Network Degree Distribution Inference Under Sampling

Size: px
Start display at page:

Download "Network Degree Distribution Inference Under Sampling"

Transcription

1 Network Degree Distribution Inference Under Sampling Aleksandrina Goeva 1 Eric Kolaczyk 1 Rich Lehoucq 2 1 Department of Mathematics and Statistics, Boston University 2 Sandia National Labs August 18, 2016 BU/Keio, Boston, MA

2 Motivation Sampling introduces randomness in the sampled network. Sampled network characteristics may not represent those of the true network well.

3 Sampling Mechanisms - Examples 1 1 Kolaczyk (2009)

4 Setup Problem introduced by Frank (1968) EN = PN N =(N 0, N 1,...,N M ), is the degree counts vector of the true network, N =(N0, N 1,...,N M ), is the degree counts vector of the sampled network, P is a linear operator that depends fully on the sampling scheme and not on the network itself, and M is the maximum degree in the true network G

5 2 Zhang, Kolaczyk, Spencer (2015) Naive Solution Issues bn naive = P 1 N P is typically non-invertible. Solutions may not be non-negative. 2

6 Problem Formulation N = PN + E Ill-posed linear inverse problem. P is not random, depends only on the sampling design. E is the noise due to sampling. E[E] =0 E[EE T ]=C

7 Proposed Approach Complexity Functional K( e N, ) =(P e N ) T C 1 (P e N )+ D e N 2 2 where is a regularization parameter D is a second-order di erencing operator C = Cov(N )=E[EE T ] Look for a constrained solution en 2C:= { e N : e N 0and1 T e N = nv }

8 C-constrained Minimum Empirical Complexity Estimate Constrained Penalized Weighted Least Squares min e N subject to (P e N N ) T C 1 (P e N N )+ D e N 2 2 e N 2C C-constrained minimum empirical complexity estimate: bn = argmin K( N, e N ) en2c

9 Quality of the Solution We aim to upperbound the risk: E[ P b N PN 2 C 1 ] = E[(P b N PN) T C 1 (P b N PN)] apple E[K( b N, PN)] apple K(N 0, PN) +2 E[< C 1/2 E, C 1/2 (P b N PN 0 ) >] where N 0 = argmin K( N, e PN) en2c is the C-constrained minimizer of theoretical complexity.

10 First Term K(N 0, PN) This is the minimum theoretical complexity. This term is not random. Bounded in terms of a functional of the sampling design.

11 Di erent Regimes Underlying all sampling mechanisms there is a fundamental quantity p controlling the rate of sampling. The problem behaves di erently depending on the values of p. We identify three regimes: p = 1: full information - trivial case, no noise, P is diagonal. small p: the distribution of E is approximately Poisson. moderate p: the distribution of E is approximately Normal.

12 Di erent Regimes - Small p Small p 10% to 20%: the distribution of E is appoximately Poisson. Sample Quantiles Poisson Theoretical Quantiles

13 Di erent Regimes - Moderate p Moderate p 30% to 60% the distribution of E is appoximately Normal. Normal Q Q Plot Sample Quantiles Theoretical Quantiles

14 Second Term E[< C 1/2 E, C 1/2 (PN b PN 0 ) >] " # applee sup < C 1/2 E, C 1/2 (PN b PN 0 ) > PN b PN 0 2set Under the moderate p regime, the distribution of E is reasonably close to Gaussian. Assuming the entries of C 1/2 E are independent standard Gaussian, we can bound this term using Gaussian widths.

15 Summary Motivation: Problem arises in the context of sampled networks. Under many sampling designs the expectation of the sampled degree distribution is the product of a design-dependent matrix and the true underlying degree distribution. Main Idea: Unusual ill-conditioned linear inverse problem. The empirical analysis of Zhang, et al. (2015) of the constrained penalized weighted least squares solution is the first non-parametric approach to the problem since it was proposed 35 years ago. To our knowledge, our work is the first attempt to produce theoretical guarantees on the performance of the proposed solution. Thank you!

Estimating network degree distributions from sampled networks: An inverse problem

Estimating network degree distributions from sampled networks: An inverse problem Estimating network degree distributions from sampled networks: An inverse problem Eric D. Kolaczyk Dept of Mathematics and Statistics, Boston University kolaczyk@bu.edu Introduction: Networks and Degree

More information

1.4 Properties of the autocovariance for stationary time-series

1.4 Properties of the autocovariance for stationary time-series 1.4 Properties of the autocovariance for stationary time-series In general, for a stationary time-series, (i) The variance is given by (0) = E((X t µ) 2 ) 0. (ii) (h) apple (0) for all h 2 Z. ThisfollowsbyCauchy-Schwarzas

More information

Uniform concentration inequalities, martingales, Rademacher complexity and symmetrization

Uniform concentration inequalities, martingales, Rademacher complexity and symmetrization Uniform concentration inequalities, martingales, Rademacher complexity and symmetrization John Duchi Outline I Motivation 1 Uniform laws of large numbers 2 Loss minimization and data dependence II Uniform

More information

Semi-Nonparametric Inferences for Massive Data

Semi-Nonparametric Inferences for Massive Data Semi-Nonparametric Inferences for Massive Data Guang Cheng 1 Department of Statistics Purdue University Statistics Seminar at NCSU October, 2015 1 Acknowledge NSF, Simons Foundation and ONR. A Joint Work

More information

Sharp bounds on the VaR for sums of dependent risks

Sharp bounds on the VaR for sums of dependent risks Paul Embrechts Sharp bounds on the VaR for sums of dependent risks joint work with Giovanni Puccetti (university of Firenze, Italy) and Ludger Rüschendorf (university of Freiburg, Germany) Mathematical

More information

Hypothesis Testing For Multilayer Network Data

Hypothesis Testing For Multilayer Network Data Hypothesis Testing For Multilayer Network Data Jun Li Dept of Mathematics and Statistics, Boston University Joint work with Eric Kolaczyk Outline Background and Motivation Geometric structure of multilayer

More information

Inference For High Dimensional M-estimates. Fixed Design Results

Inference For High Dimensional M-estimates. Fixed Design Results : Fixed Design Results Lihua Lei Advisors: Peter J. Bickel, Michael I. Jordan joint work with Peter J. Bickel and Noureddine El Karoui Dec. 8, 2016 1/57 Table of Contents 1 Background 2 Main Results and

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Infinite Feature Models: The Indian Buffet Process Eric Xing Lecture 21, April 2, 214 Acknowledgement: slides first drafted by Sinead Williamson

More information

Chapter 9. Non-Parametric Density Function Estimation

Chapter 9. Non-Parametric Density Function Estimation 9-1 Density Estimation Version 1.2 Chapter 9 Non-Parametric Density Function Estimation 9.1. Introduction We have discussed several estimation techniques: method of moments, maximum likelihood, and least

More information

Empirical Risk Minimization as Parameter Choice Rule for General Linear Regularization Methods

Empirical Risk Minimization as Parameter Choice Rule for General Linear Regularization Methods Empirical Risk Minimization as Parameter Choice Rule for General Linear Regularization Methods Frank Werner 1 Statistical Inverse Problems in Biophysics Group Max Planck Institute for Biophysical Chemistry,

More information

Quantifying Stochastic Model Errors via Robust Optimization

Quantifying Stochastic Model Errors via Robust Optimization Quantifying Stochastic Model Errors via Robust Optimization IPAM Workshop on Uncertainty Quantification for Multiscale Stochastic Systems and Applications Jan 19, 2016 Henry Lam Industrial & Operations

More information

Inference For High Dimensional M-estimates: Fixed Design Results

Inference For High Dimensional M-estimates: Fixed Design Results Inference For High Dimensional M-estimates: Fixed Design Results Lihua Lei, Peter Bickel and Noureddine El Karoui Department of Statistics, UC Berkeley Berkeley-Stanford Econometrics Jamboree, 2017 1/49

More information

Chapter 5. Eigenvalues and Eigenvectors

Chapter 5. Eigenvalues and Eigenvectors Chapter 5 Eigenvalues and Eigenvectors Section 5. Eigenvectors and Eigenvalues Motivation: Difference equations A Biology Question How to predict a population of rabbits with given dynamics:. half of the

More information

Localization of Radioactive Sources Zhifei Zhang

Localization of Radioactive Sources Zhifei Zhang Localization of Radioactive Sources Zhifei Zhang 4/13/2016 1 Outline Background and motivation Our goal and scenario Preliminary knowledge Related work Our approach and results 4/13/2016 2 Background and

More information

Chapter 9. Non-Parametric Density Function Estimation

Chapter 9. Non-Parametric Density Function Estimation 9-1 Density Estimation Version 1.1 Chapter 9 Non-Parametric Density Function Estimation 9.1. Introduction We have discussed several estimation techniques: method of moments, maximum likelihood, and least

More information

H Estimation. Speaker : R.Lakshminarayanan Guide : Prof. K.Giridhar. H Estimation p.1/34

H Estimation. Speaker : R.Lakshminarayanan Guide : Prof. K.Giridhar. H Estimation p.1/34 H Estimation Speaker : R.Lakshminarayanan Guide : Prof. K.Giridhar H Estimation p.1/34 H Motivation The Kalman and Wiener Filters minimize the mean squared error between the true value and estimated values

More information

Derivation of the Kalman Filter

Derivation of the Kalman Filter Derivation of the Kalman Filter Kai Borre Danish GPS Center, Denmark Block Matrix Identities The key formulas give the inverse of a 2 by 2 block matrix, assuming T is invertible: T U 1 L M. (1) V W N P

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 25: Semiparametric Models

Introduction to Empirical Processes and Semiparametric Inference Lecture 25: Semiparametric Models Introduction to Empirical Processes and Semiparametric Inference Lecture 25: Semiparametric Models Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and Operations

More information

Lecture 13 and 14: Bayesian estimation theory

Lecture 13 and 14: Bayesian estimation theory 1 Lecture 13 and 14: Bayesian estimation theory Spring 2012 - EE 194 Networked estimation and control (Prof. Khan) March 26 2012 I. BAYESIAN ESTIMATORS Mother Nature conducts a random experiment that generates

More information

Convex relaxation for Combinatorial Penalties

Convex relaxation for Combinatorial Penalties Convex relaxation for Combinatorial Penalties Guillaume Obozinski Equipe Imagine Laboratoire d Informatique Gaspard Monge Ecole des Ponts - ParisTech Joint work with Francis Bach Fête Parisienne in Computation,

More information

Mathematical supplement

Mathematical supplement Mathematical supplement 1 Cost of K s denote cost shares and s factor shares, as in the main text. Then, ^c K is calculated as: ^c K = P K ( LP ^w + EP ^p E ) + NK ( HN ( LH ^w + EH ^p E ) + BN ( LB ^w

More information

Chapter 4 No. 4.0 Answer True or False to the following. Give reasons for your answers.

Chapter 4 No. 4.0 Answer True or False to the following. Give reasons for your answers. MATH 434/534 Theoretical Assignment 3 Solution Chapter 4 No 40 Answer True or False to the following Give reasons for your answers If a backward stable algorithm is applied to a computational problem,

More information

ON ILL-POSEDNESS OF NONPARAMETRIC INSTRUMENTAL VARIABLE REGRESSION WITH CONVEXITY CONSTRAINTS

ON ILL-POSEDNESS OF NONPARAMETRIC INSTRUMENTAL VARIABLE REGRESSION WITH CONVEXITY CONSTRAINTS ON ILL-POSEDNESS OF NONPARAMETRIC INSTRUMENTAL VARIABLE REGRESSION WITH CONVEXITY CONSTRAINTS Olivier Scaillet a * This draft: July 2016. Abstract This note shows that adding monotonicity or convexity

More information

SPARSE signal representations have gained popularity in recent

SPARSE signal representations have gained popularity in recent 6958 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011 Blind Compressed Sensing Sivan Gleichman and Yonina C. Eldar, Senior Member, IEEE Abstract The fundamental principle underlying

More information

Bayesian Methods for Sparse Signal Recovery

Bayesian Methods for Sparse Signal Recovery Bayesian Methods for Sparse Signal Recovery Bhaskar D Rao 1 University of California, San Diego 1 Thanks to David Wipf, Jason Palmer, Zhilin Zhang and Ritwik Giri Motivation Motivation Sparse Signal Recovery

More information

LINEAR MODELS IN STATISTICAL SIGNAL PROCESSING

LINEAR MODELS IN STATISTICAL SIGNAL PROCESSING TERM PAPER REPORT ON LINEAR MODELS IN STATISTICAL SIGNAL PROCESSING ANIMA MISHRA SHARMA, Y8104001 BISHWAJIT SHARMA, Y8104015 Course Instructor DR. RAJESH HEDGE Electrical Engineering Department IIT Kanpur

More information

Chapter 9: Gaussian Elimination

Chapter 9: Gaussian Elimination Uchechukwu Ofoegbu Temple University Chapter 9: Gaussian Elimination Graphical Method The solution of a small set of simultaneous equations, can be obtained by graphing them and determining the location

More information

Least squares under convex constraint

Least squares under convex constraint Stanford University Questions Let Z be an n-dimensional standard Gaussian random vector. Let µ be a point in R n and let Y = Z + µ. We are interested in estimating µ from the data vector Y, under the assumption

More information

- HH Midterm 1 for Thermal and Statistical Physics I Hsiu-Hau Lin (Nov 5, 2012)

- HH Midterm 1 for Thermal and Statistical Physics I Hsiu-Hau Lin (Nov 5, 2012) - HH0063 - Midterm 1 for Thermal and Statistical Physics I Hsiu-Hau Lin hsiuhau.lin@gmail.com (Nov 5, 2012) Binary model (A) The thermal entropy is logarithm of the multiplicity function, (N,U) =logg =logg

More information

Solving Linear Systems Using Gaussian Elimination. How can we solve

Solving Linear Systems Using Gaussian Elimination. How can we solve Solving Linear Systems Using Gaussian Elimination How can we solve? 1 Gaussian elimination Consider the general augmented system: Gaussian elimination Step 1: Eliminate first column below the main diagonal.

More information

arxiv: v4 [stat.me] 28 May 2015

arxiv: v4 [stat.me] 28 May 2015 The Annals of Applied Statistics 2015, Vol. 9, No. 1, 166 199 DOI: 10.1214/14-AOAS800 c Institute of Mathematical Statistics, 2015 arxiv:1305.4977v4 [stat.me] 28 May 2015 ESTIMATING NETWORK DEGREE DISTRIBUTIONS

More information

Unbiased Risk Estimation as Parameter Choice Rule for Filter-based Regularization Methods

Unbiased Risk Estimation as Parameter Choice Rule for Filter-based Regularization Methods Unbiased Risk Estimation as Parameter Choice Rule for Filter-based Regularization Methods Frank Werner 1 Statistical Inverse Problems in Biophysics Group Max Planck Institute for Biophysical Chemistry,

More information

Inference for High Dimensional Robust Regression

Inference for High Dimensional Robust Regression Department of Statistics UC Berkeley Stanford-Berkeley Joint Colloquium, 2015 Table of Contents 1 Background 2 Main Results 3 OLS: A Motivating Example Table of Contents 1 Background 2 Main Results 3 OLS:

More information

Averaging Estimators for Regressions with a Possible Structural Break

Averaging Estimators for Regressions with a Possible Structural Break Averaging Estimators for Regressions with a Possible Structural Break Bruce E. Hansen University of Wisconsin y www.ssc.wisc.edu/~bhansen September 2007 Preliminary Abstract This paper investigates selection

More information

Statistical inference on Lévy processes

Statistical inference on Lévy processes Alberto Coca Cabrero University of Cambridge - CCA Supervisors: Dr. Richard Nickl and Professor L.C.G.Rogers Funded by Fundación Mutua Madrileña and EPSRC MASDOC/CCA student workshop 2013 26th March Outline

More information

Inverse problem and optimization

Inverse problem and optimization Inverse problem and optimization Laurent Condat, Nelly Pustelnik CNRS, Gipsa-lab CNRS, Laboratoire de Physique de l ENS de Lyon Decembre, 15th 2016 Inverse problem and optimization 2/36 Plan 1. Examples

More information

Empirical Likelihood Tests for High-dimensional Data

Empirical Likelihood Tests for High-dimensional Data Empirical Likelihood Tests for High-dimensional Data Department of Statistics and Actuarial Science University of Waterloo, Canada ICSA - Canada Chapter 2013 Symposium Toronto, August 2-3, 2013 Based on

More information

A Step Towards the Cognitive Radar: Target Detection under Nonstationary Clutter

A Step Towards the Cognitive Radar: Target Detection under Nonstationary Clutter A Step Towards the Cognitive Radar: Target Detection under Nonstationary Clutter Murat Akcakaya Department of Electrical and Computer Engineering University of Pittsburgh Email: akcakaya@pitt.edu Satyabrata

More information

The problem is to infer on the underlying probability distribution that gives rise to the data S.

The problem is to infer on the underlying probability distribution that gives rise to the data S. Basic Problem of Statistical Inference Assume that we have a set of observations S = { x 1, x 2,..., x N }, xj R n. The problem is to infer on the underlying probability distribution that gives rise to

More information

Quantile Processes for Semi and Nonparametric Regression

Quantile Processes for Semi and Nonparametric Regression Quantile Processes for Semi and Nonparametric Regression Shih-Kang Chao Department of Statistics Purdue University IMS-APRM 2016 A joint work with Stanislav Volgushev and Guang Cheng Quantile Response

More information

Numerical Methods I: Eigenvalues and eigenvectors

Numerical Methods I: Eigenvalues and eigenvectors 1/25 Numerical Methods I: Eigenvalues and eigenvectors Georg Stadler Courant Institute, NYU stadler@cims.nyu.edu November 2, 2017 Overview 2/25 Conditioning Eigenvalues and eigenvectors How hard are they

More information

Hypothesis Testing via Convex Optimization

Hypothesis Testing via Convex Optimization Hypothesis Testing via Convex Optimization Arkadi Nemirovski Joint research with Alexander Goldenshluger Haifa University Anatoli Iouditski Grenoble University Information Theory, Learning and Big Data

More information

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA2501 Numerical Methods Spring 2015 Solutions to exercise set 3 1 Attempt to verify experimentally the calculation from class that

More information

Estimation of a Two-component Mixture Model

Estimation of a Two-component Mixture Model Estimation of a Two-component Mixture Model Bodhisattva Sen 1,2 University of Cambridge, Cambridge, UK Columbia University, New York, USA Indian Statistical Institute, Kolkata, India 6 August, 2012 1 Joint

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

Portfolio Allocation using High Frequency Data. Jianqing Fan

Portfolio Allocation using High Frequency Data. Jianqing Fan Portfolio Allocation using High Frequency Data Princeton University With Yingying Li and Ke Yu http://www.princeton.edu/ jqfan September 10, 2010 About this talk How to select sparsely optimal portfolio?

More information

Machine learning, shrinkage estimation, and economic theory

Machine learning, shrinkage estimation, and economic theory Machine learning, shrinkage estimation, and economic theory Maximilian Kasy December 14, 2018 1 / 43 Introduction Recent years saw a boom of machine learning methods. Impressive advances in domains such

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Recitation 3 1 Gaussian Graphical Models: Schur s Complement Consider

More information

Volodymyr Kuleshov ú Arun Tejasvi Chaganty ú Percy Liang. May 11, 2015

Volodymyr Kuleshov ú Arun Tejasvi Chaganty ú Percy Liang. May 11, 2015 Tensor Factorization via Matrix Factorization Volodymyr Kuleshov ú Arun Tejasvi Chaganty ú Percy Liang Stanford University May 11, 2015 Kuleshov, Chaganty, Liang (Stanford University) Tensor Factorization

More information

SAMPLING AND INVERSION

SAMPLING AND INVERSION SAMPLING AND INVERSION Darryl Veitch dveitch@unimelb.edu.au CUBIN, Department of Electrical & Electronic Engineering University of Melbourne Workshop on Sampling the Internet, Paris 2005 A TALK WITH TWO

More information

Decomposition of Quantum Gates

Decomposition of Quantum Gates Decomposition of Quantum Gates With Applications to Quantum Computing Dean Katsaros, Eric Berry, Diane C. Pelejo, Chi-Kwong Li College of William and Mary January 12, 215 Motivation Current Conclusions

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

2.1 Gaussian Elimination

2.1 Gaussian Elimination 2. Gaussian Elimination A common problem encountered in numerical models is the one in which there are n equations and n unknowns. The following is a description of the Gaussian elimination method for

More information

From Volterra series through block-oriented approach to Volterra series

From Volterra series through block-oriented approach to Volterra series From Volterra series through block-oriented approach to Volterra series Pawel Wachel and Przemyslaw Sliwinski Department of Control Systems and Mechatronics Wroclaw University of Technology European Research

More information

Introduction to Groups

Introduction to Groups Introduction to Groups S F Ellermeyer November 2, 2006 A group, G, is a set, A, endowed with a single binary operation,, such that: The operation is associative, meaning that a (b c) = (a b) c for all

More information

EIGENVALUES AND EIGENVECTORS 3

EIGENVALUES AND EIGENVECTORS 3 EIGENVALUES AND EIGENVECTORS 3 1. Motivation 1.1. Diagonal matrices. Perhaps the simplest type of linear transformations are those whose matrix is diagonal (in some basis). Consider for example the matrices

More information

30.3. LU Decomposition. Introduction. Prerequisites. Learning Outcomes

30.3. LU Decomposition. Introduction. Prerequisites. Learning Outcomes LU Decomposition 30.3 Introduction In this Section we consider another direct method for obtaining the solution of systems of equations in the form AX B. Prerequisites Before starting this Section you

More information

Minimax Rates. Homology Inference

Minimax Rates. Homology Inference Minimax Rates for Homology Inference Don Sheehy Joint work with Sivaraman Balakrishan, Alessandro Rinaldo, Aarti Singh, and Larry Wasserman Something like a joke. Something like a joke. What is topological

More information

Distributed Statistical Estimation and Rates of Convergence in Normal Approximation

Distributed Statistical Estimation and Rates of Convergence in Normal Approximation Distributed Statistical Estimation and Rates of Convergence in Normal Approximation Stas Minsker (joint with Nate Strawn) Department of Mathematics, USC July 3, 2017 Colloquium on Concentration inequalities,

More information

Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment

Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment Ben Shaby SAMSI August 3, 2010 Ben Shaby (SAMSI) OFS adjustment August 3, 2010 1 / 29 Outline 1 Introduction 2 Spatial

More information

JORDAN NORMAL FORM. Contents Introduction 1 Jordan Normal Form 1 Conclusion 5 References 5

JORDAN NORMAL FORM. Contents Introduction 1 Jordan Normal Form 1 Conclusion 5 References 5 JORDAN NORMAL FORM KATAYUN KAMDIN Abstract. This paper outlines a proof of the Jordan Normal Form Theorem. First we show that a complex, finite dimensional vector space can be decomposed into a direct

More information

Lecture 3 Eigenvalues and Eigenvectors

Lecture 3 Eigenvalues and Eigenvectors Lecture 3 Eigenvalues and Eigenvectors Eivind Eriksen BI Norwegian School of Management Department of Economics September 10, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 3 Eigenvalues and Eigenvectors

More information

Model Selection and Geometry

Model Selection and Geometry Model Selection and Geometry Pascal Massart Université Paris-Sud, Orsay Leipzig, February Purpose of the talk! Concentration of measure plays a fundamental role in the theory of model selection! Model

More information

Reconstruction in the Generalized Stochastic Block Model

Reconstruction in the Generalized Stochastic Block Model Reconstruction in the Generalized Stochastic Block Model Marc Lelarge 1 Laurent Massoulié 2 Jiaming Xu 3 1 INRIA-ENS 2 INRIA-Microsoft Research Joint Centre 3 University of Illinois, Urbana-Champaign GDR

More information

The Learning Problem and Regularization

The Learning Problem and Regularization 9.520 Class 02 February 2011 Computational Learning Statistical Learning Theory Learning is viewed as a generalization/inference problem from usually small sets of high dimensional, noisy data. Learning

More information

Duration-Based Volatility Estimation

Duration-Based Volatility Estimation A Dual Approach to RV Torben G. Andersen, Northwestern University Dobrislav Dobrev, Federal Reserve Board of Governors Ernst Schaumburg, Northwestern Univeristy CHICAGO-ARGONNE INSTITUTE ON COMPUTATIONAL

More information

Algorithmisches Lernen/Machine Learning

Algorithmisches Lernen/Machine Learning Algorithmisches Lernen/Machine Learning Part 1: Stefan Wermter Introduction Connectionist Learning (e.g. Neural Networks) Decision-Trees, Genetic Algorithms Part 2: Norman Hendrich Support-Vector Machines

More information

Previously Monte Carlo Integration

Previously Monte Carlo Integration Previously Simulation, sampling Monte Carlo Simulations Inverse cdf method Rejection sampling Today: sampling cont., Bayesian inference via sampling Eigenvalues and Eigenvectors Markov processes, PageRank

More information

Uniform Post Selection Inference for LAD Regression and Other Z-estimation problems. ArXiv: Alexandre Belloni (Duke) + Kengo Kato (Tokyo)

Uniform Post Selection Inference for LAD Regression and Other Z-estimation problems. ArXiv: Alexandre Belloni (Duke) + Kengo Kato (Tokyo) Uniform Post Selection Inference for LAD Regression and Other Z-estimation problems. ArXiv: 1304.0282 Victor MIT, Economics + Center for Statistics Co-authors: Alexandre Belloni (Duke) + Kengo Kato (Tokyo)

More information

Subspace Identification

Subspace Identification Chapter 10 Subspace Identification Given observations of m 1 input signals, and p 1 signals resulting from those when fed into a dynamical system under study, can we estimate the internal dynamics regulating

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Gaussian graphical models and Ising models: modeling networks Eric Xing Lecture 0, February 5, 06 Reading: See class website Eric Xing @ CMU, 005-06

More information

Strong Consistency of Set-Valued Frechet Sample Mean in Metric Spaces

Strong Consistency of Set-Valued Frechet Sample Mean in Metric Spaces Strong Consistency of Set-Valued Frechet Sample Mean in Metric Spaces Cedric E. Ginestet Department of Mathematics and Statistics Boston University JSM 2013 The Frechet Mean Barycentre as Average Given

More information

Submodularity in Machine Learning

Submodularity in Machine Learning Saifuddin Syed MLRG Summer 2016 1 / 39 What are submodular functions Outline 1 What are submodular functions Motivation Submodularity and Concavity Examples 2 Properties of submodular functions Submodularity

More information

Approximating the Integrated Tail Distribution

Approximating the Integrated Tail Distribution Approximating the Integrated Tail Distribution Ants Kaasik & Kalev Pärna University of Tartu VIII Tartu Conference on Multivariate Statistics 26th of June, 2007 Motivating example Let W be a steady-state

More information

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models JMLR Workshop and Conference Proceedings 6:17 164 NIPS 28 workshop on causality Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Kun Zhang Dept of Computer Science and HIIT University

More information

Computational Methods Short Course on Image Quality

Computational Methods Short Course on Image Quality Computational Methods Short Course on Image Quality Matthew A. Kupinski What we Will Cover Sources of randomness Computation of linear-observer performance Computation of ideal-observer performance Miscellaneous

More information

Structured signal recovery from non-linear and heavy-tailed measurements

Structured signal recovery from non-linear and heavy-tailed measurements Structured signal recovery from non-linear and heavy-tailed measurements Larry Goldstein* Stanislav Minsker* Xiaohan Wei # *Department of Mathematics # Department of Electrical Engineering UniversityofSouthern

More information

Empirical Bayes Quantile-Prediction aka E-B Prediction under Check-loss;

Empirical Bayes Quantile-Prediction aka E-B Prediction under Check-loss; BFF4, May 2, 2017 Empirical Bayes Quantile-Prediction aka E-B Prediction under Check-loss; Lawrence D. Brown Wharton School, Univ. of Pennsylvania Joint work with Gourab Mukherjee and Paat Rusmevichientong

More information

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Kun Zhang Dept of Computer Science and HIIT University of Helsinki 14 Helsinki, Finland kun.zhang@cs.helsinki.fi Aapo Hyvärinen

More information

Pr[positive test virus] Pr[virus] Pr[positive test] = Pr[positive test] = Pr[positive test]

Pr[positive test virus] Pr[virus] Pr[positive test] = Pr[positive test] = Pr[positive test] 146 Probability Pr[virus] = 0.00001 Pr[no virus] = 0.99999 Pr[positive test virus] = 0.99 Pr[positive test no virus] = 0.01 Pr[virus positive test] = Pr[positive test virus] Pr[virus] = 0.99 0.00001 =

More information

Controlling the False Discovery Rate: Understanding and Extending the Benjamini-Hochberg Method

Controlling the False Discovery Rate: Understanding and Extending the Benjamini-Hochberg Method Controlling the False Discovery Rate: Understanding and Extending the Benjamini-Hochberg Method Christopher R. Genovese Department of Statistics Carnegie Mellon University joint work with Larry Wasserman

More information

ECON0702: Mathematical Methods in Economics

ECON0702: Mathematical Methods in Economics ECON0702: Mathematical Methods in Economics Yulei Luo SEF of HKU January 12, 2009 Luo, Y. (SEF of HKU) MME January 12, 2009 1 / 35 Course Outline Economics: The study of the choices people (consumers,

More information

Nonparametric Inference via Bootstrapping the Debiased Estimator

Nonparametric Inference via Bootstrapping the Debiased Estimator Nonparametric Inference via Bootstrapping the Debiased Estimator Yen-Chi Chen Department of Statistics, University of Washington ICSA-Canada Chapter Symposium 2017 1 / 21 Problem Setup Let X 1,, X n be

More information

Solving Corrupted Quadratic Equations, Provably

Solving Corrupted Quadratic Equations, Provably Solving Corrupted Quadratic Equations, Provably Yuejie Chi London Workshop on Sparse Signal Processing September 206 Acknowledgement Joint work with Yuanxin Li (OSU), Huishuai Zhuang (Syracuse) and Yingbin

More information

CS 195-5: Machine Learning Problem Set 1

CS 195-5: Machine Learning Problem Set 1 CS 95-5: Machine Learning Problem Set Douglas Lanman dlanman@brown.edu 7 September Regression Problem Show that the prediction errors y f(x; ŵ) are necessarily uncorrelated with any linear function of

More information

Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½

Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½ University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 1998 Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½ Lawrence D. Brown University

More information

Distributed Real-Time Control Systems. Lecture Distributed Control Linear Programming

Distributed Real-Time Control Systems. Lecture Distributed Control Linear Programming Distributed Real-Time Control Systems Lecture 13-14 Distributed Control Linear Programming 1 Linear Programs Optimize a linear function subject to a set of linear (affine) constraints. Many problems can

More information

MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications. Class 19: Data Representation by Design

MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications. Class 19: Data Representation by Design MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications Class 19: Data Representation by Design What is data representation? Let X be a data-space X M (M) F (M) X A data representation

More information

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 7: Learning Fully Observed BNs Theo Rekatsinas 1 Exponential family: a basic building block For a numeric random variable X p(x ) =h(x)exp T T (x) A( ) = 1

More information

Lecture 9: Elementary Matrices

Lecture 9: Elementary Matrices Lecture 9: Elementary Matrices Review of Row Reduced Echelon Form Consider the matrix A and the vector b defined as follows: 1 2 1 A b 3 8 5 A common technique to solve linear equations of the form Ax

More information

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control 6.241 Dynamic Systems and Control Lecture 2: Least Square Estimation Readings: DDV, Chapter 2 Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology February 7, 2011 E. Frazzoli

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture 9: Diagonalization Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./9 Section. Diagonalization The goal here is to develop a useful

More information

Kernels to detect abrupt changes in time series

Kernels to detect abrupt changes in time series 1 UMR 8524 CNRS - Université Lille 1 2 Modal INRIA team-project 3 SSB group Paris joint work with S. Arlot, Z. Harchaoui, G. Rigaill, and G. Marot Computational and statistical trade-offs in learning IHES

More information

Managing Uncertainty

Managing Uncertainty Managing Uncertainty Bayesian Linear Regression and Kalman Filter December 4, 2017 Objectives The goal of this lab is multiple: 1. First it is a reminder of some central elementary notions of Bayesian

More information

Sparse Nonparametric Density Estimation in High Dimensions Using the Rodeo

Sparse Nonparametric Density Estimation in High Dimensions Using the Rodeo Outline in High Dimensions Using the Rodeo Han Liu 1,2 John Lafferty 2,3 Larry Wasserman 1,2 1 Statistics Department, 2 Machine Learning Department, 3 Computer Science Department, Carnegie Mellon University

More information

Sub-Gaussian estimators under heavy tails

Sub-Gaussian estimators under heavy tails Sub-Gaussian estimators under heavy tails Roberto Imbuzeiro Oliveira XIX Escola Brasileira de Probabilidade Maresias, August 6th 2015 Joint with Luc Devroye (McGill) Matthieu Lerasle (CNRS/Nice) Gábor

More information

Lecture 8 Inequality Testing and Moment Inequality Models

Lecture 8 Inequality Testing and Moment Inequality Models Lecture 8 Inequality Testing and Moment Inequality Models Inequality Testing In the previous lecture, we discussed how to test the nonlinear hypothesis H 0 : h(θ 0 ) 0 when the sample information comes

More information

The Dynamics of Learning: A Random Matrix Approach

The Dynamics of Learning: A Random Matrix Approach The Dynamics of Learning: A Random Matrix Approach ICML 2018, Stockholm, Sweden Zhenyu Liao, Romain Couillet L2S, CentraleSupélec, Université Paris-Saclay, France GSTATS IDEX DataScience Chair, GIPSA-lab,

More information

Minimax Estimation of Kernel Mean Embeddings

Minimax Estimation of Kernel Mean Embeddings Minimax Estimation of Kernel Mean Embeddings Bharath K. Sriperumbudur Department of Statistics Pennsylvania State University Gatsby Computational Neuroscience Unit May 4, 2016 Collaborators Dr. Ilya Tolstikhin

More information