Non-Perturbative Thermal QCD: AdS/QCD and Gluon Condensates

Size: px
Start display at page:

Download "Non-Perturbative Thermal QCD: AdS/QCD and Gluon Condensates"

Transcription

1 Issues Non-Perturbative Thermal QCD: AdS/QCD and Gluon Condensates * B. Galow, M. Ilgenfritz, J. Nian, H.J. Pirner, K. Veschgini (ITP, Heidelberg, Germany) E. Ruiz Arriola, L.L. Salcedo (U. Granada, Spain) Instituto de Física Teórica, IFT-CSIC/UAM, Universidad Autónoma de Madrid, Spain and Department de Física and IFAE, Universitat Autònoma de Barcelona, Spain. Supported by the Alexander von Humboldt Foundation, Spanish CPAN and Juan de la Cierva. INT Program 11-3 Frontiers in QCD November 8, 2011, INT, Washington U., Seattle, USA. E. Megías et al. NPB834(2010), (2009), NP P.S.207(2010), PRD83(2011), PLB696(2011), AIP C.P.1343(2011); PRD80(2009),PRD81(2010).

2 Issues Issues 1 Motivation 2 Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model 3 The 5D Einstein-dilaton model at finite T 4 Dimension two Condensates?

3 Issues Issues 1 Motivation 2 Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model 3 The 5D Einstein-dilaton model at finite T 4 Dimension two Condensates?

4 Issues Issues 1 Motivation 2 Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model 3 The 5D Einstein-dilaton model at finite T 4 Dimension two Condensates?

5 Issues Issues 1 Motivation 2 Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model 3 The 5D Einstein-dilaton model at finite T 4 Dimension two Condensates?

6 Motivation Pressure of Gluodynamics Weak Coupling Expansion and Resummed Perturbation Theory E. Braaten and A. Nieto (1996), J.O. Andersen et al (1999) ideal / T/T c

7 Motivation Interaction Measure in Gluodynamics Weak Coupling Expansion and Resummed Perturbation Theory E. Braaten and A. Nieto (1996), J.O. Andersen et al (1999) ideal ( - 3 )/ T/T c

8 Motivation Trace Anomaly N c = 3, N f = 0 G. Boyd et al., Nucl. Phys. B469, 419 (1996). ǫ 3P T 4 (ε-3p)/t HTL 2-loops a + b (T c /T) T/T c = a + b T 2, b = (3.46±0.13)Tc 2, 1.13T c < T < 4.5T c.

9 Motivation Trace Anomaly N c = 3, N f = 0 G. Boyd et al., Nucl. Phys. B469, 419 (1996). ǫ 3P T 4 (ε-3p)/t a + b (T c /T) (T c /T) 2 = a + b T 2, b = (3.46±0.13)Tc 2, 1.13T c < T < 4.5T c.

10 Motivation ǫ 3P T 4 = HTL (µ T ) + b }{{} T 2 1/ log T (ε-3p)/t HTL 2-loops HTL 3-loops a + b (T c /T) T/T c (ε-3p)/t HTL 2-loops HTL 3-loops a T/T c Perturbation Theory and Hard Thermal Loops only yield a!!.

11 Issues Motivation Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model 1 Motivation 2 Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model 3 The 5D Einstein-dilaton model at finite T 4 Dimension two Condensates?

12 Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model Scale Invariance and Confinement Consider a rectangular Wilson loop: ( ) W(C) = exp ig A µ dx µ C x t It is related to the potential V q q (R) acting between charges q and q: W(C) t exp( t V q q (R)) Scale transformations: t λt, R λr. The only scale invariant solution is the Coulomb Potential: V q q 1 R Running coupling and string tension break scale invariance: V q q (R) = 4 α s (R) 3 R +σr.

13 Issues Motivation Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model 1 Motivation 2 Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model 3 The 5D Einstein-dilaton model at finite T 4 Dimension two Condensates?

14 Soft-wall model of AdS/QCD Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model dsqcd 2 = h(z) ds2 = h(z) l2 ( dt 2 z 2 + d x 2 + dz 2). }{{} AdS 5 h(z) = 1 = Conformal h(z) 1 = Non conformal Breaking of scaling invariance in QCD is given by the running coupling: ǫ 3p T 4 = β(α s) Fµν. 2 4α 2 s where β(α s ) = µ dαs dµ and α s(e) 1/ log(e/λ). = Assume an ansatz for conformal symmetry breaking similar to 1-loop running coupling (H.J. Pirner & B. Galow 09): h(z) = log(ǫ) log(ǫ+(λz) 2 ), z 1 E. Other ansatz: h(z) = e 1 2 cz2 Andreev & Zakharov 07

15 Soft-wall model of AdS/QCD H.J.Pirner & B.Galow 09 Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model W(C) exp( S NG ) exp ( t V Q Q(R) ) V ren. Q Q (R)[GeV] R[GeV 1 ] 2 V q q a R +σr, a = 0.48, σ = (0.425 GeV)2 = ǫ = Λ 2 l 2 s = 0.48, Λ = 264 MeV.

16 Issues Motivation Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model 1 Motivation 2 Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model 3 The 5D Einstein-dilaton model at finite T 4 Dimension two Condensates?

17 The 5D Einstein-dilaton model Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model 5D Einstein-dilaton model (Gürsoy et al. 08): 1 S 5D = d 5 x ( g R 4 ) 16πG 5 3 µφ µ φ V(φ) 1 8πG 5 One to one relation between β-function and dilaton potential V(φ): V(φ) = 12 l 2 ( 1 ( ) ) 2 [ β(α) exp 8 α 3α 9 0 Ansatz (E.Megías et al., NPB834, 2010): [ ( ) b2 β(α) = b 2 α+ b 2 α+ ᾱ β 0 α 2 + M ] β(a) a 2 da, α = e φ. ( b2 2ᾱ 2 β 0 ᾱ β 1 α << ᾱ = Ultraviolet: β(α) β 0 α 2 β 1 α 3 α >> ᾱ = Infrared: β(α) b 2 α d 4 x h K. )α 3 ] e α/ᾱ.

18 The 5D Einstein-dilaton model Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model W(C) exp( S NG ) exp ( t V Q Q(R) ) ds 2 = e 4 3 φ e 2A( dt 2 + d x 2) +e 4 3 φ l 2 e 2D dα 2 ρ(α 0 ) = ρ 2 ρ 2 α0 e D 3Ã α 4 dσ = 2le A0 3 dα, 0 1 α 8 3 e 4Ã V reg. (α Q Q 0) = 1 t Sreg. NG = V V s [ = 2lα ea 0 α0 α 4 3 e D+Ã dα π l s α 8 3 e 4Ã 0 dα α 4 3 e D+Ã ]

19 Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model Heavy QQ potential at Short Distances Analytical result at short distances: V Q Q(ρ) = 2 l 2 α 4/3 0 (ρ) [ ] π l2 s ρ }{{} β 0 α }{{} 0 +(1.347β β 1 )α0 2 }{{} where the running coupling is [ ( 1.32l α 0 (ρ) = β 0 log ρ Ρ V QQ Ρ LO ) + β 1 β 0 log NNLO NLO LO Ρ GeV NLO ( β 0 log V PT NNLO ( ))] l +O(log 3) ρ Q Q (ρ) = N2 c 1 2N c Comparison with PT = ls l = 0.33 α PT(ρ) (1+O(α PT )) ρ

20 Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model Heavy QQ potential and running coupling W(C) exp( S NG ) exp ( t V Q Q(R) ) V qq Ρ GeV Ρ GeV 1 Α E E GeV σ = (0.425 GeV) 2 = b 2 ᾱ = 3.51GeV l s Fit of running coupling = b 2 ᾱ = 5.09 ls = 1.45 GeV 1

21 Dilaton potential and warp factor Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model V Α GeV Α h z GeV 2 l s h z l s 2 h z z GeV 1 l s 2 V(α) (b 2 2 9)α 8 9 b 2, α ; 1 α(z) b 2, z z IR 4 (z IR z) 9 b2 2 1

22 Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model Confinement and good IR singularity Effective Schrödinger potentials for glueballs 0 ++ and 2 ++ : V Schr z GeV Α z Tensor 2 Scalar z GeV 1 ] [ 2 z 2 + V Schr.(z) ψ n (z) = mnψ 2 n (z) Confining theory = 1.5 < b 2 IR singularity repulsive to physical modes = b 2 < 2.37 Best choice of parameters: b 2 = 2.3, ᾱ = 0.45, l = 4.39 GeV 1, ls = 1.45 GeV 1.

23 Issues Motivation The 5D Einstein-dilaton model at finite temperature 1 Motivation 2 Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model 3 The 5D Einstein-dilaton model at finite T 4 Dimension two Condensates?

24 Schwarzschild black hole The 5D Einstein-dilaton model at finite temperature General Relativity with no source = Einstein-Hilbert action 1 S EH = d D x g R, R = g µν R µν 16πG D Classical solution δ δg µν = Einstein equations E µν R µν 1 2 g µνr = 0 = spherical R µν = 0 Schwarzschild solution in spherical coordinates (1915): ds 2 = g µν dx µ dx ν = f(r)dt f(r) dr 2 + r 2 dω 2 2, f(r) = 1 r h r r h is the horizon. Not physical singularity: R µνρσ R µνρσ = 12 r 2 h r 6. Large distance limit: g tt (r) r (1+2V Newton (r)) = r h = 2G 4 M.

25 Black hole thermodynamics The 5D Einstein-dilaton model at finite temperature ( Z = Tr e βh), β = 1 T Periodicity in euclidean time (τ = it): Φ(τ +β) = Φ(τ) *Regularity: Expansion around the horizon f(r h ) = 0; r = r h (1+ρ 2 ): dsbh 2 = f(r)dt ( ( ) 2 dτ f(r) dr 2 +r 2 dω 2 2 4rh 2 dρ 2 +ρ ) ρ 0 2r h 4 dω2 2 }{{} dθ 2 τ = Periodicity: 2r h τ 2r h + 2π = τ τ + 4πr h =: τ +β 1 T = 8πMG 4 *Thermodynamical interpretation of black holes: dm dm = TdS = S = T = 4πG 4M 2 A = 4πr 2 h = 16π(G 4M) 2 = S Black Hole (T) = A(r horizon) 4G D Bek-Hawking

26 Issues Motivation The 5D Einstein-dilaton model at finite temperature 1 Motivation 2 Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model 3 The 5D Einstein-dilaton model at finite T 4 Dimension two Condensates?

27 The 5D Einstein-dilaton model at finite temperature The 5D Einstein-dilaton model at finite temperature 1 S 5D = 16πG 5 d 5 x ( g R 4 ) 3 µφ µ φ V(φ) 1 d 4 x h K. 8πG 5 M Finite temperature solutions (E. Kiritsis et al. JHEP (2009) 033): Thermal gas solution (confined phase): ds 2 th = b 2 0(z)( dt 2 + d x 2 + dz 2 ), t t + iβ Black hole solution (deconfined phase): ] dsbh 2 = b 2 (z) [ f(z)dt 2 + d x 2 + dz2 f(z) In the UV (z 0): flat metric b(z) l/z and f(0) = 1. There exists an horizon f(z h ) = 0. Regularity at the horizon = T = ḟ(z h) 4π.

28 The 5D Einstein-dilaton model δ The 5D Einstein-dilaton model at finite temperature Einstein equations δg µν : ( R µν 1 ) ( 4 2 g µνr 3 µφ ν φ 1 ( )) 4 2 g µν 3 ( φ)2 + V(φ) = 0 }{{}}{{} E µν T µν (a) (b) (c) f ḟ + 3ḃ = 0,= f(z) = 1 b 6ḃ2 b 2 3 b b = 4 3 φ 2, 6ḃ2 b b b + 3ḃ b ḟ f = b2 V(φ) f z 0 zh 0 Conformal solution: V(φ) = 12 ( l 2, l z φ = 0 = b(z) =, f(z) = 1 z du b(u) 3 du b(u) 3 z h ) 4, T = 1 πz h

29 The 5D Einstein-dilaton model [ β(α) = b 2 α+ b 2 α+( b2 ᾱ β 0 = V(α) = 12 l 2 T GeV ( T c 272MeV Α h Input: ) ( ) ) 2 [ β(α) exp 8 α 3α f The 5D Einstein-dilaton model at finite temperature α 2 +( b2 2ᾱ 2 β 0 ᾱ β 1 ) α 3 ] e α/ᾱ ] β(a) a 2 da, E.Megías NPB z GeV 1 T = 368 MeV

30 The 5D Einstein-dilaton model [ β(α) = b 2 α+ b 2 α+( b2 ᾱ β 0 Input: ) The 5D Einstein-dilaton model at finite temperature α 2 +( β2 2ᾱ 2 β 0 ᾱ β 1 ) α 3 ] e α/ᾱ z l b z Α z z GeV T = 368MeV z GeV 1

31 Issues Motivation The 5D Einstein-dilaton model at finite temperature 1 Motivation 2 Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model 3 The 5D Einstein-dilaton model at finite T 4 Dimension two Condensates?

32 Motivation The 5D Einstein-dilaton model at finite temperature Postulate: Entropy of gauge theories is equal to the Bekenstein-Hawking entropy of their string duals. S(T) = A(z h) 4G 5 = V 3b 3 (z h ) 4G 5, z h 1 πt π High temperature limit: s(t) 3 l 3 T 4G 5 T 3 = π2 T 3 =: s ideal (T) One can compute all the thermodynamic quantities: s(t) = d dt p(t), ǫ 3p (T) T 4 = s T 3 4p T 4. In the free energy = contributions from big and small black holes: T αh ( ) dt p(t) = p(t 0 )+ d T s( T) = d α h s( α h ). T 0 + d α h

33 Motivation The 5D Einstein-dilaton model at finite temperature Input β(α). e 3P T P T Numeric Αh 2 Αh 3 SU 3 Panero SU 3 Boyd et al Numeric Αh Αh 2 Αh 3 SU 3 Panero SU 3 Boyd et al T Tc T Tc N c = 3, N f = 0, b 2 = 2.3, ᾱ = 0.45 p(t) T 4 = π3 l 3 ( G β 0α h + 29 ) (4β20 3β 1 )α 2h , α h 5 β 0 log(πt/λ)

34 Motivation The 5D Einstein-dilaton model at finite temperature Free Energy from: Bekenstein-Hawking entropy Classically Free Energy from: Gibbons-Hawking action S = A 4G 5 βf = S reg := S BH S th = = F = V ( 3 15G C ) f 16πG 5 4 E. Kiritsis et al. JHEP (2009) 033. G = πg 5 15 β(α) α 2 TrF 2 µν, C f = 4πTb 3 (z h ) T s b T (z) = b 0 (z) [1+ Gl ( 3 z ) ] 12 β 0α 0 (z)+c2 b α2 0(z)+ +, z 0

35 Motivation The 5D Einstein-dilaton model at finite temperature Α z Α 0 z z 4 GeV GeV T GeV z GeV α T (z) α 0 (z) z 4 = 45 8 G l 3 β 0 ( ( β 0 β ) ) 1 α 0 (z)+c α β 2α0(z)+ 2 0 = Corrections in α 0 are very important for agreement.

36 The 5D Einstein-dilaton model at finite temperature Flavor dependence of the phase transition Tc Agrees quite well with J. Braun & H. Gies JHEP 1005 (2010), κ = N f ( T c = T Nf =0 1 κnf +O(Nf 2 )) κ = , T Nf =0 = MeV, T Nf =4 = MeV, T Lattice N f =0 Lattice = 270±2 MeV, TN f =4 = MeV.

37 Polyakov Loop Motivation L(T) := P = DX e Sw = semiclassically P = i The 5D Einstein-dilaton model at finite temperature w i e S i e S 0 S reg 0 = 1 [ zh zc ] 2πls 2 dz α 4/3 (z)b 2 (z) dz α 4/3 0 (z)b T 0(z) LR Numeric Αh 4 3 Αh 7 3 Αh 10 3 ΑT 2 Lattice Gluodynamics SU(3): S.Gupta et al., PRD77(2008). l s = 2.36 GeV 1, z c = 0.43 GeV 1 T Tc 0 [ 2 4( l 2 L(T) = exp 2ls 2 α 4 3 h β 0α h + 1 )] ( ) 161β β 1 α 2 h +O(αh 3 ), ( ) 3 In contradiction with PT: L PT (T) = exp πα 2 +O(α 2 ). 4 3

38 Spatial Wilson Loops The 5D Einstein-dilaton model at finite temperature Rectangular Wilson loop in (x,y) plane: W(C) = ( ) ly exp ig A µ dx µ e l y V(d), C V(d) d σ s d l y S NG = l2 2πls 2 l y l x/2 l x/2 dx h(z) z 2 1+ ( xz) 2, X(x, y) = (x, y, 0, 0, z(x)) f(z) σ s (T) = 1 2πl 2 s α 4/3 h bh 2 l x

39 Spatial Wilson Loops The 5D Einstein-dilaton model at finite temperature Spatial string tension: Lattice data: G. Boyd et al. NPB469 (1996) 1.4 T Σs SU 3 Α 4 3 h Numeric Α 7 3 h Alanen 09 Α 10 3 h Α 13 3 h σ s (T) = 1 2πls 2 α 4 3 h b 2 (z h ) = l2 2ls 2 πt 2 α 4 3 h [ This is in contradiction with pqcd: σ pqcd T 2 α 2 s(t). See also Kajantie et al. PRD80 (2009). l s = 1.94 GeV 1, χ 2 /d.o.f. = T Tc ] β 0α h (25β2 0 2β 1 )αh 2 +O(α3 h )

40 Issues Motivation The 5D Einstein-dilaton model at finite temperature 1 Motivation 2 Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model 3 The 5D Einstein-dilaton model at finite T 4 Dimension two Condensates?

41 Pressure and Running Coupling Pressure from AdS/QCD (UV expansion): The 5D Einstein-dilaton model at finite temperature P AdS/QCD = P SB (1 2.33α h α 2 h +O(α3 h )) Pressure from perturbation theory: P pqcd = P SB (1 1.19α T + 5.4α 3/2 T +O(α 2 T )) A comparison at high T demands α AdS/QCD α pqcd / P PSB SU 3 Α h Α h 2 Α h 3 PT Α T T c

42 Pressure and Running Coupling The 5D Einstein-dilaton model at finite temperature Simple model: β(α) = { β pert (α) ˆβ 2 α 4 if α ˆα β pert (ˆα) ˆβ 2ˆα 4 3(α ˆα) if α > ˆα

43 Debye Screening Motivation The 5D Einstein-dilaton model at finite temperature S AdS/QCD = 1 4G5 2 dz d 4 x g(f V MN F V MN + F A MN F AMN ) Debye mass: md 2 = g2 Π 00 (ω = 0, k 2 = md 2) Screening mass in the absence of an external field (Gorsky et al. 10): S AdS/QCD = V 4D 2G5 2 dz b(z)( z V 0 (z)) 2 e.o.m.: z (b(z) z V 0 (z)) = 0, V 0 (z h ) = 0 & V 0 (z = 0) = µ. z ) V 0 (z) = µ (1 C h du b 1 (u) 0 = Π 00 = 1 V 4D 2 S µ 2 = m2 D = 4π G 2 5 [ zh 1 α h du b (u)] 1 0 T g2 h T 2

44 Debye Screening Motivation The 5D Einstein-dilaton model at finite temperature Debye Mass (E. Megías et al. PLB696(2011)) md T Α 0.5 Α 0.02 m D T, m D T, m D T 4ΠΑ h 1 2 m D T (4πα h) 1/2 T ˆα = 0.02 = Good P and bad m D. ˆα = 0.5 = Bad P and good m D T T c (1 29 β 0α h +O(α 2h ) )

45 Dimension Two Condensates? DIMENSION TWO GLUON CONDENSATE In collaboration with: E. Ruiz Arriola and L.L. Salcedo (U. Granada, Spain).

46 Issues Motivation Dimension Two Condensates? 1 Motivation 2 Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model 3 The 5D Einstein-dilaton model at finite T 4 Dimension two Condensates?

47 Dimension 2 condensates? Dimension Two Condensates? Standard wisdom: There are no local gauge invariant operators of dimension 2. But, are there operators of dimension 2 relevant for phenomenology? There exists a nonlocal gauge invariant condensate A 2 min = 1 VT min g d 4 x ( ga µ g + g µ g ) 2, which reduces to the A 2 µ condensate in the Landau gauge. Example: Can f 2 π be written as the expectation value of a gauge invariant local operator?

48 Dimension 2 condensates? Dimension Two Condensates? In perturbation theory one must fix the gauge. There is no complete gauge fixing. Thus, there is always a dimension 2 local operator which is invariant under the residual gauge invariance. Dimension-2 objects have been seen in fixed gauge lattices: (Skullerad, Rodriguez-Quintero, Oliviera 2006).

49 Dimension Two Condensates? Quark propagator on the Lattice in Landau Gauge P. Bowman, W. Broniowski and E. Ruiz Arriola, PRD70: (2004). S 1 (p) = p/a(p) B(p) A(Q) = 1+ πα s(µ 2 ) A 2 µ N c Q 2 πα s(µ 2 ) G 2 µ 3N c Q 4 +,

50 Issues Motivation Dimension Two Condensates? 1 Motivation 2 Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model 3 The 5D Einstein-dilaton model at finite T 4 Dimension two Condensates?

51 Dimension Two Condensates? and Polyakov loop ( ) Dµν(p ab 2 ) = δab δ µν k 2 δab δ µν k 2 1+ m2 G k 2 At finite temperature: D 00 ( k) = 1 k 2 +m 2 D A 2 0,a = (N 2 c 1)T Polyakov loop: 1 L = N c Tr c e iga 0,a/T ( 1+ m2 G k 2 +m 2 D d 3 k (2π) 3 D 00( k) = 2 π m DT e g2 A 2 0,a /(4NcT 2) +O(g 6 ) 0.4 g 2 A 2 0,a NP = (0.84(6) GeV) L(T) }{{} T Narison & Zakharov 99 ) Megías 06 + m2 G T A 2 πm 0,a P + A 2 0,a NP }{{ D } T 0 LO NLO T/T c

52 Gluon Asymmetry: Lattice data Dimension Two Condensates? Gluon asymmetry N c = 2, N f = 0 Lattice data (M. Chernodub, E.M. Ilgenfritz, PRD78 (2008)) A 2 /T x x x8 fit (T/T c = ) high-t limit of the fit A 2 /T T/T c T/T c A 2 = g 2 A 2 0,a 1 g 2 A 2 i,a 3 A 2/T 2 1/T 2 g 2 A 2 0,a = g 2 A 2 0,a P + g 2 A 2 0,a NP = g 2 A 2 0,a /T 2 = c P + c NP /T 2. }{{}}{{} T 2 cte i

53 Heavy qq Free Energy Dimension Two Condensates? Singlet Free Energy N c = 3, N f = 0 Lattice data (O. Kaczmarek PRD70 (2004)) F 1 (r,t) [GeV] e Fq q( x,t)/t+c(t) = 1 Nc 2 tr c Ω( x) tr c Ω ( 0), g 2 A 2 0,a NP = (0.90(5) GeV) 2 rt T/T c

54 Motivation Dimension Two Condensates? From the gluon propagator, one gets (Megías 09): (F a µν) 2 = 2 (B a i ) 2 (E a i ) 2 2 i A 0,a i A 0,a = 6 π m2 G m DT T 2. It reproduces the thermal behaviour of the trace anomaly: T 4 ǫ 3P = β(g) 2g (F µν) a 2 3 β(g) = (Pert.) }{{} π g m2 G m DT. }{{} T 4 T 2 It is straightforward to compute all the thermodynamic quantities: Pressure : Entropy : See also O.Andreev s talk. P(T) T 4 = T dt T (T ) = (Pert.) }{{} s 4P = + T 3 T 4 = } (Pert.) {{} T 0 + T π β(g)m2 G }{{ T 2 } 1/T 2 3 β(g) mg 2 m D π g T }{{ 3. } 1/T 2

55 (ε-3p)/t Motivation Dimension Two Condensates? Lattice data: G. Boyd et al. NPB469 (1996). pert HTL 1-loops HTL 2-loops pert + b (T c /T) T/T c P/P ideal P pert P HTL + P NP P pert +P NP T/T c Values of the dimension two gluon condensate from a fit of: Observable g 2 A 2 0,a NP Polyakov loop (3.22±0.07T c ) 2 Heavy qq free energy (3.33±0.19T c ) 2 Trace Anomaly (2.86±0.24T c ) 2

56 Dimension Two Condensates? from ET of scale invariance Scale invariance x µ λx µ is broken by quantum effects. Effective theory of scale invariance D.Kharzeev 08. L = ǫ v m 2 1 ( 2 eχ/2 ( µ χ) 2 + ǫ v + c 4 (F µν) a 2) e χ (1 χ) 1 }{{} 4 (F µν) a 2 V(χ) Properties: χ = 1: No coupling between dilatons and gluons = dynamics of color fields is pert. It happens at some scale M 0 5 6T c. No color fields = minimum of dilaton pot. at V(χ = 0) = ǫ v. V(χ) T>Tc T=Tc T= χ ǫ v + c 4 (F a µν) 2 { > 0 T < T c = 0 T = T c < 0 T > T c

57 Dimension Two Condensates? from ET of scale invariance D. Kharzeev, E. Levin & E. Megías 09 Classical equation for A µ gives: Ei a = i A 0,a = E 0 gc a F(χ) e m Drˆn+ F(χ)4πr 2(1+m Dr)e m Drˆr Unlike in pqcd (F a µν) 2 min = 0, the minimun of the effective theory corresponds to a finite chromoelectric field E 0. (F a µν) 2 min = 2( B a2 E a2 ) B 0 2E 2 0 = 4 ǫ v /c In momentum space: A 0,a ( k) = so the gluon propagator is g F(χ)( 8πE 0 k 2 +md 2) F(χ)(, k 2 +md 2)2 D 00 ( 1 k) = k 2 + md 2 + mg 2 ( k 2 + m, D 2 m2 )2 G = 8πE 0. g

58 Issues Motivation Dimension Two Condensates? 1 Motivation 2 Scale Invariance and Confinement Soft-wall model of AdS/QCD The 5D Einstein-dilaton model 3 The 5D Einstein-dilaton model at finite T 4 Dimension two Condensates?

59 Dimension Two Condensates? Duality between perturbative series and power corrections Perturbative-Non perturbative duality (Narison & Zakharov, PLB679 (2009)): Large order perturbative series are dual to non-perturbative contributions. V qq (r) 4 α s +σ r 3 r V qq (r) 1 N a n α n r s(r)+σ N r n=1 Both formulas fit lattice data very well. = Perturbative resummation could be written in terms of condensates, starting from dimension two.

60 Dimension Two Condensates? Vqq r fm r fm N c = 3, N f = 0 : Tree Level α s = 0.19, σ = 4.99 fm 2 (dim-2). (E.Megías, E.Ruiz Arriola & L.L.Salcedo, PRD81(2010)): In a fit including Pert. and Non Pert. contributions, one should see: Smaller contributions from condensates at increasing perturbative orders. σ N 0 (duality). Rather strong statistical correlation between Λ QCD and condensates (Λ QCD is the only scale in QCD). r(σ N,Λ QCD ) ±1.

61 Dimension Two Condensates? Correlations: Perturbative - Non Perturbative Fit using PT at N 3 LL, N. Brambilla et al. PRD80 (2009). Σ fm Σ fm fm < r < 0.17fm 0.085fm < r < 0.83fm r(δ,σ) = r(δ,σ) = α s (µ) : δ = log(µ/λ QCD )

62 Dimension Two Condensates? Correlations: Perturbative - Non Perturbative Order δ σ[fm 2 ] r(σ,δ) χ 2 /dof Tree Level 4.99(11) loop 3.66(7) 4.25(6) loop 4.54(10) 4.12(6) N 3 LO 4.31(13) 4.07(6) N 3 LL 4.19(14) 3.85(7) σ N decreases with N. Very high correlation r(σ,λ QCD ) 1.

63 Dimension Two Condensates? More examples of non-perturbative corrections: Polyakov loop (Megías et al. JHEP 0601 (2006)): ( L(T) = L PT (T) exp C ) 2 4N c T 2. Heavy qq free energy (Megías et al. PRD75 (2007)): F qq (r, T) = 4 α s 3 r e m Dr 2 3 α sm D +... }{{} PT Trace anomaly (Megías et al. PRD80 (2009)): παs ( C 2 1 2e m D r ) 6m D } {{ } NP C 2 ǫ 3p T 4 = 11 3 α2 s +O(α 5/2 s ) + 33 }{{} 4π α s T 2. }{{} PT NP Dimension two gluon condensate: C 2 g 2 A 2 0,a..

64 Polyakov loop Motivation Dimension Two Condensates? L(T) LO NLO T/T c PT : δ = log(µ/2πt) NP : b L = C 2 6T 2 c bl < T/T c < 6 r(δ, b L ) = Order L P (6T c ) δ b L r(b L,δ) χ 2 /dof L P = const 1.121(8) 1.72(5) O(α 3/2 ) 1.125(11) 0.72(20) 2.23(16) O(α 2 ) 1.123(9) 0.06(18) 2.15(11)

65 Trace Anomaly Motivation Dimension Two Condensates? (ε-3p)/t pert (ǫ 3P) T HTL 1-loops HTL 2-loops pert + b (T c /T) T/T c PT : δ = log(µ/2πt) NP : b = 3β g = (ǫ 3P) pert T 4 C 2 T 2 c b b ( ) 2 Tc T < T/T c < 4.54 r(δ, b ) = 0.983

66 Trace Anomaly Motivation Dimension Two Condensates? Fit using HTLpt at 1-loop Andersen 00, 2-loops Andersen 02, 3-loops Andersen 09 Order HTL /T 4 T=4.5Tc δ b r(b,δ) 1-loop ± (40) loops ± (28) loops 0.08(5) 2.3 ± ± Order δ b c r(b,δ) r(b, c ) 1-loop 0.7 ± ± ± loops 0.47(80) 3.58(40) 0.1 ± loops 2.3 ± ± ± (ǫ 3P) T 4 = (ǫ 3P) pert T 4 + b ( Tc T ) 2 ( ) 4 Tc + c. T

67 Conclusions: Motivation Dimension Two Condensates? AdS/QCD serves as a powerful tool to study the non-perturbative (NP) regime of QCD at zero and finite temperature. Model of conformal symmetry breaking in 5D based on dilatons. Numerical results of e.o.s. of QCD from Bekenstein-Hawking entropy formula and Gibbons-Hawking action agree. Good and unified description for: Equation of State (trace anomaly, pressure, entropy,...) Flavor dependence for T c. Polyakov loop and Spatial Wilson loops. Dilemma: Equation of State? Running coupling & Debye screening. The NP behaviour of QCD near and above T c is characterized by power corrections in T. These power corrections are signals of the contribution of a dimension two gluon condensate. Study of correlations gives us a tool to understand the duality between perturbative series and power corrections. Lattice data of observables at T = 0 and T 0 seem to confirm this duality.

Non-Perturbative Thermal QCD from AdS/QCD

Non-Perturbative Thermal QCD from AdS/QCD Issues Non-Perturbative Thermal QCD from AdS/QCD * Collaborators: B. Galow, M. Ilgenfritz, J. Nian, H.J. Pirner, K. Veshgini Research Fellow of the Alexander von Humboldt Foundation Institute for Theoretical

More information

Dilatons, Thermodynamics and Transport Coefficients in High T QCD

Dilatons, Thermodynamics and Transport Coefficients in High T QCD Issues Dilatons, and Transport Coefficients in High Temperature QCD, D. Kharzeev and E. Levin 1 1 Nuclear Theory Group, Physics Department, Brookhaven National Laboratory, Upton, New York 11973 USA. Also:

More information

Termodynamics and Transport in Improved Holographic QCD

Termodynamics and Transport in Improved Holographic QCD Termodynamics and Transport in Improved Holographic QCD p. 1 Termodynamics and Transport in Improved Holographic QCD Francesco Nitti APC, U. Paris VII Large N @ Swansea July 07 2009 Work with E. Kiritsis,

More information

The Polyakov loop and the Hadron Resonance Gas Model

The Polyakov loop and the Hadron Resonance Gas Model Issues The Polyakov loop and the Hadron Resonance Gas Model 1, E. Ruiz Arriola 2 and L.L. Salcedo 2 1 Grup de Física Teòrica and IFAE, Departament de Física, Universitat Autònoma de Barcelona, Spain 2

More information

towards a holographic approach to the QCD phase diagram

towards a holographic approach to the QCD phase diagram towards a holographic approach to the QCD phase diagram Pietro Colangelo INFN - Sezione di Bari - Italy in collaboration with F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri Continuous Advances in

More information

Quarkonium Free Energy on the lattice and in effective field theories

Quarkonium Free Energy on the lattice and in effective field theories Quarkonium Free Energy on the lattice and in effective field theories J. H. Weber 1,2 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische

More information

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies Nan Su p. 1 QCD Thermodynamics at Intermediate Coupling Nan Su Frankfurt Institute for Advanced Studies Collaborators: Jens O. Andersen & Lars E. Leganger (NTNU), Michael Strickland (Gettysburg) Phys.

More information

Glueballs at finite temperature from AdS/QCD

Glueballs at finite temperature from AdS/QCD Light-Cone 2009: Relativistic Hadronic and Particle Physics Instituto de Física Universidade Federal do Rio de Janeiro Glueballs at finite temperature from AdS/QCD Alex S. Miranda Work done in collaboration

More information

Weakly coupled QGP? Péter Petreczky

Weakly coupled QGP? Péter Petreczky Weakly coupled QGP? Péter Petreczky QGP is expected to be strongly coupled around T c : how does this features manifest itself in terms of different quantities, how do we observe it on lattice? QGP: state

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Reorganizing the QCD pressure at intermediate coupling

Reorganizing the QCD pressure at intermediate coupling Reorganizing the QCD pressure at intermediate coupling Michael Strickland Gettysburg College and Frankfurt Institute for Advanced Studies (FIAS) Collaborators: Nan Su (FIAS) and Jens Andersen (NTNU) Reference:

More information

Viscosity Correlators in Improved Holographic QCD

Viscosity Correlators in Improved Holographic QCD Bielefeld University October 18, 2012 based on K. Kajantie, M.K., M. Vepsäläinen, A. Vuorinen, arxiv:1104.5352[hep-ph]. K. Kajantie, M.K., A. Vuorinen, to be published. 1 Motivation 2 Improved Holographics

More information

Color screening in 2+1 flavor QCD

Color screening in 2+1 flavor QCD Color screening in 2+1 flavor QCD J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität München 2 Michigan State

More information

Themodynamics at strong coupling from Holographic QCD

Themodynamics at strong coupling from Holographic QCD Themodynamics at strong coupling from Holographic QCD p. 1 Themodynamics at strong coupling from Holographic QCD Francesco Nitti APC, U. Paris VII Excited QCD Les Houches, February 23 2011 Work with E.

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

Heavy Quark Diffusion in AdS/CFT

Heavy Quark Diffusion in AdS/CFT Purdue University January 5th 2011 AdS/CFT is a correspondence that relates certain Quantum Field Theories and certain String Theories. Some characteristics of the correspondence. Large N c N = 4 SYM theory

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

Gauge/String Duality and Quark Anti-Quark Potential

Gauge/String Duality and Quark Anti-Quark Potential Gauge/String Duality and Quark Anti-Quark Potential Nelson R. F. Braga, Universidade Federal do Rio de Janeiro Summary Historical facts relating String theory to Strong interactions AdS/CFT, gauge string

More information

Lectures on gauge-gravity duality

Lectures on gauge-gravity duality Lectures on gauge-gravity duality Annamaria Sinkovics Department of Applied Mathematics and Theoretical Physics Cambridge University Tihany, 25 August 2009 1. Review of AdS/CFT i. D-branes: open and closed

More information

Introduction to AdS/CFT

Introduction to AdS/CFT Introduction to AdS/CFT D-branes Type IIA string theory: Dp-branes p even (0,2,4,6,8) Type IIB string theory: Dp-branes p odd (1,3,5,7,9) 10D Type IIB two parallel D3-branes low-energy effective description:

More information

Lattice calculation of static quark correlators at finite temperature

Lattice calculation of static quark correlators at finite temperature Lattice calculation of static quark correlators at finite temperature J. Weber in collaboration with A. Bazavov 2, N. Brambilla, M.Berwein, P. Petrezcky 3 and A. Vairo Physik Department, Technische Universität

More information

QCD Equation of state in perturbation theory (and beyond... )

QCD Equation of state in perturbation theory (and beyond... ) QCD Equation of state in perturbation theory (and beyond... ) Kari Rummukainen CERN Theory & University of Oulu, Finland Physics of high baryon density K. Rummukainen (Oulu & CERN) EoS in pqcd Trento 06

More information

Thermodynamics for SU(2) gauge theory using gradient flow

Thermodynamics for SU(2) gauge theory using gradient flow theory using Takehiro Hirakida, Etsuko Itou,2, Hiroaki Kouno 3 Kyushu U., RCNP, Kochi U. 2, Saga U. 3 NFQCD28, YITP, 5. June, 28 arxiv:85.76 [hep-lat] / 25 2 / 25 3 / 25 SU(2) gauge theory SU(2) gauge

More information

Hadrons in a holographic approach to finite temperature (and density) QCD

Hadrons in a holographic approach to finite temperature (and density) QCD Hadrons in a holographic approach to finite temperature (and density) QCD Pietro Colangelo INFN - Sezione di Bari - Italy in collaboration with F. De Fazio, F. Giannuzzi, F. Jugeau, S. Nicotri EMMI Workshop:

More information

Bulk Thermodynamics in SU(3) gauge theory

Bulk Thermodynamics in SU(3) gauge theory Bulk Thermodynamics in SU(3) gauge theory In Monte-Carlo simulations ln Z(T) cannot be determined but only its derivatives computational cost go as large cutoff effects! Boyd et al., Nucl. Phys. B496 (1996)

More information

Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures

Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures Yoshiyuki Nakagawa Graduate School of Science and Technology, Niigata University, Igarashi-2, Nishi-ku,

More information

QCD Thermodynamics Péter Petreczky

QCD Thermodynamics Péter Petreczky QCD Thermodynamics Péter Petreczky What is deconfinement in QCD? What is the nature of the deconfined matter? Tools: screening of color charges, EoS, fluctuation of conserved quantum numbers QGP: state

More information

Black holes, Holography and Thermodynamics of Gauge Theories

Black holes, Holography and Thermodynamics of Gauge Theories Black holes, Holography and Thermodynamics of Gauge Theories N. Tetradis University of Athens Duality between a five-dimensional AdS-Schwarzschild geometry and a four-dimensional thermalized, strongly

More information

Seminar presented at the Workshop on Strongly Coupled QCD: The Confinement Problem Rio de Janeiro UERJ November 2011

Seminar presented at the Workshop on Strongly Coupled QCD: The Confinement Problem Rio de Janeiro UERJ November 2011 and and Seminar presented at the Workshop on Strongly Coupled QCD: The Problem Rio de Janeiro UERJ 28-30 November 2011 Work done in collaboration with: N.R.F. Braga, H. L. Carrion, C. N. Ferreira, C. A.

More information

κ = f (r 0 ) k µ µ k ν = κk ν (5)

κ = f (r 0 ) k µ µ k ν = κk ν (5) 1. Horizon regularity and surface gravity Consider a static, spherically symmetric metric of the form where f(r) vanishes at r = r 0 linearly, and g(r 0 ) 0. Show that near r = r 0 the metric is approximately

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

An Introduction to AdS/CFT Correspondence

An Introduction to AdS/CFT Correspondence An Introduction to AdS/CFT Correspondence Dam Thanh Son Institute for Nuclear Theory, University of Washington An Introduction to AdS/CFT Correspondence p.1/32 Plan of of this talk AdS/CFT correspondence

More information

Functional RG methods in QCD

Functional RG methods in QCD methods in QCD Institute for Theoretical Physics University of Heidelberg LC2006 May 18th, 2006 methods in QCD motivation Strong QCD QCD dynamical symmetry breaking instantons χsb top. dofs link?! deconfinement

More information

Static quark correlators on the 2+1 flavor TUMQCD lattices

Static quark correlators on the 2+1 flavor TUMQCD lattices Static quark correlators on the 2+1 flavor TUMQCD lattices J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

PNJL Model and QCD Phase Transitions

PNJL Model and QCD Phase Transitions PNJL Model and QCD Phase Transitions Hiromichi Nishimura Washington University in St. Louis INT Workshop, Feb. 25, 2010 Phase Transitions in Quantum Chromodynamics This Talk Low Temperature Lattice and

More information

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger Julius-Maximilians-Universität Würzburg 1 New Gauge/Gravity Duality group at Würzburg University Permanent members 2 Gauge/Gravity

More information

Collisional energy loss in the sqgp

Collisional energy loss in the sqgp Parton propagation through Strongly interacting Systems ECT, Trento, September 005 Collisional energy loss in the sqgp André Peshier Institute for Theoretical Physics, Giessen University, Germany Bjorken

More information

Hadronic phenomenology from gauge/string duality

Hadronic phenomenology from gauge/string duality Hadronic phenomenology from gauge/string duality Modern Trends in Field Theory, Joã o Pessoa 09/2006 Nelson R. F. Braga, IF, UFRJ String Theory Strong Interactions Experimental observation ( 1960) of an

More information

Thermal Transport and Energy Loss in Non-critical Holographic QCD

Thermal Transport and Energy Loss in Non-critical Holographic QCD Thermal Transport and Energy Loss in Non-critical Holographic QCD Umut Gürsoy University of Utrecht DAMTP - Cambridge - November 5, 2009 U.G., E. Kiritsis, F. Nitti, L. Mazzanti ongoing U.G., E. Kiritsis,

More information

QCD in Heavy-ion collisions

QCD in Heavy-ion collisions QCD in Heavy-ion collisions RPP 2012, Montpellier transition t p z q IPhT, Saclay 1 Outline 1 2 3 4 5 6 7 transition 2 1 transition 2 3 4 5 6 transition 7 2 Asymptotic freedom Running coupling : α s =

More information

Holography for 3D Einstein gravity. with a conformal scalar field

Holography for 3D Einstein gravity. with a conformal scalar field Holography for 3D Einstein gravity with a conformal scalar field Farhang Loran Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran. Abstract: We review AdS 3 /CFT 2 correspondence

More information

Spatial string tension revisited

Spatial string tension revisited Spatial string tension revisited (dimensional reduction at work) York Schröder work together with: M. Laine 1 Motivation RHIC QCD at T > (a few) 100 MeV asymptotic freedom weak coupling expansion slow

More information

Confinement in Polyakov gauge

Confinement in Polyakov gauge Confinement in Polyakov gauge Florian Marhauser arxiv:812.1144 QCD Phase Diagram chiral vs. deconfinement phase transition finite density critical point... Confinement Order Parameter ( β ) φ( x) = L(

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

Heavy quark free energies and screening from lattice QCD

Heavy quark free energies and screening from lattice QCD Heavy quark free energies and screening from lattice QCD Olaf Kaczmarek Universität Bielefeld February 9, 29 RBC-Bielefeld collaboration O. Kaczmarek, PoS CPOD7 (27) 43 RBC-Bielefeld, Phys.Rev.D77 (28)

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

Thermal width and quarkonium dissociation in an EFT framework

Thermal width and quarkonium dissociation in an EFT framework Thermal width and quarkonium dissociation in an EFT framework Antonio Vairo Technische Universität München in collaboration with N. Brambilla, M. A. Escobedo and J. Ghiglieri based on arxiv:1303.6097 and

More information

AdS/QCD. K. Kajantie. Helsinki Institute of Physics Helsinki, October 2010

AdS/QCD. K. Kajantie. Helsinki Institute of Physics   Helsinki, October 2010 AdS/QCD Actually mainly AdS/CFT K. Kajantie Helsinki Institute of Physics http://www.helsinki.fi/~kajantie/ Helsinki, 28-29 October 2010 Literature: Go to arxiv th or phen. Find Gubser, Son, Starinets,

More information

Spin Models and Gravity

Spin Models and Gravity Spin Models and Gravity Umut Gürsoy (CERN) 6th Regional Meeting in String Theory, Milos June 25, 2011 Spin Models and Gravity p.1 Spin systems Spin Models and Gravity p.2 Spin systems Many condensed matter

More information

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016 G 2 QCD Neutron Star Ouraman Hajizadeh in collaboration with Axel Maas November 30, 2016 Motivation Why Neutron Stars? Neutron Stars: Laboratory of Strong Interaction Dense Objects: Study of strong interaction

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

Scale hierarchy in high-temperature QCD

Scale hierarchy in high-temperature QCD Scale hierarchy in high-temperature QCD Philippe de Forcrand ETH Zurich & CERN with Oscar Åkerlund (ETH) Twelfth Workshop on Non-Perturbative QCD, Paris, June 2013 QCD is asymptotically free g 2 4 = High

More information

Center-symmetric dimensional reduction of hot Yang-Mills theory

Center-symmetric dimensional reduction of hot Yang-Mills theory Center-symmetric dimensional reduction of hot Yang-Mills theory Aleksi Kurkela, Univ. of Helsinki Lattice 2008 arxiv:0704.1416, arxiv:0801.1566 with Philippe de Forcrand and Aleksi Vuorinen Aleksi Kurkela,Univ.

More information

The Big Picture. Thomas Schaefer. North Carolina State University

The Big Picture. Thomas Schaefer. North Carolina State University The Big Picture Thomas Schaefer North Carolina State University 1 Big Questions What is QCD? What is a Phase of QCD? What is a Plasma? What is a (perfect) Liquid? What is a wqgp/sqgp? 2 What is QCD (Quantum

More information

Determination of α s from the QCD static energy

Determination of α s from the QCD static energy Determination of α s from the QCD static energy Antonio Vairo Technische Universität München Bibliography (1) A. Bazavov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo Determination

More information

The pressure of hot QCD. Mikko Laine (Bielefeld, Germany)

The pressure of hot QCD. Mikko Laine (Bielefeld, Germany) The pressure of hot QCD Mikko Laine (Bielefeld, Germany) 1 I. What is it? 2 QCD: Quantum field theory describing strong interactions. L QCD = 1 4g 2 N 2 c 1 a=1 F a µνf a µν + N f i=1 ψ i [γ µ D µ + m

More information

Holographic study of magnetically induced QCD effects:

Holographic study of magnetically induced QCD effects: Holographic study of magnetically induced QCD effects: split between deconfinement and chiral transition, and evidence for rho meson condensation. Nele Callebaut, David Dudal, Henri Verschelde Ghent University

More information

Black hole thermodynamics

Black hole thermodynamics Black hole thermodynamics Daniel Grumiller Institute for Theoretical Physics Vienna University of Technology Spring workshop/kosmologietag, Bielefeld, May 2014 with R. McNees and J. Salzer: 1402.5127 Main

More information

String / gauge theory duality and ferromagnetic spin chains

String / gauge theory duality and ferromagnetic spin chains String / gauge theory duality and ferromagnetic spin chains M. Kruczenski Princeton Univ. In collaboration w/ Rob Myers, David Mateos, David Winters Arkady Tseytlin, Anton Ryzhov Summary Introduction mesons,,...

More information

Lattice studies of the conformal window

Lattice studies of the conformal window Lattice studies of the conformal window Luigi Del Debbio University of Edinburgh Zeuthen - November 2010 T H E U N I V E R S I T Y O F E D I N B U R G H Luigi Del Debbio (University of Edinburgh) Lattice

More information

Holographic Entanglement Entropy for Surface Operators and Defects

Holographic Entanglement Entropy for Surface Operators and Defects Holographic Entanglement Entropy for Surface Operators and Defects Michael Gutperle UCLA) UCSB, January 14th 016 Based on arxiv:1407.569, 1506.0005, 151.04953 with Simon Gentle and Chrysostomos Marasinou

More information

The SU(2) quark-antiquark potential in the pseudoparticle approach

The SU(2) quark-antiquark potential in the pseudoparticle approach The SU(2) quark-antiquark potential in the pseudoparticle approach Marc Wagner mcwagner@theorie3.physik.uni-erlangen.de http://theorie3.physik.uni-erlangen.de/ mcwagner 3 th March 26 Outline PP = pseudoparticle

More information

The QCD equation of state at high temperatures

The QCD equation of state at high temperatures The QCD equation of state at high temperatures Alexei Bazavov (in collaboration with P. Petreczky, J. Weber et al.) Michigan State University Feb 1, 2017 A. Bazavov (MSU) GHP2017 Feb 1, 2017 1 / 16 Introduction

More information

Holography Duality (8.821/8.871) Fall 2014 Assignment 2

Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Sept. 27, 2014 Due Thursday, Oct. 9, 2014 Please remember to put your name at the top of your paper. Note: The four laws of black hole mechanics

More information

Gravitational perturbations on branes

Gravitational perturbations on branes º ( Ò Ò ) Ò ± 2015.4.9 Content 1. Introduction and Motivation 2. Braneworld solutions in various gravities 2.1 General relativity 2.2 Scalar-tensor gravity 2.3 f(r) gravity 3. Gravitational perturbation

More information

Dynamics of heavy quarks in charged N = 4 SYM plasma

Dynamics of heavy quarks in charged N = 4 SYM plasma Dynamics of heavy quarks in charged N = 4 SYM plasma Aleksi Vuorinen University of Washington, Seattle & Technical University of Vienna C. Herzog and AV, arxiv:0708:0609 [hep-th] Outline N = 4 SYM and

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

Heavy quark free energies, screening and the renormalized Polyakov loop

Heavy quark free energies, screening and the renormalized Polyakov loop Heavy quark free energies, screening and the renormalized Polyakov loop Olaf Kaczmarek Felix Zantow Universität Bielefeld October 6, 26 VI Workshop III, Rathen, October, 26 p./9 Charmonium suppression..75.5

More information

arxiv:hep-lat/ v2 17 Jun 2005

arxiv:hep-lat/ v2 17 Jun 2005 BI-TP 25/8 and BNL-NT-5/8 Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding Olaf Kaczmarek Fakultät für Physik,

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

HUGS Dualities and QCD. Josh Erlich LECTURE 5

HUGS Dualities and QCD. Josh Erlich LECTURE 5 HUGS 2012 Dualities and QCD Josh Erlich LECTURE 5 Outline The meaning of duality in physics (Example: The Ising model) Quark-Hadron duality (experimental and theoretical evidence) Electric-Magnetic Duality

More information

Solitons in the SU(3) Faddeev-Niemi Model

Solitons in the SU(3) Faddeev-Niemi Model Solitons in the SU(3) Faddeev-Niemi Model Yuki Amari Tokyo University of Science amari.yuki.ph@gmail.com Based on arxiv:1805,10008 with PRD 97, 065012 (2018) In collaboration with Nobuyuki Sawado (TUS)

More information

The Role of Black Holes in the AdS/CFT Correspondence

The Role of Black Holes in the AdS/CFT Correspondence The Role of Black Holes in the AdS/CFT Correspondence Mario Flory 23.07.2013 Mario Flory BHs in AdS/CFT 1 / 30 GR and BHs Part I: General Relativity and Black Holes Einstein Field Equations Lightcones

More information

Quantum Fields in Curved Spacetime

Quantum Fields in Curved Spacetime Quantum Fields in Curved Spacetime Lecture 3 Finn Larsen Michigan Center for Theoretical Physics Yerevan, August 22, 2016. Recap AdS 3 is an instructive application of quantum fields in curved space. The

More information

Gluon Propagator and Gluonic Screening around Deconfinement

Gluon Propagator and Gluonic Screening around Deconfinement Gluon Propagator and Gluonic Screening around Deconfinement Tereza Mendes Instituto de Física de São Carlos University of São Paulo Work in collaboration with Attilio Cucchieri Screening at High T At high

More information

Pion FF in QCD Sum Rules with NLCs

Pion FF in QCD Sum Rules with NLCs Pion FF in QCD Sum Rules with NLCs A. Bakulev, A. Pimikov & N. Stefanis Bogoliubov Lab. Theor. Phys., JINR (Dubna, Russia) Pion FF in QCD Sum Rules with NLCs p.1 Content: Definition of pion form factor

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 The chiral critical point in 3 flavor QCD from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 Christian Schmidt Universität Wuppertal

More information

arxiv: v1 [hep-lat] 26 Dec 2009

arxiv: v1 [hep-lat] 26 Dec 2009 arxiv:091.5037v1 [hep-lat] 6 Dec 009 On Equation of State at physical quark masses Physics Department, Brookhaven National Laboratory, Upton NY 11973 E-mail: petreczk@bnl.gov QCD equation of state is calculated

More information

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential Jens Braun Theoretisch-Physikalisches Institut Friedrich-Schiller Universität Jena Quarks, Hadrons

More information

Some selected results of lattice QCD

Some selected results of lattice QCD Some selected results of lattice QCD Heidelberg, October 12, 27 Kurt Langfeld School of Mathematics and Statistics University of Plymouth p.1/3 Glueball spectrum: no quarks (quenched approximation) 12

More information

Glueballs and AdS/CFT

Glueballs and AdS/CFT Preprint typeset in JHEP style - PAPER VERSION hep-ph/yymmnnn Glueballs and AdS/CFT John Terning T-8 MS B285, Los Alamos National Lab., Los Alamos NM, 87545 Email: terning@lanl.gov Abstract: I review the

More information

Critical Behavior of heavy quarkonia in medium from QCD sum rules

Critical Behavior of heavy quarkonia in medium from QCD sum rules Critical Behavior of heavy quarkonia in medium from QCD sum rules Kenji Morita Institute of Physics and Applied Physics, Yonsei University in Collaboration with Su Houng Lee Aim of this talk: 1. Practical

More information

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa Bottomonium melting at T >> Tc Pedro Bicudo CFTP, IST, Lisboa Motivation The finite T string tension The quark mass gap equation with finite T and finite quark mass Chiral symmetry and confinement crossovers

More information

Q Q dynamics with external magnetic fields

Q Q dynamics with external magnetic fields Q Q dynamics with external magnetic fields Marco Mariti University of Pisa 33rd International Symposium on Lattice Field Theory, Kobe 15/07/2015 In collaboration with: C. Bonati, M. D Elia, M. Mesiti,

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

Holography for Heavy Quarks and Mesons at Finite Chemical Potential

Holography for Heavy Quarks and Mesons at Finite Chemical Potential Holography for Heavy Quarks and Mesons at Finite Chemical Potential, Ling Lin, Andreas Samberg, Konrad Schade Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg,

More information

QCD and a Holographic Model of Hadrons

QCD and a Holographic Model of Hadrons QCD and a Holographic Model of Hadrons M. Stephanov U. of Illinois at Chicago AdS/QCD p.1/18 Motivation and plan Large N c : planar diagrams dominate resonances are infinitely narrow Effective theory in

More information

Finite temperature QCD in equilibrium: lattice Monte Carlo, perturbation theory and AdS/QCD. K. Kajantie. Helsinki Institute of Physics

Finite temperature QCD in equilibrium: lattice Monte Carlo, perturbation theory and AdS/QCD. K. Kajantie. Helsinki Institute of Physics Finite temperature QCD in equilibrium: lattice Monte Carlo, perturbation theory and AdS/QCD. K. Kajantie Helsinki Institute of Physics Heidelberg, 15-19 March 2010 We want to solve QCD and related theories

More information

The Trailing String in Confining Holographic Theories

The Trailing String in Confining Holographic Theories The Trailing String in Confining Holographic Theories p. 1 The Trailing String in Confining Holographic Theories Francesco Nitti APC, U. Paris VII Twelfth Workshop on Non-Perturbative Quantum Chromodynamics

More information

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS 8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS Lecturer: McGreevy Scribe: Francesco D Eramo October 16, 2008 Today: 1. the boundary of AdS 2. Poincaré patch 3. motivate boundary

More information

Infrared Propagators and Confinement: a Perspective from Lattice Simulations

Infrared Propagators and Confinement: a Perspective from Lattice Simulations Infrared Propagators and Confinement: a Perspective from Lattice Simulations Tereza Mendes University of São Paulo & DESY-Zeuthen Work in collaboration with Attilio Cucchieri Summary Lattice studies of

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.81 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.81 F008 Lecture 1: Boundary of AdS;

More information

arxiv: v1 [hep-lat] 15 Nov 2016

arxiv: v1 [hep-lat] 15 Nov 2016 Few-Body Systems manuscript No. (will be inserted by the editor) arxiv:6.966v [hep-lat] Nov 6 P. J. Silva O. Oliveira D. Dudal P. Bicudo N. Cardoso Gluons at finite temperature Received: date / Accepted:

More information

Chemical composition of the decaying glasma

Chemical composition of the decaying glasma Chemical composition of the decaying glasma Tuomas Lappi BNL tvv@quark.phy.bnl.gov with F. Gelis and K. Kajantie Strangeness in Quark Matter, UCLA, March 2006 Abstract I will present results of a nonperturbative

More information

Determination of α s from the QCD static energy

Determination of α s from the QCD static energy Determination of α s from the QCD static energy Antonio Vairo Technische Universität München Bibliography (1) A. Bazakov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo Determination

More information