# Singular Value Decomposition Analysis

Size: px
Start display at page:

## Transcription

1 Singular Value Decomposition Analysis Singular Value Decomposition Analysis Introduction Introduce a linear algebra tool: singular values of a matrix Motivation Why do we need singular values in MIMO control designs? Definition and properties of singular values Singular value decomposition (SVD) provides directional information 376_069 Multivariable feedback control V3 1 of 36

2 Singular Value Decomposition Analysis SISO sinusoidal steady-state (I) u(s) g(s) y(s) Assume: g(s) strictly stable Sinusoidal steady-state u(t) = ue jωt y(t) = ye jωt y = g(jω)u Note g(jω) is a complex scalar g(jω) = g(jω) e jφ(ω) Magnitude: g(jω) = g*(jω)g(jω) Phase: φ(ω) = arctan Im( g(j ω)) Re( g (j ω )) Above plotted in Bode plot defines frequency response of SISO plant g(s) g(jω) defines plant gain at frequency ω 376_069 Multivariable feedback control V3 2 of 36

3 Singular Value Decomposition Analysis SISO sinusoidal steady-state (II) Input with complex amplitude u(t) = ue jωt u = u e jψ u(t) = u ej(ωt + ψ) Interpretation Re{u(t)} = u cos(ωt + ψ) Im{u(t)} = u sin(ωt + ψ) Complex steady-state output y(t) = y e jωt y = g(jω) u = g(jω) e jφ(ω) u e jψ = g(jω) u ej(φ(ω) + ψ) y = g(jω) u Re{y(t)} = y cos(ωt + ψ + φ(ω)) Im{y(t)} = y sin(ωt + ψ + φ(ω)) 376_069 Multivariable feedback control V3 3 of 36

4 Singular Value Decomposition Analysis SISO Bode plot information Provides graphical "summary" of plant gain at different frequencies Concepts of "small" and "large" gain are clear g(jω) >> 1 g(jω) << 1 large gain small gain 376_069 Multivariable feedback control V3 4 of 36

5 Singular Value Decomposition Analysis MIMO sinusoidal steady-state u(s) g(s) y(s) Assume: G(s) strictly stable Sinusoidal inputs generate at steady-state sinusoidal outputs Sinusoidal steady-state u(t) = ue jωt ;u C m y(t) = ye jωt ;y C p y = G(jω)u G(jω) : p x m complex matrix Need notion of size of G(jω) vs. frequency want visualize MIMO gain on Bode plot 376_069 Multivariable feedback control V3 5 of 36

6 Singular Value Decomposition Analysis Issues Deal with complex vectors and complex matrices. How to quantify "large" and "small" Impact of directions y(s) = G(s) u(s) u(t) = ue jωt ;u C m y(t) = ye jωt ;y C p y = G(jω)u Direction and size of u and Plant properties at frequency ω yield Direction and size of y Singular value decomposition (SVD) provides the "tool" for analysis 376_069 Multivariable feedback control V3 6 of 36

7 Singular Value Decomposition Analysis Notes on complex vectors x is a complex vector; x C n x = x 1 x 2: x n x i = a i + jb i ; i = 1, 2,..., n Magnitude x = x 2 x H = [x* 1 x* 2... x* n ] x 2 = x H x Example 1 j + x = 2 3j ;x H = [1 - j 2 + j3] x H x = (1 - j)(1 + j) + (2 + j3)(2 - j3) = 15 x 2 = _069 Multivariable feedback control V3 7 of 36

8 Singular Value Decomposition Analysis Notes on complex matrices A is a n x m matrix with complex-valued elements: a ik = α ik + jβ ik Notation A H : complex-conjugate transpose of A A H is a m x n matrix Note: A H A m x m matrix AA H n x n matrix Fact: AA H and A H A have real non-negative eigenvalues Example 1 1+ j A = j 2+ j A H 1 = j 1 j 2 j det(λι - A H A) = λ 2-9λ + 5 ;λ 1 = 8.41 ;λ 2 = 0.59 det(λι - A H A) = det(λι - AA H ) In this example λ i [A H A] = λ i [AA H ] > 0 376_069 Multivariable feedback control V3 8 of 36

9 Singular Value Decomposition Analysis Definition of singular values A is a n x m complex matrix Suppose : rank(a) = k Notation σ i (A): singular value of A Definition: The strictly positive square roots of the nonzero eigenvalues of A H A ( and AA H equivalently), are the singular values of A σ i (A) = λ i [A H A] = λ i [AA H ] > 0 i = 1, 2,..., k 376_069 Multivariable feedback control V3 9 of 36

10 Singular Value Decomposition Analysis The singular value decomposition A is a n x m complex matrix: rank(a) = k σ 1 σ 2... σ k 0 : are singular values of A Σ = σ σ σ k Σ n x m real matrix SVD A = U Σ V H A = U H Σ V U : n x n unitary matrix (U H = U -1 ) V : m x m unitary matrix (V H = V -1 ) Column vectors of U and V are orthonormal 376_069 Multivariable feedback control V3 10 of 36

11 Singular Value Decomposition Analysis More on SVD SVD A = U Σ V H A = U H Σ V U : n x n unitary matrix (U H = U -1 ) U = [u 1 u 2... u n ] ;u H i u j = δ ij u i : Left singular vectors of A (is right eigenvector of AA H associated with λ i [AA H ] ) V : m x m unitary matrix (V H = V -1 ) V = [v 1 v 2... v m ] ;v H i v j = δ ij v i : Right singular vectors of A (is right eigenvector of A H A associated with λ i [A H A] ) 376_069 Multivariable feedback control V3 11 of 36

12 Singular Value Decomposition Analysis Geometric interpretation A complex n x n matrix A -1 exists λ i (A) 0 Consider linear transformation y = Ax ;x, y R n x A y Euclidean norm x 2 = x'x ; y 2 = y'y Spectral norm of matrix A A 2 = max x 0 Ax 2 x 2 = max Ax x = Singular value relations σ max ( A) = max x 2 =1 Ax 2 = A 2 σ min ( A) = min x 2 =1 Ax 2 = 1 A _069 Multivariable feedback control V3 12 of 36

13 Singular Value Decomposition Analysis Graphical visualization Real case : y = Ax ; y, x R n, A R nxn ; n=2 SVD A = U Σ V H Σ = σ 1 = σ max 0 0 σ 2 =σ min U = [u 1 u 2 ] V = [v 1 v 2 ] Vector OD = v 1 ; Vector OD" = u 1 Vector OE = v 2 ; Vector OE" = u 2 Length of vector OD' = σ max = σ 1 Length of vector OE' = σ min = σ 2 376_069 Multivariable feedback control V3 13 of 36

14 Singular Value Decomposition Analysis MIMO frequency response u(t) = ue jωt G(s) y(t) = ye jωt Restrict u to unit (complex) sphere, i.e. u 2 = 1 u i (t) is complex sinusoid, e.g. u i (t) = u i e jψ ie jωt Re{u i (t)} = u i cos(ωt + ψ i ) Output response y(s) = G(s)u(s) Singular values σ max (G(jω)) = max G(j ω)u u = = y max (ω) 2 σ min (G(jω)) = min G(j ω)u u = = y min (ω) 2 Maximum and minimum singular values of G(jω) define max and min amplification of unit sinusoidal input at frequency ω 376_069 Multivariable feedback control V3 14 of 36

15 Singular Value Decomposition Analysis Bode plot visualization 376_069 Multivariable feedback control V3 15 of 36

16 Singular Value Decomposition Analysis Discussion The concept of singular values will be heavily exploited in analysis and design of MIMO feedback systems Correct interpretation of singular value plot hinges on units of physical variables (scaling) Singular value results assume "roundness" (convexity) of input signal space u(t) = ue jωt G(s) y(t) = ye jωt Input Space Output Space 376_069 Multivariable feedback control V3 16 of 36

17 Feedback Performance Specifications in the Frequency Domain Feedback Performance Specifications in the Frequency Domain Introduction Use singular values to establish nature of mimo performance specs in frequency domain Performance attributes - command following - disturbance rejection - insensitivity to sensor noise Stability-robustness to be addressed later 376_069 Multivariable feedback control V3 17 of 36

18 Feedback Performance Specifications in the Frequency Domain Fundamental relations True tracking error: e(s) = r(s) - y(s) Loop TFM: L(s) L(s) = G(s)K(s) Sensitivity TFM: S(s) S(s) = [Ι + L(s)] -1 Closed-loop TFM: T(s) T(s) = [Ι + L(s)] -1 L(s) Performance equation e(s) = S(s)[r(s) - d(s)] + T(s)n(s) Constraint: T(s) + S(s) = Ι 376_069 Multivariable feedback control V3 18 of 36

19 Feedback Performance Specifications in the Frequency Domain Command following (I) Sinusoidal command yields sinusoidal error r(t) = re jωt e(t) = ee jωt Relation: e = S(jω)r e 2 σ max [S(jω)] r 2 Ω r range of frequencies where command input has energy Prescription for good command following make σ max [S(jω)] << 1 for all ω Ω r 376_069 Multivariable feedback control V3 19 of 36

20 Feedback Performance Specifications in the Frequency Domain Command following (II) Interpretation for unit command sinusoid r(t) = re jωt ; r 2 = 1 Worst error at frequency ω e(t) = ee jωt e 2 = σ max [S(jω)] Attained when r points along right singular vector associated with σ max Best error at frequency ω e 2 = σ min [S(jω)] Attained when r points along right singular vector associated with σ min In general σ min [S(jω)] e 2 σ max [S(jω)] 376_069 Multivariable feedback control V3 20 of 36

21 Feedback Performance Specifications in the Frequency Domain Command following (III) Objective: express prescription for good command following in terms of loop TFM L(s) = G(s)K(s) Singular value facts σ max [A -1 ] = σ min 1 [ A] σ min [A] - 1 σ min [Ι + A] σ min [A] + 1 Recall: Need σ max [S(jω)] << 1 ;ω Ω r But S(jω) = [Ι + L(jω)] -1 σ max [S(jω)] = 1 << 1 σ min I +L(jω ) σ min [Ι + L(jω)] >> 1 ;ω Ω r But σ min [Ι + L(jω)] < σ min [L(jω)] + 1 Need σ min [L(jω)] >> 1 ;ω Ω r For good command following make σ min [G(s)K(s)] >> 1 for all ω Ω r 376_069 Multivariable feedback control V3 21 of 36

22 Feedback Performance Specifications in the Frequency Domain Disturbance rejection (I) Sinusoidal disturbance yields sinusoidal error d(t) = de jωt e(t) = ee jωt Relation e = S(jω)d e 2 σ max [S(jω)] d 2 Ω d range of frequencies where disturbance inputs has energy Prescription for good disturbance rejection make σ max [S(jω)] << 1 for all ω Ω d or make σ min [G(s)K(s)] >> 1 for all ω Ω d 376_069 Multivariable feedback control V3 22 of 36

23 Feedback Performance Specifications in the Frequency Domain Disturbance rejection (II) Interpretation for unit disturbance sinusoid d(t) = de jωt ; d 2 = 1 Worst error at frequency ω e 2 = σ max [S(jω)] Attained when d points along right singular vector associated with σ max Best error at frequency ω e 2 = σ min [S(jω)] Attained when d points along right singular vector associated with σ min In general σ min [S(jω)] e 2 σ max [S(jω)] 376_069 Multivariable feedback control V3 23 of 36

24 Feedback Performance Specifications in the Frequency Domain Quantitative relations Loop TFM: L(jω) = G(jω)K(jω) Sensitivity TFM: S(jω) = [Ι + L(jω)] -1 Closed-loop TFM: T(jω) = [Ι + L(jω)] -1 L(jω) Ω p = Ω r Ω d Key relations Let 0 < δ << 1 If σ max [S(jω)] δ 1 ; all ω Ω p Then 1 << 1 δ δ σ min [L(jω)] and ; all ω Ω p 1 - δ σ min [T(jω)] σ max [T(jω)] 1 + δ ; all ω Ω p T(jω) Ι - Proofs: not in this course 376_069 Multivariable feedback control V3 24 of 36

25 Feedback Performance Specifications in the Frequency Domain Comment Good command following and good disturbance rejection served by similar requirements ω Ω p = Ω r Ω d Large loop gain σ min [L(jω)] >> 1 Small sensitivity σ max [S(jω)] << 1 Flat closed-loop response σ min [T(jω)] σ max [T(jω)] 1 376_069 Multivariable feedback control V3 25 of 36

26 Feedback Performance Specifications in the Frequency Domain Insensitivity to sensor noise Sinusoidal noise yields sinusoidal error n(t) = ne jωt e(t) = ee jωt Relation e = T(jω)n e 2 σ max [T(jω)] n 2 Ω n range of frequencies where noise has significant energy Prescription for good sensor noise rejection make σ max [T(jω)]<<1 for all ω Ω n 376_069 Multivariable feedback control V3 26 of 36

27 Feedback Performance Specifications in the Frequency Domain Conflict with performance Let 0 < γ << 1 Suppose that Then σ max [T(jω)] γ for all ω Ω n σ min [L(jω)] σ max [L(jω)] γ 1-γ γ ω Ω n and low loop gain for all ω Ω n γ σ min [S(jω)] σ max [S(jω)] large sensitivity for all ω Ω n Bad command following and disturbance rejection in frequency range ω Ω n Consequence of constraint S(s) + T(s) = Ι 376_069 Multivariable feedback control V3 27 of 36

28 Feedback Performance Specifications in the Frequency Domain Design implications Need wide frequency separation between sets Ω p = Ω r Ω d and Ω n Cannot do good command following and disturbance rejection with noisy sensors that make low frequency errors (drift, bias, etc.) Stability-robustness to unmodelled highfrequency dynamics, far-away nonminimum phase zeros, and neglected small time-delays impact design in the same way as region Ω n 376_069 Multivariable feedback control V3 28 of 36

29 Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 29 of 36

30 Directional Information in Singular Value Plots Directional Information in Singular Value Plots Introduction Plots of min and max singular values vs. Frequency provide valuable insight into frequency domain properties of mimo systems Singular value decomposition provides directional information left singular vectors right singular vectors Need to understand and exploit directional information 376_069 Multivariable feedback control V3 30 of 36

31 Directional Information in Singular Value Plots SVD and linear equations y = Ax x A y SVD A = U Σ V H y = U Σ V H x Suppose : x = v i (right singular vector) y = U Σ V H v i Note (since v H i v j = δ ij ) V H v i = 0 : 1 : 0 (1 in row i) ; ΣV H v i = 0 : σ i : 0 (σ i in row i) then y i = σ i u i (u i left singular vector) Visualization 376_069 Multivariable feedback control V3 31 of 36

32 Directional Information in Singular Value Plots SVD directional information (I) Maximum singular value σ 1 (A) = σ max (A) - Associated max right singular vector v max = v 1 ; v max 2 = 1 - Associated max left singular vector u max = u 1 ; u max 2 = 1 Max amplification direction Let If Then y = Ax x = v max y = σ max u max y 2 = σ max (A) ;max amplification Visualization y Vmax = x Umax 376_069 Multivariable feedback control V3 32 of 36

33 Directional Information in Singular Value Plots SVD directional information (II) Minimum singular value: Rank(A)= m σ m (A) = σ min (A) - Associated min right singular vector v min = v m ; v min 2 = 1 - Associated min left singular vector u min = u m ; u min 2 = 1 Min amplification direction Let If Then y = Ax x = v min y = σ min u min y 2 = σ min (A) ;min amplification Visualization Vmin = x Umin y 376_069 Multivariable feedback control V3 33 of 36

34 Directional Information in Singular Value Plots Utilizing SVD directional information System: y(s) = G(s)u(s) ;G(s) m x m matrix Pick ω, calculate G(jω), do SVD G(jω) = U(jω) Σ(jω) V H (jω) Maximum direction analysis - Find σ max (ω), v max (ω), u max (ω) - Write [v max (ω)] i = a i e jψ i - Write [u max (ω)] i = b i e jφ i - Apply input u i (t) = a i sin(ωt + ψ i ) with u(t) = (u 1 (t); ;u i (t); u m (t)) then y i (t) = σ max b i sin(ωt + φ i ) Minimum directional analysis similar Complex directions of right and left singular vectors correspond to sinusoidal vectors with relative phase-shift among their elements 376_069 Multivariable feedback control V3 34 of 36

35 Directional Information in Singular Value Plots DC gain matrix analysis SVD-based direction analysis easiest at DC because plant is real (ω = 0) Plant model (strictly stable) dx(t)/dt = Ax(t) + Bu(t) y(t) = Cx(t) G(s) = C(sΙ - A) -1 B Plant DC gain matrix s = jω = 0 G(0) = - CA -1 B At steady-state u(t) = u = real constant vector y(t ) = y = real constant vector y = G(0)u or y = - CA -1 Bu 376_069 Multivariable feedback control V3 35 of 36

36 Directional Information in Singular Value Plots Steady-state analysis SVD at G(0) SVD at DC y = G(0)u G(0) = - CA -1 B = real G(0) = UΣV H (U, Σ, V = real) Max amplification direction If u = v max ; u 2 = 1 Then y = σ max u max Min amplification direction If u = v min ; u 2 = 1 Then y = σ min u min Above provides valuable insight upon MIMO plant characteristics at DC 376_069 Multivariable feedback control V3 36 of 36

### Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31

Introduction Classical Control Robust Control u(t) y(t) G u(t) G + y(t) G : nominal model G = G + : plant uncertainty Uncertainty sources : Structured : parametric uncertainty, multimodel uncertainty Unstructured

### Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries

. AERO 632: of Advance Flight Control System. Preliminaries Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Preliminaries Signals & Systems Laplace

### Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency Response-Design Method

.. AERO 422: Active Controls for Aerospace Vehicles Frequency Response- Method Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. ... Response to

### Topic # Feedback Control Systems

Topic #20 16.31 Feedback Control Systems Closed-loop system analysis Bounded Gain Theorem Robust Stability Fall 2007 16.31 20 1 SISO Performance Objectives Basic setup: d i d o r u y G c (s) G(s) n control

### Lecture 4: Analysis of MIMO Systems

Lecture 4: Analysis of MIMO Systems Norms The concept of norm will be extremely useful for evaluating signals and systems quantitatively during this course In the following, we will present vector norms

### Control Systems I. Lecture 5: Transfer Functions. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I Lecture 5: Transfer Functions Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 20, 2017 E. Frazzoli (ETH) Lecture 5: Control Systems I 20/10/2017

### Exercise 8: Frequency Response of MIMO Systems

Exercise 8: Frequency Response of MIMO Systems 8 Singular Value Decomposition (SVD The Singular Value Decomposition plays a central role in MIMO frequency response analysis Let s recall some concepts from

### Uncertainty and Robustness for SISO Systems

Uncertainty and Robustness for SISO Systems ELEC 571L Robust Multivariable Control prepared by: Greg Stewart Outline Nature of uncertainty (models and signals). Physical sources of model uncertainty. Mathematical

### Control Systems 2. Lecture 4: Sensitivity function limits. Roy Smith

Control Systems 2 Lecture 4: Sensitivity function limits Roy Smith 2017-3-14 4.1 Input-output controllability Control design questions: 1. How well can the plant be controlled? 2. What control structure

### Problem Set 4 Solution 1

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Problem Set 4 Solution Problem 4. For the SISO feedback

### EL2520 Control Theory and Practice

So far EL2520 Control Theory and Practice r Fr wu u G w z n Lecture 5: Multivariable systems -Fy Mikael Johansson School of Electrical Engineering KTH, Stockholm, Sweden SISO control revisited: Signal

### Lecture 7 (Weeks 13-14)

Lecture 7 (Weeks 13-14) Introduction to Multivariable Control (SP - Chapters 3 & 4) Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture 7 (Weeks 13-14) p.

### D(s) G(s) A control system design definition

R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure

### Classify a transfer function to see which order or ramp it can follow and with which expected error.

Dr. J. Tani, Prof. Dr. E. Frazzoli 5-059-00 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,

### Richiami di Controlli Automatici

Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici

### Plan of the Lecture. Goal: wrap up lead and lag control; start looking at frequency response as an alternative methodology for control systems design.

Plan of the Lecture Review: design using Root Locus; dynamic compensation; PD and lead control Today s topic: PI and lag control; introduction to frequency-response design method Goal: wrap up lead and

### FEL3210 Multivariable Feedback Control

FEL3210 Multivariable Feedback Control Lecture 5: Uncertainty and Robustness in SISO Systems [Ch.7-(8)] Elling W. Jacobsen, Automatic Control Lab, KTH Lecture 5:Uncertainty and Robustness () FEL3210 MIMO

### Linear Algebra Review. Vectors

Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

### CONTROL DESIGN FOR SET POINT TRACKING

Chapter 5 CONTROL DESIGN FOR SET POINT TRACKING In this chapter, we extend the pole placement, observer-based output feedback design to solve tracking problems. By tracking we mean that the output is commanded

### Control Systems I Lecture 10: System Specifications

Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture

### Topic # Feedback Control Systems

Topic #1 16.31 Feedback Control Systems Motivation Basic Linear System Response Fall 2007 16.31 1 1 16.31: Introduction r(t) e(t) d(t) y(t) G c (s) G(s) u(t) Goal: Design a controller G c (s) so that the

### Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback

### Model Uncertainty and Robust Stability for Multivariable Systems

Model Uncertainty and Robust Stability for Multivariable Systems ELEC 571L Robust Multivariable Control prepared by: Greg Stewart Devron Profile Control Solutions Outline Representing model uncertainty.

### The Singular Value Decomposition

The Singular Value Decomposition Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) SVD Fall 2015 1 / 13 Review of Key Concepts We review some key definitions and results about matrices that will

### Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability

Lecture 6. Loop analysis of feedback systems 1. Motivation 2. Graphical representation of frequency response: Bode and Nyquist curves 3. Nyquist stability theorem 4. Stability margins Frequency methods

### Linear Algebra (Review) Volker Tresp 2018

Linear Algebra (Review) Volker Tresp 2018 1 Vectors k, M, N are scalars A one-dimensional array c is a column vector. Thus in two dimensions, ( ) c1 c = c 2 c i is the i-th component of c c T = (c 1, c

### Chapter 20 Analysis of MIMO Control Loops

Chapter 20 Analysis of MIMO Control Loops Motivational Examples All real-world systems comprise multiple interacting variables. For example, one tries to increase the flow of water in a shower by turning

### ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7)

EEE582 Topical Outline A.A. Rodriguez Fall 2007 GWC 352, 965-3712 The following represents a detailed topical outline of the course. It attempts to highlight most of the key concepts to be covered and

### Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.

Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Department, Middle East Technical University Armature controlled dc motor Outside θ D output Inside θ r input r θ m Gearbox Control Transmitter

### Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are

### Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Norms for Signals and Systems

. AERO 632: Design of Advance Flight Control System Norms for Signals and. Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Norms for Signals ...

### Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response

.. AERO 422: Active Controls for Aerospace Vehicles Dynamic Response Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. . Previous Class...........

### An Internal Stability Example

An Internal Stability Example Roy Smith 26 April 2015 To illustrate the concept of internal stability we will look at an example where there are several pole-zero cancellations between the controller and

### Design Methods for Control Systems

Design Methods for Control Systems Maarten Steinbuch TU/e Gjerrit Meinsma UT Dutch Institute of Systems and Control Winter term 2002-2003 Schedule November 25 MSt December 2 MSt Homework # 1 December 9

### Linear Algebra (Review) Volker Tresp 2017

Linear Algebra (Review) Volker Tresp 2017 1 Vectors k is a scalar (a number) c is a column vector. Thus in two dimensions, c = ( c1 c 2 ) (Advanced: More precisely, a vector is defined in a vector space.

### Controls Problems for Qualifying Exam - Spring 2014

Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function

### EE263: Introduction to Linear Dynamical Systems Review Session 9

EE63: Introduction to Linear Dynamical Systems Review Session 9 SVD continued EE63 RS9 1 Singular Value Decomposition recall any nonzero matrix A R m n, with Rank(A) = r, has an SVD given by A = UΣV T,

### Problem Set 5 Solutions 1

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Problem Set 5 Solutions The problem set deals with Hankel

### (a) Find the transfer function of the amplifier. Ans.: G(s) =

126 INTRDUCTIN T CNTR ENGINEERING 10( s 1) (a) Find the transfer function of the amplifier. Ans.: (. 02s 1)(. 001s 1) (b) Find the expected percent overshoot for a step input for the closed-loop system

### EECE 460. Decentralized Control of MIMO Systems. Guy A. Dumont. Department of Electrical and Computer Engineering University of British Columbia

EECE 460 Decentralized Control of MIMO Systems Guy A. Dumont Department of Electrical and Computer Engineering University of British Columbia January 2011 Guy A. Dumont (UBC EECE) EECE 460 - Decentralized

### Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design.

ISS0031 Modeling and Identification Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design. Aleksei Tepljakov, Ph.D. September 30, 2015 Linear Dynamic Systems Definition

### FEL3210 Multivariable Feedback Control

FEL3210 Multivariable Feedback Control Lecture 6: Robust stability and performance in MIMO systems [Ch.8] Elling W. Jacobsen, Automatic Control Lab, KTH Lecture 6: Robust Stability and Performance () FEL3210

### Frequency domain analysis

Automatic Control 2 Frequency domain analysis Prof. Alberto Bemporad University of Trento Academic year 2010-2011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011

### Lecture 1: Feedback Control Loop

Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure

### Lecture 6. Chapter 8: Robust Stability and Performance Analysis for MIMO Systems. Eugenio Schuster.

Lecture 6 Chapter 8: Robust Stability and Performance Analysis for MIMO Systems Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture 6 p. 1/73 6.1 General

### A brief introduction to robust H control

A brief introduction to robust H control Jean-Marc Biannic System Control and Flight Dynamics Department ONERA, Toulouse. http://www.onera.fr/staff/jean-marc-biannic/ http://jm.biannic.free.fr/ European

### Pole placement control: state space and polynomial approaches Lecture 2

: state space and polynomial approaches Lecture 2 : a state O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.fr www.gipsa-lab.fr/ o.sename -based November 21, 2017 Outline : a state

### Control Systems Design

ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:

### Singular Value Decomposition

Singular Value Decomposition Motivatation The diagonalization theorem play a part in many interesting applications. Unfortunately not all matrices can be factored as A = PDP However a factorization A =

### Robust Control. 2nd class. Spring, 2018 Instructor: Prof. Masayuki Fujita (S5-303B) Tue., 17th April, 2018, 10:45~12:15, S423 Lecture Room

Robust Control Spring, 2018 Instructor: Prof. Masayuki Fujita (S5-303B) 2nd class Tue., 17th April, 2018, 10:45~12:15, S423 Lecture Room 2. Nominal Performance 2.1 Weighted Sensitivity [SP05, Sec. 2.8,

### Exam. 135 minutes, 15 minutes reading time

Exam August 6, 208 Control Systems II (5-0590-00) Dr. Jacopo Tani Exam Exam Duration: 35 minutes, 5 minutes reading time Number of Problems: 35 Number of Points: 47 Permitted aids: 0 pages (5 sheets) A4.

### MATH36001 Generalized Inverses and the SVD 2015

MATH36001 Generalized Inverses and the SVD 201 1 Generalized Inverses of Matrices A matrix has an inverse only if it is square and nonsingular. However there are theoretical and practical applications

### Subject: Optimal Control Assignment-1 (Related to Lecture notes 1-10)

Subject: Optimal Control Assignment- (Related to Lecture notes -). Design a oil mug, shown in fig., to hold as much oil possible. The height and radius of the mug should not be more than 6cm. The mug must

### Mathematics for Control Theory

Mathematics for Control Theory H 2 and H system norms Hanz Richter Mechanical Engineering Department Cleveland State University Reading materials We will use: Michael Green and David Limebeer, Linear Robust

### Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli

Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)

### Topic # Feedback Control Systems

Topic #17 16.31 Feedback Control Systems Deterministic LQR Optimal control and the Riccati equation Weight Selection Fall 2007 16.31 17 1 Linear Quadratic Regulator (LQR) Have seen the solutions to the

### 6.302 Feedback Systems Recitation 27: Final Recitation and Review Prof. Joel L. Dawson

6.302 Feedbac Systems We re going to spend some time in this recitation revisiting some of the very early examples of recitation #1. To aid us in this review, the final class exercise involves exploring

### Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Jacopo Tani Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 2, 2018 J. Tani, E. Frazzoli (ETH) Lecture 7:

### Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control

Chapter 3 LQ, LQG and Control System H 2 Design Overview LQ optimization state feedback LQG optimization output feedback H 2 optimization non-stochastic version of LQG Application to feedback system design

### Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T.

Notes on singular value decomposition for Math 54 Recall that if A is a symmetric n n matrix, then A has real eigenvalues λ 1,, λ n (possibly repeated), and R n has an orthonormal basis v 1,, v n, where

### Basic Calculus Review

Basic Calculus Review Lorenzo Rosasco ISML Mod. 2 - Machine Learning Vector Spaces Functionals and Operators (Matrices) Vector Space A vector space is a set V with binary operations +: V V V and : R V

### The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA)

Chapter 5 The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) 5.1 Basics of SVD 5.1.1 Review of Key Concepts We review some key definitions and results about matrices that will

### Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Basic Feedback Analysis & Design

AERO 422: Active Controls for Aerospace Vehicles Basic Feedback Analysis & Design Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University Routh s Stability

### (a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax =

. (5 points) (a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? dim N(A), since rank(a) 3. (b) If we also know that Ax = has no solution, what do we know about the rank of A? C(A)

### RELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS. Ryszard Gessing

RELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS Ryszard Gessing Politechnika Śl aska Instytut Automatyki, ul. Akademicka 16, 44-101 Gliwice, Poland, fax: +4832 372127, email: gessing@ia.gliwice.edu.pl

### State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules

Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state

### Control of Manufacturing Processes

Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #18 Basic Control Loop Analysis" April 15, 2004 Revisit Temperature Control Problem τ dy dt + y = u τ = time constant = gain y ss =

### Chapter 8: Frequency Domain Analysis

Chapter 8: Frequency Domain Analysis Samantha Ramirez Preview Questions 1. What is the steady-state response of a linear system excited by a cyclic or oscillatory input? 2. How does one characterize the

### Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )

Section 3.2 Theorem 3.6. Let A be an m n matrix of rank r. Then r m, r n, and, by means of a finite number of elementary row and column operations, A can be transformed into the matrix ( ) Ir O D = 1 O

### Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL. Glenn Vinnicombe HANDOUT 5. An Introduction to Feedback Control Systems

Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Glenn Vinnicombe HANDOUT 5 An Introduction to Feedback Control Systems ē(s) ȳ(s) Σ K(s) G(s) z(s) H(s) z(s) = H(s)G(s)K(s) L(s) ē(s)=

### Robust Performance Example #1

Robust Performance Example # The transfer function for a nominal system (plant) is given, along with the transfer function for one extreme system. These two transfer functions define a family of plants

### Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08

Fall 2007 線性系統 Linear Systems Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian NTU-EE Sep07 Jan08 Materials used in these lecture notes are adopted from Linear System Theory & Design, 3rd.

### Robust Control 3 The Closed Loop

Robust Control 3 The Closed Loop Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /2/2002 Outline Closed Loop Transfer Functions Traditional Performance Measures Time

### Multivariable Control. Lecture 05. Multivariable Poles and Zeros. John T. Wen. September 14, 2006

Multivariable Control Lecture 05 Multivariable Poles and Zeros John T. Wen September 4, 2006 SISO poles/zeros SISO transfer function: G(s) = n(s) d(s) (no common factors between n(s) and d(s)). Poles:

### Zeros and zero dynamics

CHAPTER 4 Zeros and zero dynamics 41 Zero dynamics for SISO systems Consider a linear system defined by a strictly proper scalar transfer function that does not have any common zero and pole: g(s) =α p(s)

### Control Systems I. Lecture 9: The Nyquist condition

Control Systems I Lecture 9: The Nyquist condition Readings: Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Jacopo Tani Institute for Dynamic Systems and Control

### 16.30/31, Fall 2010 Recitation # 2

16.30/31, Fall 2010 Recitation # 2 September 22, 2010 In this recitation, we will consider two problems from Chapter 8 of the Van de Vegte book. R + - E G c (s) G(s) C Figure 1: The standard block diagram

### 1. The Polar Decomposition

A PERSONAL INTERVIEW WITH THE SINGULAR VALUE DECOMPOSITION MATAN GAVISH Part. Theory. The Polar Decomposition In what follows, F denotes either R or C. The vector space F n is an inner product space with

### Matrices and Vectors. Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A =

30 MATHEMATICS REVIEW G A.1.1 Matrices and Vectors Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A = a 11 a 12... a 1N a 21 a 22... a 2N...... a M1 a M2... a MN A matrix can

### forms Christopher Engström November 14, 2014 MAA704: Matrix factorization and canonical forms Matrix properties Matrix factorization Canonical forms

Christopher Engström November 14, 2014 Hermitian LU QR echelon Contents of todays lecture Some interesting / useful / important of matrices Hermitian LU QR echelon Rewriting a as a product of several matrices.

### Chap 3. Linear Algebra

Chap 3. Linear Algebra Outlines 1. Introduction 2. Basis, Representation, and Orthonormalization 3. Linear Algebraic Equations 4. Similarity Transformation 5. Diagonal Form and Jordan Form 6. Functions

### Explanations and Discussion of Some Laplace Methods: Transfer Functions and Frequency Response. Y(s) = b 1

Engs 22 p. 1 Explanations Discussion of Some Laplace Methods: Transfer Functions Frequency Response I. Anatomy of Differential Equations in the S-Domain Parts of the s-domain solution. We will consider

### Homework 7 - Solutions

Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the

### Section 3.9. Matrix Norm

3.9. Matrix Norm 1 Section 3.9. Matrix Norm Note. We define several matrix norms, some similar to vector norms and some reflecting how multiplication by a matrix affects the norm of a vector. We use matrix

### Introduction to MVC. least common denominator of all non-identical-zero minors of all order of G(s). Example: The minor of order 2: 1 2 ( s 1)

Introduction to MVC Definition---Proerness and strictly roerness A system G(s) is roer if all its elements { gij ( s)} are roer, and strictly roer if all its elements are strictly roer. Definition---Causal

### ME 132, Fall 2017, UC Berkeley, A. Packard 334 # 6 # 7 # 13 # 15 # 14

ME 132, Fall 2017, UC Berkeley, A. Packard 334 30.3 Fall 2017 Final # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 NAME 20 15 20 15 15 18 15 20 # 9 # 10 # 11 # 12 # 13 # 14 # 15 # 16 18 12 12 15 12 20 18 15 Facts: 1.

### Prüfung Regelungstechnik I (Control Systems I) Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 29. 8. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid

### Introduction to Feedback Control

Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

### UNIT 6: The singular value decomposition.

UNIT 6: The singular value decomposition. María Barbero Liñán Universidad Carlos III de Madrid Bachelor in Statistics and Business Mathematical methods II 2011-2012 A square matrix is symmetric if A T

### Intro to Frequency Domain Design

Intro to Frequency Domain Design MEM 355 Performance Enhancement of Dynamical Systems Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline Closed Loop Transfer Functions

### 2. Review of Linear Algebra

2. Review of Linear Algebra ECE 83, Spring 217 In this course we will represent signals as vectors and operators (e.g., filters, transforms, etc) as matrices. This lecture reviews basic concepts from linear

### Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30

289 Upcoming labs: Lecture 12 Lab 20: Internal model control (finish up) Lab 22: Force or Torque control experiments [Integrative] (2-3 sessions) Final Exam on 12/21/2015 (Monday)10:30-12:30 Today: Recap

### (Continued on next page)

(Continued on next page) 18.2 Roots of Stability Nyquist Criterion 87 e(s) 1 S(s) = =, r(s) 1 + P (s)c(s) where P (s) represents the plant transfer function, and C(s) the compensator. The closedloop characteristic

### An Overview on Robust Control

Advanced Control An Overview on Robust Control P C Scope Keywords Prerequisites allow the student to assess the potential of different methods in robust control without entering deep into theory. Sensitize

### Exercise 1 (A Non-minimum Phase System)

Prof. Dr. E. Frazzoli 5-59- Control Systems I (Autumn 27) Solution Exercise Set 2 Loop Shaping clruch@ethz.ch, 8th December 27 Exercise (A Non-minimum Phase System) To decrease the rise time of the system,

### Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control

Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steady-state Steady-state errors errors Type Type k k systems systems Integral Integral

### Iterative Controller Tuning Using Bode s Integrals

Iterative Controller Tuning Using Bode s Integrals A. Karimi, D. Garcia and R. Longchamp Laboratoire d automatique, École Polytechnique Fédérale de Lausanne (EPFL), 05 Lausanne, Switzerland. email: alireza.karimi@epfl.ch