Dilatons, Thermodynamics and Transport Coefficients in High T QCD

Size: px
Start display at page:

Download "Dilatons, Thermodynamics and Transport Coefficients in High T QCD"

Transcription

1 Issues Dilatons, and Transport Coefficients in High Temperature QCD, D. Kharzeev and E. Levin 1 1 Nuclear Theory Group, Physics Department, Brookhaven National Laboratory, Upton, New York USA. Also: E. Ruiz Arriola and L.L. Salcedo 2 2 Dep. Física Atómica, Molecular y Nuclear, Granada U., Spain. April 22nd 2009, Institute for Theoretical Physics, Heidelberg, Germany. Some References: E. Megías et al. PRD75 (2007), NPB186 (2008), arxiv: (2009), paper in preparation (2009).

2 Issues Issues 1 2 QCD and 3 Effective theory at finite temperature 4 5 Polyakov loop

3 Issues Issues 1 2 QCD and 3 Effective theory at finite temperature 4 5 Polyakov loop

4 Issues Issues 1 2 QCD and 3 Effective theory at finite temperature 4 5 Polyakov loop

5 Issues Issues 1 2 QCD and 3 Effective theory at finite temperature 4 5 Polyakov loop

6 Issues Issues 1 2 QCD and 3 Effective theory at finite temperature 4 5 Polyakov loop

7 QCD and Pressure of Gluodynamics Weak Coupling Expansion and Resummed Perturbation Theory E. Braaten and A. Nieto (1996), J.O. Andersen et al (1999) ideal / T/T c

8 QCD and Interaction Measure in Gluodynamics Weak Coupling Expansion and Resummed Perturbation Theory E. Braaten and A. Nieto (1996), J.O. Andersen et al (1999) ideal ( - 3 )/ T/T c

9 Issues QCD and 1 2 QCD and 3 Effective theory at finite temperature 4 5 Polyakov loop

10 QCD and QCD Lagrangian: L QCD = 1 4 F a µν F a µν + f q a f (iγ µd µ m f )q a f ; In the limit of massless quarks (m f = 0), it is Invariant under Chiral Left Right transformations. Invariant under Scale (x λx) transformations. Partition function (gluodynamics m f ) [ Z = DĀµ,a exp 1 ] 4g 2 d 4 x( F µν a )2

11 QCD and The Classical scale invariance is broken by quantum effects. They introduce a mass scale Λ QCD. Under a scale transformation: g g + σβ(g), (µ e σ µ) where β(g) = µ µ g(µ) is the beta function. L QCD L QCD + σβ(g) g L QCD. The scale anomaly can be computed as the trace of the Energy-Momentum Tensor, so it is also known as : θ µ µ = β(g) g L QCD = β(g) 2g F a µν F a µν Note that β(g) = 0 = θ µ µ = 0.

12 QCD and At finite temperature, from the partition function of Gluodynamics Z : log Z (1/4g 2 0 ) = V T ( F a µν )2. After renormalization and using standard thermodynamics relations: ( 4 T ) T β(g) log Z = T V 2g (F µν a )2 = θ µ µ = ǫ 3P. The trace anomaly is related to the interaction measure (ǫ 3P)/T 4, which provides a measure of the interaction. In PT up to two loops (J.I.Kapusta (1979)): ǫ 3P T 4 = N c(n 2 c 1) 1152π 2 β 0 g(t) 4 + O(g 5 )

13 QCD and The free gluon gas has = 0. Perturbation Theory says that the trace of the Energy-Momentum Tensor takes a nonzero value as a result of quantum corrections. Lattice data predicts a violent behaviour in powers of T. (Many groups: G. Boyd et al, NPB (1996), Y. Aoki et al (2006),...). PT predicts a smooth dependence on T, because g(t) log(t), so it is unable to reproduce this behaviour, even if more and more orders are included (Andersen, Ann.Phys.317,2005).

14 Issues QCD and 1 2 QCD and 3 Effective theory at finite temperature 4 5 Polyakov loop

15 QCD and from Lattice data N c = 3, N f = 0 G. Boyd et al., Nucl. Phys. B469, 419 (1996). ǫ 3P T 4 (ε-3p)/t HTL 2-loops a + b (T c /T) T/T c = a + b T 2, b = (3.46 ± 0.13)Tc 2, 1.13T c < T < 4.5T c.

16 QCD and from Lattice data N c = 3, N f = 0 G. Boyd et al., Nucl. Phys. B469, 419 (1996). ǫ 3P T 4 (ε-3p)/t a + b (T c /T) (T c /T) 2 = a + b T 2, b = (3.46 ± 0.13)Tc 2, 1.13T c < T < 4.5T c.

17 QCD and Perturbation theory vs Lattice data ǫ 3P T 4 = a,p + b T 2 (ε-3p)/t HTL 2-loops a + b (T c /T) T/T c (ε-3p)/t HTL 2-loops a T/T c Perturbation Theory and Hard Thermal Loops only yield a!!.

18 QCD and The fuzzy bag of Pisarski Low temperature (confined) glueball gas P glueball (T) e M G/T, M G T c P glueball (T c ) 0 High temperature (deconfined) free gluon gas P gluons (T) = b 0 2 T 4, b 0 = (N2 c 1)2π2 45 Pisarski s (temperature dependent) fuzzy bag, PTP 168 (2007). P(T) = P gluons (T) B fuzzy (T), T > T c, P(T c ) = P glueballs (T c ) = 0 Then B fuzzy = b 0 2 T 2 c T 2 = P = b 0 2 (T 4 T 2 T 2 c ) ǫ 3P T 4 = b 0 ( ) 2 Tc b 0 = 3.45 (3.5Fit!!!!) T

19 Issues QCD and 1 2 QCD and 3 Effective theory at finite temperature 4 5 Polyakov loop

20 QCD and Consider a rectangular Wilson loop: ( ) W(C) = exp ig A µ dx µ C x t It is related to the potential V q q (R) acting between charges q and q: W(C) exp( TV q q (R)) Scale transformations: T λt, R λr, The only scale invariant solution is the Coulomb Potential: V q q 1 R Running coupling and string tension break scale invariance: V q q (r) = 4 α s (R) 3 R + σr.

21 Issues QCD and Effective theory at finite Temperature 1 2 QCD and 3 Effective theory at finite temperature 4 5 Polyakov loop

22 QCD and Effective theory at finite Temperature Scale invariance x µ λx µ is lost in real world. Several attempts to formulate an effetive theory of broken scale invariance in terms of Goldstone bosons (the dilaton): J. Schechter 1980, A.A. Migdal 1982, D. Kharzeev Formally couple the gluodynamics to the conformal background gravity g µν (x) = e h(x) δ µν, where h(x) single scalar field. S = d 4 x ( 1 g 8πG R 1 ) 4 gµν g λσ Fµλ a F νσ a e2h θ µ µ Upon substitution of θ µ µ = β(g) 2g F aµν Fµν a and Legendre transformation: L = ǫ v 1 ( m 2 2 eχ/2 ( µ χ) 2 + ǫ v + c 4 (F µν a )2) e χ (1 χ) 1 4 (F µν a )2

23 QCD and Effective theory at finite Temperature L = ǫ v m 2 1 Properties: ( 2 eχ/2 ( µ χ) 2 + ǫ v + c 4 (F µν) a 2) e χ (1 χ) 1 }{{} 4 (F µν) a 2 V(χ) χ = 1: No coupling between dilatons and gluons = dynamics of color fields is pert. It happens at some scale M 0 5 6T c. No color fields = minimum of dilaton pot. at V(χ = 0) = ǫ v. V(χ) T>Tc T=Tc T= χ ǫ v + c 4 (F a µν )2 { > 0 T < T c = 0 T = T c < 0 T > T c

24 Issues QCD and Effective theory at finite Temperature 1 2 QCD and 3 Effective theory at finite temperature 4 5 Polyakov loop

25 QCD and Effective theory at finite Temperature Effective Theory at Finite Temperature Matsubara formalism: A µ (x 0 + β, x) = A µ (x 0, x), χ(x 0 + β, x) = χ(x 0, x) A µ (x 0, x) = + n= e iωnx 0 A µ (ω n, x), ω n = 2πTn Propagator: A µ A µ 1. At high T, non static modes ω p 2 +ωn 2 n 0 decouple = effective theory of static modes: A µ ( x), χ( x) Z = Dimensional Reduction DA µ (x 0, x)dχ(x 0, x) e R β 0 dx 0 R d 3 x L(A µ,χ) DA µ ( x)dχ( x) e β R d 3 x L 3D (A µ,χ)

26 QCD and Effective theory at finite Temperature Effective Theory at Finite Temperature Integration of ω n 0 at 1-loop and expansion in powers of A µ = 3 dim. red. theory of Gluodynamics. L 3YM = 1 4 (F ij a )2 1 ( ( i A 0,a ) 2 + m 2 ) D 2 A2 0,a + O(A 4 0 ) Integration of ω n 0 at 1-loop and expansion in powers of χ = 3 dim. red. theory with dilatons. L 3D = ( ǫ v cl 3YM ) (e χ (1 χ) m2 T 2 ) 24 ǫ v eχ/2 (1 + χ) }{{} V(χ,T) We assume µ χ = 0 = no kinetic term for dilatons. L 3YM

27 QCD and Classical equations of motion Effective theory at finite Temperature Classical equation for χ: 0 = (χe χ/2 + m2 T 2 ) (3 + χ) ( ǫ v cl 3YM ). 48 ǫ v }{{} ρ(t) Classical equation for A µ : where: F(χ, T) = c 4 Solution gives: i (F i A 0,a ) m 2 D FA 0,a = 1 4 gc aδ( x) [ e χ (1 χ) ρ(t)e χ/2 (1 + χ) ]. Ei a = i A 0,a = E 0 gc a F(χ) e m Drˆn + F(χ)4πr 2 (1 + m Dr)e m Drˆr

28 QCD and Classical equations of motion Effective theory at finite Temperature How to fix E 0? At T = 0: χe χ/2 ( ǫ v + c 4 (F a µν) 2) min = 0 A valid solution is (F a µν) 2 min = 2( B a2 E a2 ) 2 E a2 min = 4 ǫ v /c Unlike in pqcd (F a µν) 2 min = 0, the minimun of the effective theory corresponds to a finite chromoelectric field E 0. χ r [GeV -1 ] T=0 T=T c T=2Tc V(χ) T=0.1T c T=0.3T c T=1.5T c χ

29 QCD and The Gluon Propagator Effective theory at finite Temperature From the Yang-Mills equations of motion: A 0,a ( x) = After Fourier transformation: E 0 e m Drˆn + gc a F(χ)m D F(χ)4πr e m Drˆr. A 0,a ( g k) = F(χ)( k 2 + md 2 ) 8πE 0 F(χ)( k 2 + m, D 2 )2 so the gluon propagator is D 00 ( 1 k) = k 2 + md 2 + mg 2 ( k 2 + m, D 2 m2 )2 G = 8πE 0 g

30 QCD and Strong Coupling in the Infrared Effective theory at finite Temperature Define the electric susceptibility of the QCD vacuum: ǫ(χ, T) = 4F(χ, T) The effective Lagrangian can be written (Āa µ = ga a µ): L 3D = ǫ v f(χ, T) 1 ǫ(χ, T) ( ( F a 4 g 2 ij ) 2 + 2( i Ā 0,a ) 2 + 2m DĀ2 2 0,a + ) This implies the behaviour of the renormalized strong coupling: α s (χ, T) = α s(m 0 ) ǫ(χ, T) = α s (M 0 ) ǫ(χ, 0) + f(χ)t 2

31 Issues QCD and Effective theory at finite Temperature 1 2 QCD and 3 Effective theory at finite temperature 4 5 Polyakov loop

32 QCD and Effective theory at finite Temperature From the gluon propagator, we get: (F a µν) 2 = 2 (B a i ) 2 (E a i ) 2 2 i A 0,a i A 0,a = 6 π m2 G m DT T 2. It reproduces the thermal behaviour of the trace anomaly: T 4 ǫ 3P = β(g) 2g (F µν a 3 β(g) )2 = (Pert.) }{{} π g m2 G m DT. }{{} T 4 T 2 It s straightforward to compute all the thermodynamics quantities: P(T) T dt Pressure : T 4 = T (T 3 ) = (Pert.) + }{{} 2π β(g)m2 G }{{ T 2 } T 0 1/T 2 Entropy : s T 3 = + 4P T 4 = (Pert.) + 3 β(g) mg 2 m D π g T 3.

33 QCD and Effective theory at finite Temperature Lattice data: G. Boyd et al. NPB469 (1996). (ε-3p)/t pert HTL 1-loops HTL 2-loops pert + b (T c /T) 2 P/P ideal P pert P HTL + P NP P pert +P NP T/T c T/T c m G = 1.18 ± 0.10 GeV

34 Issues QCD and 1 2 QCD and 3 Effective theory at finite temperature 4 5 Polyakov loop

35 QCD and Fluid slightly disturbed from equilibrium = compute θ µν as an expansion in gradients θ ij = δ ij P η [ }{{} i u j + j u i 23 ] δ ij k u k ζ δ }{{} ij k u k Shear Bulk where u i θ0 i ǫ+p (local flow velocity). Mathematical tool: Effective kinetic theory = Boltzmann equation f( x, p, t) t + v p x f( x, p, t) = C[f], Perturbative results (P.Arnold et al 2000, 2006): η = c η T 3 g 4 log g 1, g 2 ζ = c ζ log g 1 T 3 v p p E p.

36 Issues QCD and 1 2 QCD and 3 Effective theory at finite temperature 4 5 Polyakov loop

37 QCD and f t + v p x f = C[f], It can be linearized (P.Arnold et al 2000): v p p E p. f(x, p) = f eq (x, p) + f 1 (x, p) = f eq (x, p) + f eq (1 ± f eq )β 2 X i j (x)i i j χ( p ) Boltzmann equation can be written: S( p) = [Cχ]( p), where S = Tf eq (1 ± f eq )q( p), q( p) = p vp 3 vs 2 βe p β. It follows from a maximization of the functional: Q[χ] = χ, S 1 χ, Cχ, 2 f, g := f( p)g( p) p Finally: η = 2 15 Q[χ max]

38 QCD and Collision integrals (A) (B) (C) (D) (E) (F) (G) (H) (I) (J ) χ, Cχ = β3 8 abcd p i M ab cd 2 δ( i p i )f a eq f b eq (1±f c eq )(1±f d eq )(χa +χ b χ c χ d ) 2 M diagram C 2 s2 + u 2 t 2 ( s 2 + u 2) ( ) 2 1 t + m2 G t 2.

39 Issues QCD and 1 2 QCD and 3 Effective theory at finite temperature 4 5 Polyakov loop

40 QCD and shear entropy Lattice data Meyer PRD76 (2007) T Tc m G = 0.9(2) GeV η 1 s 4π T 3 ( η = c η g 4 log g 1 1 mg 2 + 2g 2 (1 + g 2 ) 2 T g 2 m 4 ) 1 G 12g 4 (1 + g 2 ) 3 T 4, T m G = Perturbative result is recovered. T m G = Power corrections become dominant.

41 Issues QCD and 1 2 QCD and 3 Effective theory at finite temperature 4 5 Polyakov loop

42 QCD and Two approximations: Diagramatic computation (Megías, Kharzeev and Levin, 2009). Kubo formula (D. Kharzeev et al. 2008): ζ = 1 9 lim 1 ω 0 d 4 x e iωt [θ µ µ ω (x), θµ µ (0)]. From low energy theorems of Energy-Momentum Tensor: ζ 1 [ T 5 ] 9ω 0 T (T) + 16 ǫ v, ω 0 ( ) GeV From previous results for the trace anomaly: g 2 ζ c ζ log(g 1 ) T ( mg 2 πω β 1 + β ) T. 0 g

43 QCD and Lattice data: H. Meyer PRL 100 (2008) bulk entropy 0.8 bulk entropy T Tc T Tc T > 1.2T c : m G = 0.8(1)GeV

44 QCD and Shear vs Lattice data: H. Meyer (2007), (2008) shear entropy, bulk entropy T Tc : m G = 0.9(2)GeV : m G = 0.8(1)GeV

45 Issues QCD and Polyakov loop 1 2 QCD and 3 Effective theory at finite temperature 4 5 Polyakov loop

46 QCD and Polyakov loop A 2 0,a = (N2 c 1)T d 3 p (2π) 3 D 00( p) = 2 π m DT }{{} T 2 + m2 G T πm D }{{} T 0 1 Polyakov loop: L = N c Tr c e iga 0,a/T e g2 A 2 0,a /(4NcT 2 ) L(T) LO NLO T/T c

47 QCD and Gluon Asymmetry: Lattice data Polyakov loop Gluon asymmetry N c = 2, N f = 0 Lattice data (M. Chernodub, E.M. Ilgenfritz, PRD78 (2008)) A 2 /T x x x8 fit (T/T c = ) high-t limit of the fit A 2 /T T/T c A 2 0,a NP T/T c A 2 = g 2 A 2 0,a 1 g 2 A 2 i,a 3 A 2/T 2 1/T 2 g 2 A 2 0,a = g2 A 2 0,a }{{ P + g }} {{ = g 2 A 2 0,a } = c p + c NP /T 2. T 2 cte i

48 Issues QCD and Polyakov loop 1 2 QCD and 3 Effective theory at finite temperature 4 5 Polyakov loop

49 QCD and Polyakov loop Correlation functions of Polyakov loops define the free energy of a heavy qq pair (O.Kaczmarek et al, PLB543(2002)): e Fq q( x,t)/t+c(t) = 1 Nc 2 tr c Ω( x) tr c Ω ( 0). Pert. evaluation of Free Energy Expand Ω in powers of ga 0 : d 3 k A 0,a ( x)a 0,b ( y) = δ ab T (2π) 3 ei k ( x y) D 00 ( k). At leading order (O(g 2 )) and next to leading order (O(g 3 )): F 1 (r, T) = N2 c 1 ( g 2 2N c 4πr + g2 mg 2 T ) e m Dr 8πmD N2 c 1 g 2 m D 2N c 4π + g2 mg 2. 6πm D

50 QCD and Polyakov loop Singlet Free Energy N c = 3, N f = 0 Lattice data (O. Kaczmarek PRD70 (2004)) F 1 (r,t) [GeV] rt T/T c

51 QCD and Assymptotic limits Polyakov loop Taking the assymptotic limits: T 0: F 1 (r, T) T 0 N2 c 1 g 2 1 2N c 4π r + g3 mg 2 T r V q q (r). 6πm }{{ D } σ V q q (r) well known from lattice: S.Necco NPB622(2002). r : F (T) = F 1 (r, T) = N2 c 1 g 2 m D 2N c 4π + g2 m 2 G 6πm D. L(T) = e F (T)/2T also known from lattice: O.Kaczmarek. From a fit of V q q at T = 0 (F 1 (r, T = 0)): σ = (0.42(1) GeV) 2 = m G = 1.26(5) GeV. From a fit of the Polyakov loop (F 1 (r =, T)): c NP = (0.49(7) GeV) 2 = m G = 1.29(19) GeV.

52 QCD and Polyakov loop The chromoelectric field in the vacuum induces a dimension two gluon condensate: g 2 A 2 0,a NP = N2 c 1 g 2 T E 0. 8π m D Observable m G [GeV] g 2 A 2 0,a NP Polyakov loop 1.29(19) (0.84(6) GeV) 2 Heavy qq free energy 1.38(9) (0.90(5) GeV) (10) (0.77(6) GeV) 2 0.9(2) (0.59(13) GeV) 2 0.8(1) (0.52(7) GeV) 2 Energy Loss (in preparation) 0.95(15) (0.62(10) GeV) 2

53 Conclusions: QCD and Polyakov loop We describe strong-qgp regime of QCD within an effective theory of broken scale invariance. Dilatons induce a finite chromoelectric field in the vacuum which leads to confinement. Non perturbative behaviour near and above T c is characterized by power corrections in T. These power corrections are high energy trace of non-perturbative low energy effects. Lattice data of pressure, shear viscosity and bulk viscosity are well reproduced by just choosing a single parameter E 0. This result seems to imply an unified and coherent picture for the description of sqgp observables.

Non-Perturbative Thermal QCD from AdS/QCD

Non-Perturbative Thermal QCD from AdS/QCD Issues Non-Perturbative Thermal QCD from AdS/QCD * Collaborators: B. Galow, M. Ilgenfritz, J. Nian, H.J. Pirner, K. Veshgini Research Fellow of the Alexander von Humboldt Foundation Institute for Theoretical

More information

Non-Perturbative Thermal QCD: AdS/QCD and Gluon Condensates

Non-Perturbative Thermal QCD: AdS/QCD and Gluon Condensates Issues Non-Perturbative Thermal QCD: AdS/QCD and Gluon Condensates * B. Galow, M. Ilgenfritz, J. Nian, H.J. Pirner, K. Veschgini (ITP, Heidelberg, Germany) E. Ruiz Arriola, L.L. Salcedo (U. Granada, Spain)

More information

Termodynamics and Transport in Improved Holographic QCD

Termodynamics and Transport in Improved Holographic QCD Termodynamics and Transport in Improved Holographic QCD p. 1 Termodynamics and Transport in Improved Holographic QCD Francesco Nitti APC, U. Paris VII Large N @ Swansea July 07 2009 Work with E. Kiritsis,

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

Center-symmetric dimensional reduction of hot Yang-Mills theory

Center-symmetric dimensional reduction of hot Yang-Mills theory Center-symmetric dimensional reduction of hot Yang-Mills theory Aleksi Kurkela, Univ. of Helsinki Lattice 2008 arxiv:0704.1416, arxiv:0801.1566 with Philippe de Forcrand and Aleksi Vuorinen Aleksi Kurkela,Univ.

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

Energy-momentum tensor correlators in hot Yang-Mills theory

Energy-momentum tensor correlators in hot Yang-Mills theory Energy-momentum tensor correlators in hot Yang-Mills theory Aleksi Vuorinen University of Helsinki Micro-workshop on analytic properties of thermal correlators University of Oxford, 6.3.017 Mikko Laine,

More information

Weakly coupled QGP? Péter Petreczky

Weakly coupled QGP? Péter Petreczky Weakly coupled QGP? Péter Petreczky QGP is expected to be strongly coupled around T c : how does this features manifest itself in terms of different quantities, how do we observe it on lattice? QGP: state

More information

The Polyakov loop and the Hadron Resonance Gas Model

The Polyakov loop and the Hadron Resonance Gas Model Issues The Polyakov loop and the Hadron Resonance Gas Model 1, E. Ruiz Arriola 2 and L.L. Salcedo 2 1 Grup de Física Teòrica and IFAE, Departament de Física, Universitat Autònoma de Barcelona, Spain 2

More information

Quarkonium Free Energy on the lattice and in effective field theories

Quarkonium Free Energy on the lattice and in effective field theories Quarkonium Free Energy on the lattice and in effective field theories J. H. Weber 1,2 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische

More information

Viscosity Correlators in Improved Holographic QCD

Viscosity Correlators in Improved Holographic QCD Bielefeld University October 18, 2012 based on K. Kajantie, M.K., M. Vepsäläinen, A. Vuorinen, arxiv:1104.5352[hep-ph]. K. Kajantie, M.K., A. Vuorinen, to be published. 1 Motivation 2 Improved Holographics

More information

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies Nan Su p. 1 QCD Thermodynamics at Intermediate Coupling Nan Su Frankfurt Institute for Advanced Studies Collaborators: Jens O. Andersen & Lars E. Leganger (NTNU), Michael Strickland (Gettysburg) Phys.

More information

Reorganizing the QCD pressure at intermediate coupling

Reorganizing the QCD pressure at intermediate coupling Reorganizing the QCD pressure at intermediate coupling Michael Strickland Gettysburg College and Frankfurt Institute for Advanced Studies (FIAS) Collaborators: Nan Su (FIAS) and Jens Andersen (NTNU) Reference:

More information

Thermodynamics for SU(2) gauge theory using gradient flow

Thermodynamics for SU(2) gauge theory using gradient flow theory using Takehiro Hirakida, Etsuko Itou,2, Hiroaki Kouno 3 Kyushu U., RCNP, Kochi U. 2, Saga U. 3 NFQCD28, YITP, 5. June, 28 arxiv:85.76 [hep-lat] / 25 2 / 25 3 / 25 SU(2) gauge theory SU(2) gauge

More information

Some selected results of lattice QCD

Some selected results of lattice QCD Some selected results of lattice QCD Heidelberg, October 12, 27 Kurt Langfeld School of Mathematics and Statistics University of Plymouth p.1/3 Glueball spectrum: no quarks (quenched approximation) 12

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

Color screening in 2+1 flavor QCD

Color screening in 2+1 flavor QCD Color screening in 2+1 flavor QCD J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität München 2 Michigan State

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

Temperature dependence of shear viscosity of SU(3) gluodynamics within lattice simulation

Temperature dependence of shear viscosity of SU(3) gluodynamics within lattice simulation Temperature dependence of shear viscosity of SU(3) gluodynamics within lattice simulation V.V. Braguta ITEP 20 April, 2017 Outline: Introduction Details of the calculation Shear viscocity Fitting of the

More information

Finite-temperature Field Theory

Finite-temperature Field Theory Finite-temperature Field Theory Aleksi Vuorinen CERN Initial Conditions in Heavy Ion Collisions Goa, India, September 2008 Outline Further tools for equilibrium thermodynamics Gauge symmetry Faddeev-Popov

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

Heating up QGP: towards charm quark chemical equilibration

Heating up QGP: towards charm quark chemical equilibration Heating up QGP: towards charm quark chemical equilibration Mikko Laine (University of Bern, Switzerland) 1 What is it? 2 Melting / recombination: Leptonic annihilation: q q l + l Chemical equilibration:

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

From spectral functions to viscosity in the QuarkGluon Plasma

From spectral functions to viscosity in the QuarkGluon Plasma From spectral functions to viscosity in the QuarkGluon Plasma N.C., Haas, Pawlowski, Strodthoff: Phys. Rev. Lett. 115.112002, 2015 Hirschegg 21.1.2016 Outline Introduction Framework for transport coefficients

More information

The Big Picture. Thomas Schaefer. North Carolina State University

The Big Picture. Thomas Schaefer. North Carolina State University The Big Picture Thomas Schaefer North Carolina State University 1 Big Questions What is QCD? What is a Phase of QCD? What is a Plasma? What is a (perfect) Liquid? What is a wqgp/sqgp? 2 What is QCD (Quantum

More information

arxiv: v1 [hep-lat] 26 Dec 2009

arxiv: v1 [hep-lat] 26 Dec 2009 arxiv:091.5037v1 [hep-lat] 6 Dec 009 On Equation of State at physical quark masses Physics Department, Brookhaven National Laboratory, Upton NY 11973 E-mail: petreczk@bnl.gov QCD equation of state is calculated

More information

QCD Thermodynamics Péter Petreczky

QCD Thermodynamics Péter Petreczky QCD Thermodynamics Péter Petreczky What is deconfinement in QCD? What is the nature of the deconfined matter? Tools: screening of color charges, EoS, fluctuation of conserved quantum numbers QGP: state

More information

QCD Equation of state in perturbation theory (and beyond... )

QCD Equation of state in perturbation theory (and beyond... ) QCD Equation of state in perturbation theory (and beyond... ) Kari Rummukainen CERN Theory & University of Oulu, Finland Physics of high baryon density K. Rummukainen (Oulu & CERN) EoS in pqcd Trento 06

More information

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature.

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. N.O. Agasian and I.A. Shushpanov Institute of Theoretical and Experimental Physics 117218 Moscow, Russia Abstract In the first

More information

Scale hierarchy in high-temperature QCD

Scale hierarchy in high-temperature QCD Scale hierarchy in high-temperature QCD Philippe de Forcrand ETH Zurich & CERN with Oscar Åkerlund (ETH) Twelfth Workshop on Non-Perturbative QCD, Paris, June 2013 QCD is asymptotically free g 2 4 = High

More information

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa Bottomonium melting at T >> Tc Pedro Bicudo CFTP, IST, Lisboa Motivation The finite T string tension The quark mass gap equation with finite T and finite quark mass Chiral symmetry and confinement crossovers

More information

String / gauge theory duality and ferromagnetic spin chains

String / gauge theory duality and ferromagnetic spin chains String / gauge theory duality and ferromagnetic spin chains M. Kruczenski Princeton Univ. In collaboration w/ Rob Myers, David Mateos, David Winters Arkady Tseytlin, Anton Ryzhov Summary Introduction mesons,,...

More information

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016 G 2 QCD Neutron Star Ouraman Hajizadeh in collaboration with Axel Maas November 30, 2016 Motivation Why Neutron Stars? Neutron Stars: Laboratory of Strong Interaction Dense Objects: Study of strong interaction

More information

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y.

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y. Calculation of decay constant using gradient flow, towards the Kaon bag parameter University of Tsukuba, A. Suzuki and Y. Taniguchi Contents Goal : Calculation of B K with Wilson fermion using gradient

More information

Lattice calculation of static quark correlators at finite temperature

Lattice calculation of static quark correlators at finite temperature Lattice calculation of static quark correlators at finite temperature J. Weber in collaboration with A. Bazavov 2, N. Brambilla, M.Berwein, P. Petrezcky 3 and A. Vairo Physik Department, Technische Universität

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

WIMP Dark Matter and the QCD Equation of State

WIMP Dark Matter and the QCD Equation of State Doktoratskolleg Graz Karl-Franzens-Universität, May 2006 WIMP Dark Matter and the QCD Equation of State Owe Philipsen Universität Münster Motivation + overview Cosmology I: expansion and contents of the

More information

arxiv: v1 [hep-ph] 15 Jul 2013

arxiv: v1 [hep-ph] 15 Jul 2013 Compact Stars in the QCD Phase Diagram III (CSQCD III) December 2-5, 202, Guarujá, SP, Brazil http://www.astro.iag.usp.br/~foton/csqcd3 Phase diagram of strongly interacting matter under strong magnetic

More information

Collisional energy loss in the sqgp

Collisional energy loss in the sqgp Parton propagation through Strongly interacting Systems ECT, Trento, September 005 Collisional energy loss in the sqgp André Peshier Institute for Theoretical Physics, Giessen University, Germany Bjorken

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

Bulk Thermodynamics in SU(3) gauge theory

Bulk Thermodynamics in SU(3) gauge theory Bulk Thermodynamics in SU(3) gauge theory In Monte-Carlo simulations ln Z(T) cannot be determined but only its derivatives computational cost go as large cutoff effects! Boyd et al., Nucl. Phys. B496 (1996)

More information

Functional RG methods in QCD

Functional RG methods in QCD methods in QCD Institute for Theoretical Physics University of Heidelberg LC2006 May 18th, 2006 methods in QCD motivation Strong QCD QCD dynamical symmetry breaking instantons χsb top. dofs link?! deconfinement

More information

QCD in Heavy-ion collisions

QCD in Heavy-ion collisions QCD in Heavy-ion collisions RPP 2012, Montpellier transition t p z q IPhT, Saclay 1 Outline 1 2 3 4 5 6 7 transition 2 1 transition 2 3 4 5 6 transition 7 2 Asymptotic freedom Running coupling : α s =

More information

Entropy shifts and Missing States. Excited Hyperons in QCD Thermodynamics at Freeze-Out

Entropy shifts and Missing States. Excited Hyperons in QCD Thermodynamics at Freeze-Out E. Ruiz Arriola Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, Spain. Excited Hyperons in QCD Thermodynamics at Freeze-Out Thomas Jefferson National Accelerator Facility Newport

More information

A Brief Introduction to AdS/CFT Correspondence

A Brief Introduction to AdS/CFT Correspondence Department of Physics Universidad de los Andes Bogota, Colombia 2011 Outline of the Talk Outline of the Talk Introduction Outline of the Talk Introduction Motivation Outline of the Talk Introduction Motivation

More information

Lattice studies of the conformal window

Lattice studies of the conformal window Lattice studies of the conformal window Luigi Del Debbio University of Edinburgh Zeuthen - November 2010 T H E U N I V E R S I T Y O F E D I N B U R G H Luigi Del Debbio (University of Edinburgh) Lattice

More information

Pushing dimensional reduction of QCD to lower temperatures

Pushing dimensional reduction of QCD to lower temperatures Intro DimRed Center symm. SU(2) Outlook Pushing dimensional reduction of QCD to lower temperatures Philippe de Forcrand ETH Zürich and CERN arxiv:0801.1566 with A. Kurkela and A. Vuorinen Really: hep-ph/0604100,

More information

The SU(2) quark-antiquark potential in the pseudoparticle approach

The SU(2) quark-antiquark potential in the pseudoparticle approach The SU(2) quark-antiquark potential in the pseudoparticle approach Marc Wagner mcwagner@theorie3.physik.uni-erlangen.de http://theorie3.physik.uni-erlangen.de/ mcwagner 3 th March 26 Outline PP = pseudoparticle

More information

Center-symmetric dimensional reduction of hot Yang-Mills theory

Center-symmetric dimensional reduction of hot Yang-Mills theory Center-symmetric dimensional reduction of hot Yang-Mills theory Institut für Theoretische Physik, ETH Zürich, CH-809 Zürich, Switzerland E-mail: kurkela@phys.ethz.ch It is expected that incorporating the

More information

arxiv: v1 [hep-ph] 10 Jan 2019

arxiv: v1 [hep-ph] 10 Jan 2019 Nisho-1-2019 Nonvanishing pion masses for vanishing bare quark masses Aiichi Iwazaki Nishogakusha University, 6-16 Sanbancho Chiyoda-ku Tokyo 102-8336, Japan. (Dated: Jan. 10, 2019) arxiv:1901.03045v1

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

The static potential in the Gribov-Zwanziger Lagrangian

The static potential in the Gribov-Zwanziger Lagrangian The static potential in the Gribov-Zwanziger Lagrangian Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, P.O. Box 147, Liverpool, L69 3BX, United Kingdom E-mail:

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential Jens Braun Theoretisch-Physikalisches Institut Friedrich-Schiller Universität Jena Quarks, Hadrons

More information

String Dynamics in Yang-Mills Theory

String Dynamics in Yang-Mills Theory String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics, Bern University Workshop on Strongly Interacting Field Theories Jena,

More information

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Equation of state Pasi Huovinen Uniwersytet Wroc lawski Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Dec 14, 2016, University of Science and Technology of China, Hefei, China The

More information

RADIATIVE CORRECTIONS TO THE STEFAN-BOLTZMANN LAW. FINN RAVNDAL a. Institute of Physics, University of Oslo, N-0316 Oslo, Norway

RADIATIVE CORRECTIONS TO THE STEFAN-BOLTZMANN LAW. FINN RAVNDAL a. Institute of Physics, University of Oslo, N-0316 Oslo, Norway RADIATIVE CORRECTIONS TO THE STEFAN-BOLTZMANN LAW FINN RAVNDAL a Institute of Physics, University of Oslo, N-0316 Oslo, Norway Abstract Photons in blackbody radiation have non-zero interactions due to

More information

QGP, Hydrodynamics and the AdS/CFT correspondence

QGP, Hydrodynamics and the AdS/CFT correspondence QGP, Hydrodynamics and the AdS/CFT correspondence Adrián Soto Stony Brook University October 25th 2010 Adrián Soto (Stony Brook University) QGP, Hydrodynamics and AdS/CFT October 25th 2010 1 / 18 Outline

More information

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 5 POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 1 Institute of Theoretical Physics, University of Wroclaw,

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

arxiv: v1 [hep-ph] 21 Sep 2007

arxiv: v1 [hep-ph] 21 Sep 2007 The QCD potential Antonio Vairo arxiv:0709.3341v1 [hep-ph] 1 Sep 007 Dipartimento di Fisica dell Università di Milano and INFN, via Celoria 16, 0133 Milano, Italy IFIC, Universitat de València-CSIC, Apt.

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

P.V.Buividovich, M.N.Chernodub,T.K. Kalaydzhyan, D.E. Kharzeev, E.V.Luschevskaya, O.V. Teryaev, M.I. Polikarpov

P.V.Buividovich, M.N.Chernodub,T.K. Kalaydzhyan, D.E. Kharzeev, E.V.Luschevskaya, O.V. Teryaev, M.I. Polikarpov Strong magnetic fields in lattice gluodynamics P.V.Buividovich, M.N.Chernodub,T.K. Kalaydzhyan, D.E. Kharzeev, E.V.Luschevskaya, O.V. Teryaev, M.I. Polikarpov arxiv:1011.3001, arxiv:1011.3795, arxiv:1003.180,

More information

arxiv:hep-ph/ v1 19 Feb 1999

arxiv:hep-ph/ v1 19 Feb 1999 ELECTRICAL CONDUCTION IN THE EARLY UNIVERSE arxiv:hep-ph/9902398v1 19 Feb 1999 H. HEISELBERG Nordita, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark E-mail: hh@nordita.dk The electrical conductivity has been

More information

towards a holographic approach to the QCD phase diagram

towards a holographic approach to the QCD phase diagram towards a holographic approach to the QCD phase diagram Pietro Colangelo INFN - Sezione di Bari - Italy in collaboration with F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri Continuous Advances in

More information

Fractionized Skyrmions in Dense Compact-Star Matter

Fractionized Skyrmions in Dense Compact-Star Matter Fractionized Skyrmions in Dense Compact-Star Matter Yong-Liang Ma Jilin University Seminar @ USTC. Jan.07, 2016. Summary The hadronic matter described as a skyrmion matter embedded in an FCC crystal is

More information

Real time lattice simulations and heavy quarkonia beyond deconfinement

Real time lattice simulations and heavy quarkonia beyond deconfinement Real time lattice simulations and heavy quarkonia beyond deconfinement Institute for Theoretical Physics Westfälische Wilhelms-Universität, Münster August 20, 2007 The static potential of the strong interactions

More information

PNJL Model and QCD Phase Transitions

PNJL Model and QCD Phase Transitions PNJL Model and QCD Phase Transitions Hiromichi Nishimura Washington University in St. Louis INT Workshop, Feb. 25, 2010 Phase Transitions in Quantum Chromodynamics This Talk Low Temperature Lattice and

More information

Talk based on: arxiv: arxiv: arxiv: arxiv: arxiv:1106.xxxx. In collaboration with:

Talk based on: arxiv: arxiv: arxiv: arxiv: arxiv:1106.xxxx. In collaboration with: Talk based on: arxiv:0812.3572 arxiv:0903.3244 arxiv:0910.5159 arxiv:1007.2963 arxiv:1106.xxxx In collaboration with: A. Buchel (Perimeter Institute) J. Liu, K. Hanaki, P. Szepietowski (Michigan) The behavior

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 99890701 Allowed tools: mathematical tables Some formulas can be found on p.2. 1. Concepts.

More information

The direct photon puzzle

The direct photon puzzle The direct photon puzzle Jean-François Paquet January 16, 2017 ALICE Journal Club Jean-François Paquet (Stony Brook) 2 What is the direct photon puzzle? > Background

More information

The hadronization into the octet of pseudoscalar mesons in terms of SU(N) gauge invariant Lagrangian

The hadronization into the octet of pseudoscalar mesons in terms of SU(N) gauge invariant Lagrangian The hadronization into the octet of pseudoscalar mesons in terms of SU(N gauge invariant Lagrangian National Research Nuclear University Moscow 115409, Moscow, Russia E-mail: a kosh@internets.ru By breaking

More information

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Quantum Hadron Physics Laboratory, Nishina Center, RIKEN Takahiro M. Doi ( 土居孝寛 ) In collaboration with Hideo Suganuma

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Viscosity in strongly coupled gauge theories Lessons from string theory

Viscosity in strongly coupled gauge theories Lessons from string theory Viscosity in strongly coupled gauge theories Lessons from string theory Pavel Kovtun KITP, University of California, Santa Barbara A.Buchel, (University of Western Ontario) C.Herzog, (University of Washington,

More information

arxiv: v1 [nucl-th] 2 Mar 2015

arxiv: v1 [nucl-th] 2 Mar 2015 The domain of validity of fluid dynamics and the onset of cavitation in ultrarelativistic heavy ion collisions arxiv:503.0053v [nucl-th] 2 Mar 205 Department of Physics, McGill University, 3600 University

More information

Spatial string tension revisited

Spatial string tension revisited Spatial string tension revisited (dimensional reduction at work) York Schröder work together with: M. Laine 1 Motivation RHIC QCD at T > (a few) 100 MeV asymptotic freedom weak coupling expansion slow

More information

Heavy Quark Diffusion in AdS/CFT

Heavy Quark Diffusion in AdS/CFT Purdue University January 5th 2011 AdS/CFT is a correspondence that relates certain Quantum Field Theories and certain String Theories. Some characteristics of the correspondence. Large N c N = 4 SYM theory

More information

The pressure of hot QCD. Mikko Laine (Bielefeld, Germany)

The pressure of hot QCD. Mikko Laine (Bielefeld, Germany) The pressure of hot QCD Mikko Laine (Bielefeld, Germany) 1 I. What is it? 2 QCD: Quantum field theory describing strong interactions. L QCD = 1 4g 2 N 2 c 1 a=1 F a µνf a µν + N f i=1 ψ i [γ µ D µ + m

More information

Anomalous hydrodynamics and gravity. Dam T. Son (INT, University of Washington)

Anomalous hydrodynamics and gravity. Dam T. Son (INT, University of Washington) Anomalous hydrodynamics and gravity Dam T. Son (INT, University of Washington) Summary of the talk Hydrodynamics: an old theory, describing finite temperature systems The presence of anomaly modifies hydrodynamics

More information

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon Melting and freeze-out conditions of hadrons in a thermal medium Juan M. Torres-Rincon Frankfurt Institute for Advanced Studies Frankfurt am Main, Germany in collaboration with J. Aichelin, H. Petersen,

More information

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Florian Burger Humboldt University Berlin for the tmft Collaboration: E. M. Ilgenfritz, M. Müller-Preussker, M. Kirchner

More information

Thermal Transport and Energy Loss in Non-critical Holographic QCD

Thermal Transport and Energy Loss in Non-critical Holographic QCD Thermal Transport and Energy Loss in Non-critical Holographic QCD Umut Gürsoy University of Utrecht DAMTP - Cambridge - November 5, 2009 U.G., E. Kiritsis, F. Nitti, L. Mazzanti ongoing U.G., E. Kiritsis,

More information

Away-Side Angular Correlations Associated with Heavy Quark Jets

Away-Side Angular Correlations Associated with Heavy Quark Jets Away-Side Angular Correlations Associated with Heavy Quark Jets Jorge Noronha Presented by: William Horowitz The Ohio State University Based on: J.N, Gyulassy, Torrieri, arxiv:0807.1038 [hep-ph] and Betz,

More information

Confined chirally symmetric dense matter

Confined chirally symmetric dense matter Confined chirally symmetric dense matter L. Ya. Glozman, V. Sazonov, R. Wagenbrunn Institut für Physik, FB Theoretische Physik, Universität Graz 28 June 2013 L. Ya. Glozman, V. Sazonov, R. Wagenbrunn (Institut

More information

PION DECAY CONSTANT AT FINITE TEMPERATURE IN THE NONLINEAR SIGMA MODEL

PION DECAY CONSTANT AT FINITE TEMPERATURE IN THE NONLINEAR SIGMA MODEL NUC-MINN-96/3-T February 1996 arxiv:hep-ph/9602400v1 26 Feb 1996 PION DECAY CONSTANT AT FINITE TEMPERATURE IN THE NONLINEAR SIGMA MODEL Sangyong Jeon and Joseph Kapusta School of Physics and Astronomy

More information

The E&M of Holographic QCD

The E&M of Holographic QCD The E&M of Holographic QCD Oren Bergman Technion and IAS O.B., G. Lifschytz, M. Lippert arxiv: 0802.3720, 080m.xxxx Also: Johnson, Kundu 0803.0038 Kim, Sin, Zahed 0803.0318 So you see, string theory provides

More information

The Quark-Gluon plasma in the LHC era

The Quark-Gluon plasma in the LHC era The Quark-Gluon plasma in the LHC era Journées de prospective IN2P3-IRFU, Giens, Avril 2012 t z IPhT, Saclay 1 Quarks and gluons Strong interactions : Quantum Chromo-Dynamics Matter : quarks ; Interaction

More information

Lectures on gauge-gravity duality

Lectures on gauge-gravity duality Lectures on gauge-gravity duality Annamaria Sinkovics Department of Applied Mathematics and Theoretical Physics Cambridge University Tihany, 25 August 2009 1. Review of AdS/CFT i. D-branes: open and closed

More information

arxiv:hep-lat/ v2 17 Jun 2005

arxiv:hep-lat/ v2 17 Jun 2005 BI-TP 25/8 and BNL-NT-5/8 Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding Olaf Kaczmarek Fakultät für Physik,

More information

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V.

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 1 Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Introduction

More information

GLUON CONDENSATES AS SUSCEPTIBILITY RELATIONS

GLUON CONDENSATES AS SUSCEPTIBILITY RELATIONS GLUON CONDENSATES AS SUSCEPTIBILITY RELATIONS Roman Zwicky Edinburgh University 14 Nov 2014 Strong Dynamics in the LHCera Bad Honnef Main result to be derived and discussed throughout ḡ @ @ḡ M 2 H = 1

More information

Gluon propagators and center vortices at finite temperature arxiv: v1 [hep-lat] 26 Oct 2009

Gluon propagators and center vortices at finite temperature arxiv: v1 [hep-lat] 26 Oct 2009 ITEP-LAT-29-5 at finite temperature arxiv:9.4828v [hep-lat] 26 Oct 29 Integrated Information Center, Kochi University, Akebono-cho, Kochi, 78-852, Japan E-mail: tsaito@rcnp.osaka-u.ac.jp M. N. Chernodub

More information