidi Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA MTNS - July 5-9, 2010 F. Morbidi (Northwestern Univ.) MTNS

More information

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control Chapter 3 LQ, LQG and Control System H 2 Design Overview LQ optimization state feedback LQG optimization output feedback H 2 optimization non-stochastic version of LQG Application to feedback system design

More information

LMIs for Observability and Observer Design

LMIs for Observability and Observer Design LMIs for Observability and Observer Design Matthew M. Peet Arizona State University Lecture 06: LMIs for Observability and Observer Design Observability Consider a system with no input: ẋ(t) = Ax(t), x(0)

More information

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1)

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1) EL 625 Lecture 0 EL 625 Lecture 0 Pole Placement and Observer Design Pole Placement Consider the system ẋ Ax () The solution to this system is x(t) e At x(0) (2) If the eigenvalues of A all lie in the

More information

Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2015

Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2015 Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 15 Asymptotic approach from time-varying to constant gains Elimination of cross weighting

More information

Discussion on: Measurable signal decoupling with dynamic feedforward compensation and unknown-input observation for systems with direct feedthrough

Discussion on: Measurable signal decoupling with dynamic feedforward compensation and unknown-input observation for systems with direct feedthrough Discussion on: Measurable signal decoupling with dynamic feedforward compensation and unknown-input observation for systems with direct feedthrough H.L. Trentelman 1 The geometric approach In the last

More information

Min-Max Output Integral Sliding Mode Control for Multiplant Linear Uncertain Systems

Min-Max Output Integral Sliding Mode Control for Multiplant Linear Uncertain Systems Proceedings of the 27 American Control Conference Marriott Marquis Hotel at Times Square New York City, USA, July -3, 27 FrC.4 Min-Max Output Integral Sliding Mode Control for Multiplant Linear Uncertain

More information

D(s) G(s) A control system design definition

D(s) G(s) A control system design definition R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure

More information

TRACKING AND DISTURBANCE REJECTION

TRACKING AND DISTURBANCE REJECTION TRACKING AND DISTURBANCE REJECTION Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 13 General objective: The output to track a reference

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #17 16.31 Feedback Control Systems Deterministic LQR Optimal control and the Riccati equation Weight Selection Fall 2007 16.31 17 1 Linear Quadratic Regulator (LQR) Have seen the solutions to the

More information

CONTROL DESIGN FOR SET POINT TRACKING

CONTROL DESIGN FOR SET POINT TRACKING Chapter 5 CONTROL DESIGN FOR SET POINT TRACKING In this chapter, we extend the pole placement, observer-based output feedback design to solve tracking problems. By tracking we mean that the output is commanded

More information

Chap. 3. Controlled Systems, Controllability

Chap. 3. Controlled Systems, Controllability Chap. 3. Controlled Systems, Controllability 1. Controllability of Linear Systems 1.1. Kalman s Criterion Consider the linear system ẋ = Ax + Bu where x R n : state vector and u R m : input vector. A :

More information

Time-Invariant Linear Quadratic Regulators!

Time-Invariant Linear Quadratic Regulators! Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 17 Asymptotic approach from time-varying to constant gains Elimination of cross weighting

More information

Pole placement control: state space and polynomial approaches Lecture 2

Pole placement control: state space and polynomial approaches Lecture 2 : state space and polynomial approaches Lecture 2 : a state O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.fr www.gipsa-lab.fr/ o.sename -based November 21, 2017 Outline : a state

More information

LQR, Kalman Filter, and LQG. Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin

LQR, Kalman Filter, and LQG. Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin LQR, Kalman Filter, and LQG Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin May 2015 Linear Quadratic Regulator (LQR) Consider a linear system

More information

State Feedback and State Estimators Linear System Theory and Design, Chapter 8.

State Feedback and State Estimators Linear System Theory and Design, Chapter 8. 1 Linear System Theory and Design, http://zitompul.wordpress.com 2 0 1 4 2 Homework 7: State Estimators (a) For the same system as discussed in previous slides, design another closed-loop state estimator,

More information

Zeros and zero dynamics

Zeros and zero dynamics CHAPTER 4 Zeros and zero dynamics 41 Zero dynamics for SISO systems Consider a linear system defined by a strictly proper scalar transfer function that does not have any common zero and pole: g(s) =α p(s)

More information

DESIGN OF ROBUST CONTROL SYSTEM FOR THE PMS MOTOR

DESIGN OF ROBUST CONTROL SYSTEM FOR THE PMS MOTOR Journal of ELECTRICAL ENGINEERING, VOL 58, NO 6, 2007, 326 333 DESIGN OF ROBUST CONTROL SYSTEM FOR THE PMS MOTOR Ahmed Azaiz Youcef Ramdani Abdelkader Meroufel The field orientation control (FOC) consists

More information

Every real system has uncertainties, which include system parametric uncertainties, unmodeled dynamics

Every real system has uncertainties, which include system parametric uncertainties, unmodeled dynamics Sensitivity Analysis of Disturbance Accommodating Control with Kalman Filter Estimation Jemin George and John L. Crassidis University at Buffalo, State University of New York, Amherst, NY, 14-44 The design

More information

FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES. Danlei Chu, Tongwen Chen, Horacio J. Marquez

FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES. Danlei Chu, Tongwen Chen, Horacio J. Marquez FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES Danlei Chu Tongwen Chen Horacio J Marquez Department of Electrical and Computer Engineering University of Alberta Edmonton

More information

and the nite horizon cost index with the nite terminal weighting matrix F > : N?1 X J(z r ; u; w) = [z(n)? z r (N)] T F [z(n)? z r (N)] + t= [kz? z r

and the nite horizon cost index with the nite terminal weighting matrix F > : N?1 X J(z r ; u; w) = [z(n)? z r (N)] T F [z(n)? z r (N)] + t= [kz? z r Intervalwise Receding Horizon H 1 -Tracking Control for Discrete Linear Periodic Systems Ki Baek Kim, Jae-Won Lee, Young Il. Lee, and Wook Hyun Kwon School of Electrical Engineering Seoul National University,

More information

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control 6.241 Dynamic Systems and Control Lecture 24: H2 Synthesis Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology May 4, 2011 E. Frazzoli (MIT) Lecture 24: H 2 Synthesis May

More information

Australian Journal of Basic and Applied Sciences, 3(4): , 2009 ISSN Modern Control Design of Power System

Australian Journal of Basic and Applied Sciences, 3(4): , 2009 ISSN Modern Control Design of Power System Australian Journal of Basic and Applied Sciences, 3(4): 4267-4273, 29 ISSN 99-878 Modern Control Design of Power System Atef Saleh Othman Al-Mashakbeh Tafila Technical University, Electrical Engineering

More information

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08 Fall 2007 線性系統 Linear Systems Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian NTU-EE Sep07 Jan08 Materials used in these lecture notes are adopted from Linear System Theory & Design, 3rd.

More information

Synthesis of Controllers for Non-minimum Phase and Unstable Systems Using Non-sequential MIMO Quantitative Feedback Theory

Synthesis of Controllers for Non-minimum Phase and Unstable Systems Using Non-sequential MIMO Quantitative Feedback Theory Synthesis of Controllers for Non-minimum Phase and Unstable Systems Using Non-sequential MIMO Quantitative Feedback Theory Chen-yang Lan Murray L Kerr Suhada Jayasuriya * Graduate Student Graduate Student

More information

Problem Set 4 Solution 1

Problem Set 4 Solution 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Problem Set 4 Solution Problem 4. For the SISO feedback

More information

Problem Set 5 Solutions 1

Problem Set 5 Solutions 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Problem Set 5 Solutions The problem set deals with Hankel

More information

1. Find the solution of the following uncontrolled linear system. 2 α 1 1

1. Find the solution of the following uncontrolled linear system. 2 α 1 1 Appendix B Revision Problems 1. Find the solution of the following uncontrolled linear system 0 1 1 ẋ = x, x(0) =. 2 3 1 Class test, August 1998 2. Given the linear system described by 2 α 1 1 ẋ = x +

More information

Exam. 135 minutes, 15 minutes reading time

Exam. 135 minutes, 15 minutes reading time Exam August 6, 208 Control Systems II (5-0590-00) Dr. Jacopo Tani Exam Exam Duration: 35 minutes, 5 minutes reading time Number of Problems: 35 Number of Points: 47 Permitted aids: 0 pages (5 sheets) A4.

More information

Chapter 9 Observers, Model-based Controllers 9. Introduction In here we deal with the general case where only a subset of the states, or linear combin

Chapter 9 Observers, Model-based Controllers 9. Introduction In here we deal with the general case where only a subset of the states, or linear combin Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 9 Observers,

More information

Lecture 7 : Generalized Plant and LFT form Dr.-Ing. Sudchai Boonto Assistant Professor

Lecture 7 : Generalized Plant and LFT form Dr.-Ing. Sudchai Boonto Assistant Professor Dr.-Ing. Sudchai Boonto Assistant Professor Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand Linear Quadratic Gaussian The state space

More information

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL 1. Optimal regulator with noisy measurement Consider the following system: ẋ = Ax + Bu + w, x(0) = x 0 where w(t) is white noise with Ew(t) = 0, and x 0 is a stochastic

More information

Automatic Control II Computer exercise 3. LQG Design

Automatic Control II Computer exercise 3. LQG Design Uppsala University Information Technology Systems and Control HN,FS,KN 2000-10 Last revised by HR August 16, 2017 Automatic Control II Computer exercise 3 LQG Design Preparations: Read Chapters 5 and 9

More information

MIMO analysis: loop-at-a-time

MIMO analysis: loop-at-a-time MIMO robustness MIMO analysis: loop-at-a-time y 1 y 2 P (s) + + K 2 (s) r 1 r 2 K 1 (s) Plant: P (s) = 1 s 2 + α 2 s α 2 α(s + 1) α(s + 1) s α 2. (take α = 10 in the following numerical analysis) Controller:

More information

Integral action in state feedback control

Integral action in state feedback control Automatic Control 1 in state feedback control Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 21-211 1 /

More information

EEE582 Homework Problems

EEE582 Homework Problems EEE582 Homework Problems HW. Write a state-space realization of the linearized model for the cruise control system around speeds v = 4 (Section.3, http://tsakalis.faculty.asu.edu/notes/models.pdf). Use

More information

3.1 Overview 3.2 Process and control-loop interactions

3.1 Overview 3.2 Process and control-loop interactions 3. Multivariable 3.1 Overview 3.2 and control-loop interactions 3.2.1 Interaction analysis 3.2.2 Closed-loop stability 3.3 Decoupling control 3.3.1 Basic design principle 3.3.2 Complete decoupling 3.3.3

More information

Linear System Theory

Linear System Theory Linear System Theory Wonhee Kim Chapter 6: Controllability & Observability Chapter 7: Minimal Realizations May 2, 217 1 / 31 Recap State space equation Linear Algebra Solutions of LTI and LTV system Stability

More information

Static Output Feedback Stabilisation with H Performance for a Class of Plants

Static Output Feedback Stabilisation with H Performance for a Class of Plants Static Output Feedback Stabilisation with H Performance for a Class of Plants E. Prempain and I. Postlethwaite Control and Instrumentation Research, Department of Engineering, University of Leicester,

More information

EL2520 Control Theory and Practice

EL2520 Control Theory and Practice EL2520 Control Theory and Practice Lecture 8: Linear quadratic control Mikael Johansson School of Electrical Engineering KTH, Stockholm, Sweden Linear quadratic control Allows to compute the controller

More information

Intro. Computer Control Systems: F8

Intro. Computer Control Systems: F8 Intro. Computer Control Systems: F8 Properties of state-space descriptions and feedback Dave Zachariah Dept. Information Technology, Div. Systems and Control 1 / 22 dave.zachariah@it.uu.se F7: Quiz! 2

More information

A Simple Derivation of Right Interactor for Tall Transfer Function Matrices and its Application to Inner-Outer Factorization Continuous-Time Case

A Simple Derivation of Right Interactor for Tall Transfer Function Matrices and its Application to Inner-Outer Factorization Continuous-Time Case A Simple Derivation of Right Interactor for Tall Transfer Function Matrices and its Application to Inner-Outer Factorization Continuous-Time Case ATARU KASE Osaka Institute of Technology Department of

More information

LINEAR QUADRATIC GAUSSIAN

LINEAR QUADRATIC GAUSSIAN ECE553: Multivariable Control Systems II. LINEAR QUADRATIC GAUSSIAN.: Deriving LQG via separation principle We will now start to look at the design of controllers for systems Px.t/ D A.t/x.t/ C B u.t/u.t/

More information

Comparison of four state observer design algorithms for MIMO system

Comparison of four state observer design algorithms for MIMO system Archives of Control Sciences Volume 23(LIX), 2013 No. 2, pages 131 144 Comparison of four state observer design algorithms for MIMO system VINODH KUMAR. E, JOVITHA JEROME and S. AYYAPPAN A state observer

More information

5. Observer-based Controller Design

5. Observer-based Controller Design EE635 - Control System Theory 5. Observer-based Controller Design Jitkomut Songsiri state feedback pole-placement design regulation and tracking state observer feedback observer design LQR and LQG 5-1

More information

The disturbance decoupling problem (DDP)

The disturbance decoupling problem (DDP) CHAPTER 3 The disturbance decoupling problem (DDP) Consider the system 3.1. Geometric formulation { ẋ = Ax + Bu + Ew y = Cx. Problem 3.1 (Disturbance decoupling). Find a state feedback u = Fx+ v such that

More information

Linear Quadratic Gausssian Control Design with Loop Transfer Recovery

Linear Quadratic Gausssian Control Design with Loop Transfer Recovery Linear Quadratic Gausssian Control Design with Loop Transfer Recovery Leonid Freidovich Department of Mathematics Michigan State University MI 48824, USA e-mail:leonid@math.msu.edu http://www.math.msu.edu/

More information

Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents

Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents Navtech Part #s Volume 1 #1277 Volume 2 #1278 Volume 3 #1279 3 Volume Set #1280 Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents Volume 1 Preface Contents

More information

Linear Quadratic Zero-Sum Two-Person Differential Games Pierre Bernhard June 15, 2013

Linear Quadratic Zero-Sum Two-Person Differential Games Pierre Bernhard June 15, 2013 Linear Quadratic Zero-Sum Two-Person Differential Games Pierre Bernhard June 15, 2013 Abstract As in optimal control theory, linear quadratic (LQ) differential games (DG) can be solved, even in high dimension,

More information

A Control Methodology for Constrained Linear Systems Based on Positive Invariance of Polyhedra

A Control Methodology for Constrained Linear Systems Based on Positive Invariance of Polyhedra A Control Methodology for Constrained Linear Systems Based on Positive Invariance of Polyhedra Jean-Claude HENNET LAAS-CNRS Toulouse, France Co-workers: Marina VASSILAKI University of Patras, GREECE Jean-Paul

More information

Lifted approach to ILC/Repetitive Control

Lifted approach to ILC/Repetitive Control Lifted approach to ILC/Repetitive Control Okko H. Bosgra Maarten Steinbuch TUD Delft Centre for Systems and Control TU/e Control System Technology Dutch Institute of Systems and Control DISC winter semester

More information

Applications of Controlled Invariance to the l 1 Optimal Control Problem

Applications of Controlled Invariance to the l 1 Optimal Control Problem Applications of Controlled Invariance to the l 1 Optimal Control Problem Carlos E.T. Dórea and Jean-Claude Hennet LAAS-CNRS 7, Ave. du Colonel Roche, 31077 Toulouse Cédex 4, FRANCE Phone : (+33) 61 33

More information

Output Regulation of Uncertain Nonlinear Systems with Nonlinear Exosystems

Output Regulation of Uncertain Nonlinear Systems with Nonlinear Exosystems Output Regulation of Uncertain Nonlinear Systems with Nonlinear Exosystems Zhengtao Ding Manchester School of Engineering, University of Manchester Oxford Road, Manchester M3 9PL, United Kingdom zhengtaoding@manacuk

More information

INTEGRATED ARCHITECTURE OF ACTUATOR FAULT DIAGNOSIS AND ACCOMMODATION

INTEGRATED ARCHITECTURE OF ACTUATOR FAULT DIAGNOSIS AND ACCOMMODATION INTEGRATED ARCHITECTURE OF ACTUATOR FAULT DIAGNOSIS AND ACCOMMODATION Rim Hamdaoui, Safa Guesmi, Rafika Elharabi and Med Naceur Abdelkrim UR. Modelling, Analysis and Systems Control, University of Gabes,

More information

State Feedback and State Estimators Linear System Theory and Design, Chapter 8.

State Feedback and State Estimators Linear System Theory and Design, Chapter 8. 1 Linear System Theory and Design, http://zitompul.wordpress.com 2 0 1 4 State Estimator In previous section, we have discussed the state feedback, based on the assumption that all state variables are

More information

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steady-state Steady-state errors errors Type Type k k systems systems Integral Integral

More information

Nonlinear Observers. Jaime A. Moreno. Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México

Nonlinear Observers. Jaime A. Moreno. Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México Nonlinear Observers Jaime A. Moreno JMorenoP@ii.unam.mx Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México XVI Congreso Latinoamericano de Control Automático October

More information

PARAMETERIZATION OF STATE FEEDBACK GAINS FOR POLE PLACEMENT

PARAMETERIZATION OF STATE FEEDBACK GAINS FOR POLE PLACEMENT PARAMETERIZATION OF STATE FEEDBACK GAINS FOR POLE PLACEMENT Hans Norlander Systems and Control, Department of Information Technology Uppsala University P O Box 337 SE 75105 UPPSALA, Sweden HansNorlander@ituuse

More information

ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7)

ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7) EEE582 Topical Outline A.A. Rodriguez Fall 2007 GWC 352, 965-3712 The following represents a detailed topical outline of the course. It attempts to highlight most of the key concepts to be covered and

More information

Partial Eigenvalue Assignment in Linear Systems: Existence, Uniqueness and Numerical Solution

Partial Eigenvalue Assignment in Linear Systems: Existence, Uniqueness and Numerical Solution Partial Eigenvalue Assignment in Linear Systems: Existence, Uniqueness and Numerical Solution Biswa N. Datta, IEEE Fellow Department of Mathematics Northern Illinois University DeKalb, IL, 60115 USA e-mail:

More information

Stability, Pole Placement, Observers and Stabilization

Stability, Pole Placement, Observers and Stabilization Stability, Pole Placement, Observers and Stabilization 1 1, The Netherlands DISC Course Mathematical Models of Systems Outline 1 Stability of autonomous systems 2 The pole placement problem 3 Stabilization

More information

Output Adaptive Model Reference Control of Linear Continuous State-Delay Plant

Output Adaptive Model Reference Control of Linear Continuous State-Delay Plant Output Adaptive Model Reference Control of Linear Continuous State-Delay Plant Boris M. Mirkin and Per-Olof Gutman Faculty of Agricultural Engineering Technion Israel Institute of Technology Haifa 3, Israel

More information

H-Infinity Controller Design for a Continuous Stirred Tank Reactor

H-Infinity Controller Design for a Continuous Stirred Tank Reactor International Journal of Electronic and Electrical Engineering. ISSN 974-2174 Volume 7, Number 8 (214), pp. 767-772 International Research Publication House http://www.irphouse.com H-Infinity Controller

More information

SUCCESSIVE POLE SHIFTING USING SAMPLED-DATA LQ REGULATORS. Sigeru Omatu

SUCCESSIVE POLE SHIFTING USING SAMPLED-DATA LQ REGULATORS. Sigeru Omatu SUCCESSIVE POLE SHIFING USING SAMPLED-DAA LQ REGULAORS oru Fujinaka Sigeru Omatu Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan Abstract: Design of sampled-data

More information

The parameterization of all. of all two-degree-of-freedom strongly stabilizing controllers

The parameterization of all. of all two-degree-of-freedom strongly stabilizing controllers The parameterization stabilizing controllers 89 The parameterization of all two-degree-of-freedom strongly stabilizing controllers Tatsuya Hoshikawa, Kou Yamada 2, Yuko Tatsumi 3, Non-members ABSTRACT

More information

ROBUST PASSIVE OBSERVER-BASED CONTROL FOR A CLASS OF SINGULAR SYSTEMS

ROBUST PASSIVE OBSERVER-BASED CONTROL FOR A CLASS OF SINGULAR SYSTEMS INTERNATIONAL JOURNAL OF INFORMATON AND SYSTEMS SCIENCES Volume 5 Number 3-4 Pages 480 487 c 2009 Institute for Scientific Computing and Information ROBUST PASSIVE OBSERVER-BASED CONTROL FOR A CLASS OF

More information

Multivariable MRAC with State Feedback for Output Tracking

Multivariable MRAC with State Feedback for Output Tracking 29 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 1-12, 29 WeA18.5 Multivariable MRAC with State Feedback for Output Tracking Jiaxing Guo, Yu Liu and Gang Tao Department

More information

Robust Internal Model Control for Impulse Elimination of Singular Systems

Robust Internal Model Control for Impulse Elimination of Singular Systems International Journal of Control Science and Engineering ; (): -7 DOI:.59/j.control.. Robust Internal Model Control for Impulse Elimination of Singular Systems M. M. Share Pasandand *, H. D. Taghirad Department

More information

QFT Framework for Robust Tuning of Power System Stabilizers

QFT Framework for Robust Tuning of Power System Stabilizers 45-E-PSS-75 QFT Framework for Robust Tuning of Power System Stabilizers Seyyed Mohammad Mahdi Alavi, Roozbeh Izadi-Zamanabadi Department of Control Engineering, Aalborg University, Denmark Correspondence

More information

Optimization problems on the rank and inertia of the Hermitian matrix expression A BX (BX) with applications

Optimization problems on the rank and inertia of the Hermitian matrix expression A BX (BX) with applications Optimization problems on the rank and inertia of the Hermitian matrix expression A BX (BX) with applications Yongge Tian China Economics and Management Academy, Central University of Finance and Economics,

More information

A Necessary and Sufficient Condition for High-Frequency Robustness of Non-Strictly-Proper Feedback Systems

A Necessary and Sufficient Condition for High-Frequency Robustness of Non-Strictly-Proper Feedback Systems A Necessary and Sufficient Condition for High-Frequency Robustness of Non-Strictly-Proper Feedback Systems Daniel Cobb Department of Electrical Engineering University of Wisconsin Madison WI 53706-1691

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems by Dr. Guillaume Ducard Fall 2016 Institute for Dynamic Systems and Control ETH Zurich, Switzerland based on script from: Prof. Dr. Lino Guzzella 1/33 Outline 1

More information

Course on Model Predictive Control Part II Linear MPC design

Course on Model Predictive Control Part II Linear MPC design Course on Model Predictive Control Part II Linear MPC design Gabriele Pannocchia Department of Chemical Engineering, University of Pisa, Italy Email: g.pannocchia@diccism.unipi.it Facoltà di Ingegneria,

More information

Theory in Model Predictive Control :" Constraint Satisfaction and Stability!

Theory in Model Predictive Control : Constraint Satisfaction and Stability! Theory in Model Predictive Control :" Constraint Satisfaction and Stability Colin Jones, Melanie Zeilinger Automatic Control Laboratory, EPFL Example: Cessna Citation Aircraft Linearized continuous-time

More information

Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science : MULTIVARIABLE CONTROL SYSTEMS by A.

Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science : MULTIVARIABLE CONTROL SYSTEMS by A. Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Q-Parameterization 1 This lecture introduces the so-called

More information

Research Article State-PID Feedback for Pole Placement of LTI Systems

Research Article State-PID Feedback for Pole Placement of LTI Systems Mathematical Problems in Engineering Volume 211, Article ID 92943, 2 pages doi:1.1155/211/92943 Research Article State-PID Feedback for Pole Placement of LTI Systems Sarawut Sujitjorn and Witchupong Wiboonjaroen

More information

LQ Control of a Two Wheeled Inverted Pendulum Process

LQ Control of a Two Wheeled Inverted Pendulum Process Uppsala University Information Technology Dept. of Systems and Control KN,HN,FS 2000-10 Last rev. September 12, 2017 by HR Reglerteknik II Instruction to the laboratory work LQ Control of a Two Wheeled

More information

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state

More information

Internal Model Control of A Class of Continuous Linear Underactuated Systems

Internal Model Control of A Class of Continuous Linear Underactuated Systems Internal Model Control of A Class of Continuous Linear Underactuated Systems Asma Mezzi Tunis El Manar University, Automatic Control Research Laboratory, LA.R.A, National Engineering School of Tunis (ENIT),

More information

Lecture 9. Introduction to Kalman Filtering. Linear Quadratic Gaussian Control (LQG) G. Hovland 2004

Lecture 9. Introduction to Kalman Filtering. Linear Quadratic Gaussian Control (LQG) G. Hovland 2004 MER42 Advanced Control Lecture 9 Introduction to Kalman Filtering Linear Quadratic Gaussian Control (LQG) G. Hovland 24 Announcement No tutorials on hursday mornings 8-9am I will be present in all practical

More information

FRTN 15 Predictive Control

FRTN 15 Predictive Control Department of AUTOMATIC CONTROL FRTN 5 Predictive Control Final Exam March 4, 27, 8am - 3pm General Instructions This is an open book exam. You may use any book you want, including the slides from the

More information

Iterative Learning Control Analysis and Design I

Iterative Learning Control Analysis and Design I Iterative Learning Control Analysis and Design I Electronics and Computer Science University of Southampton Southampton, SO17 1BJ, UK etar@ecs.soton.ac.uk http://www.ecs.soton.ac.uk/ Contents Basics Representations

More information

Recent Advances in Positive Systems: The Servomechanism Problem

Recent Advances in Positive Systems: The Servomechanism Problem Recent Advances in Positive Systems: The Servomechanism Problem 47 th IEEE Conference on Decision and Control December 28. Bartek Roszak and Edward J. Davison Systems Control Group, University of Toronto

More information

Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides. Department of Chemical Engineering University of California, Los Angeles

Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides. Department of Chemical Engineering University of California, Los Angeles HYBRID PREDICTIVE OUTPUT FEEDBACK STABILIZATION OF CONSTRAINED LINEAR SYSTEMS Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides Department of Chemical Engineering University of California,

More information

MODERN CONTROL DESIGN

MODERN CONTROL DESIGN CHAPTER 8 MODERN CONTROL DESIGN The classical design techniques of Chapters 6 and 7 are based on the root-locus and frequency response that utilize only the plant output for feedback with a dynamic controller

More information

Multi-Model Adaptive Regulation for a Family of Systems Containing Different Zero Structures

Multi-Model Adaptive Regulation for a Family of Systems Containing Different Zero Structures Preprints of the 19th World Congress The International Federation of Automatic Control Multi-Model Adaptive Regulation for a Family of Systems Containing Different Zero Structures Eric Peterson Harry G.

More information

Output Regulation of the Tigan System

Output Regulation of the Tigan System Output Regulation of the Tigan System Dr. V. Sundarapandian Professor (Systems & Control Eng.), Research and Development Centre Vel Tech Dr. RR & Dr. SR Technical University Avadi, Chennai-6 6, Tamil Nadu,

More information

Linear State Feedback Controller Design

Linear State Feedback Controller Design Assignment For EE5101 - Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University

More information

Control of Electromechanical Systems

Control of Electromechanical Systems Control of Electromechanical Systems November 3, 27 Exercise Consider the feedback control scheme of the motor speed ω in Fig., where the torque actuation includes a time constant τ A =. s and a disturbance

More information

AN OPTIMIZATION-BASED APPROACH FOR QUASI-NONINTERACTING CONTROL. Jose M. Araujo, Alexandre C. Castro and Eduardo T. F. Santos

AN OPTIMIZATION-BASED APPROACH FOR QUASI-NONINTERACTING CONTROL. Jose M. Araujo, Alexandre C. Castro and Eduardo T. F. Santos ICIC Express Letters ICIC International c 2008 ISSN 1881-803X Volume 2, Number 4, December 2008 pp. 395 399 AN OPTIMIZATION-BASED APPROACH FOR QUASI-NONINTERACTING CONTROL Jose M. Araujo, Alexandre C.

More information

Unit 11 - Week 7: Quantitative feedback theory (Part 1/2)

Unit 11 - Week 7: Quantitative feedback theory (Part 1/2) X reviewer3@nptel.iitm.ac.in Courses» Control System Design Announcements Course Ask a Question Progress Mentor FAQ Unit 11 - Week 7: Quantitative feedback theory (Part 1/2) Course outline How to access

More information

High-Gain Observers in Nonlinear Feedback Control. Lecture # 2 Separation Principle

High-Gain Observers in Nonlinear Feedback Control. Lecture # 2 Separation Principle High-Gain Observers in Nonlinear Feedback Control Lecture # 2 Separation Principle High-Gain ObserversinNonlinear Feedback ControlLecture # 2Separation Principle p. 1/4 The Class of Systems ẋ = Ax + Bφ(x,

More information

Lecture 2 and 3: Controllability of DT-LTI systems

Lecture 2 and 3: Controllability of DT-LTI systems 1 Lecture 2 and 3: Controllability of DT-LTI systems Spring 2013 - EE 194, Advanced Control (Prof Khan) January 23 (Wed) and 28 (Mon), 2013 I LTI SYSTEMS Recall that continuous-time LTI systems can be

More information

The norms can also be characterized in terms of Riccati inequalities.

The norms can also be characterized in terms of Riccati inequalities. 9 Analysis of stability and H norms Consider the causal, linear, time-invariant system ẋ(t = Ax(t + Bu(t y(t = Cx(t Denote the transfer function G(s := C (si A 1 B. Theorem 85 The following statements

More information

Research Article Stabilization Analysis and Synthesis of Discrete-Time Descriptor Markov Jump Systems with Partially Unknown Transition Probabilities

Research Article Stabilization Analysis and Synthesis of Discrete-Time Descriptor Markov Jump Systems with Partially Unknown Transition Probabilities Research Journal of Applied Sciences, Engineering and Technology 7(4): 728-734, 214 DOI:1.1926/rjaset.7.39 ISSN: 24-7459; e-issn: 24-7467 214 Maxwell Scientific Publication Corp. Submitted: February 25,

More information

A Comparative Study on Automatic Flight Control for small UAV

A Comparative Study on Automatic Flight Control for small UAV Proceedings of the 5 th International Conference of Control, Dynamic Systems, and Robotics (CDSR'18) Niagara Falls, Canada June 7 9, 18 Paper No. 13 DOI: 1.11159/cdsr18.13 A Comparative Study on Automatic

More information

Modern Control Systems

Modern Control Systems Modern Control Systems Matthew M. Peet Arizona State University Lecture 09: Observability Observability For Static Full-State Feedback, we assume knowledge of the Full-State. In reality, we only have measurements

More information

Analysis and Synthesis of Single-Input Single-Output Control Systems

Analysis and Synthesis of Single-Input Single-Output Control Systems Lino Guzzella Analysis and Synthesis of Single-Input Single-Output Control Systems l+kja» \Uja>)W2(ja»\ um Contents 1 Definitions and Problem Formulations 1 1.1 Introduction 1 1.2 Definitions 1 1.2.1 Systems

More information