1. Describing patient variability, 2. Minimizing patient variability, 3. Describing and Minimizing Intraindividual

Size: px
Start display at page:

Download "1. Describing patient variability, 2. Minimizing patient variability, 3. Describing and Minimizing Intraindividual"

Transcription

1 1. Describing patient variability, 2. Minimizing patient variability, 3. Describing and Minimizing Intraindividual Variability. 4. Improving the reporting of lab assay results. Roger Jelliffe MD, Alan Schumitzky, David Bayard, Michael Neely, Michael Van Guilder, Andreas Botnen, Aida Bustad Laboratory of Applied Pharmacokinetics Univ. of So. Calif. School of Medicine AAVPT BE Conference, DC, June 2010

2 Set Specific Targets, not windows. Hit them most Precisely.

3 Describing Patient Variability Find covariates such as body weight, renal function, BSA, etc, to minimize variability. Use nonparametric population modeling methods.

4 A Parametric Population Model Joint Density

5 A Population Model, made by Breugel

6 What is the IDEAL Pop Model? The correct structural PK/PD Model. The collection of each subject s exactly known parameter values for that model. This is impossible. But you would have multiple, often genetically polymorphic, individual models, one for each subject. Usual statistical summaries can also be obtained, but usually will lose info. How best approach this ideal? NP!

7 Caratheodory, Lindsay, Mallet theorems We don t need to look at the infinity of all continuous distributions. The most likely (ML) distribution, given the data, CAN BE FOUND in a DISCRETE COLLECTION of points, up to 1 per subject. Each point (support point) has an estimate of each parameter value, and of the probability of those values. No assumptions about the shape of the distribution.

8 An NP Population Model, made by Mallet

9 NP can find sub-populations that would be missed by parametric techniques. True two-parameter density Smoothed empirical density of 20 samples from true density

10 NP vs. parametric methods, cont d. Best parametric representation using normality assumption Smoothed NP results

11 A Clinical Population Seventeen patients 1000 mg Amikacin IM qd for 5 doses 8-10 levels per patient, usually 4-5 on day 1-2, and 4-5 on day 5-6, Microbiological assay, SD = x Conc Ccr range ml/min/1.73 M 2

12 Describing variability in the clinical environment IIV = Gamma x (assay error SD polynomial) so, IIV = Gamma x ( x Conc) Gamma = 3.7

13 Amikacin Results: Parameterization as Ka, Vs, and Ks With, Median/CV% IT2B NPEM NPAG Ka 1.352/ / /21.24 Vs.2591/ / /17.38 Ks / / /15.76

14 Amikacin - Log Likelihood, Ka, Vs, and Ks, with and without gamma Without IT2B NPEM NPAG Log - Lik With Log - Lik

15 Estimates from Pop Medians, Ka, Vs, Ks parameterization, no /with IT2B NPEM NPAG r 2 =.814/ / /.880 ME =.979/ / /.169 MSE = 55.47/ / /29.70

16 Conclusions All parameter values pretty similar Less apparent variation seen with IT2B But log likelihood the least NPEM, NPAG more likely param distribs No spuriously high param correlations NPAG most likely param distributions NPEM, NPAG best suited for MM dosage Likelihoods are exact. Therefore, NPEM, NPAG are consistent, precise.

17 Now, Managing Patient Variability

18 Multiple Model (MM) Design of Doses. Think of the blue slide again. Start with the multiple support points in the NP pop model. Give a candidate dose regimen to each support point. See the multiple predictions. Compute their overall weighted squared error from the target goal. Find the regimen having least weighted squared error in target goal achievement. Most precise.

19 What s the best one dose fits all? 1. Use an NP pop model. 2. Have your covariates in the model. 3. Select a target goal. 4. Use an MM dosage design to hit the target most precisely. 5. Take this documented dose through the FDA.

20 Therefore, in addition to finding covariates, The DOSE ITSELF becomes an important tool to minimize variability about target response.

21 7/14/ Continuous IV Vanco. Regimen based on means is given to all subjects. Dangerous!!

22 Vanco, continuous IV. MM regimen. 7/14/

23 Probability [%] Percentile Distance Concentration in central compartment [ug/ml]

24 Bayes Theorem Previous data = past experience = population model. That is the Bayesian Prior (prior to now) estimates probability of an event (parameter value or distribution) based on that past experience. New data from patient. Reconcile past + new. This is the Bayesian posterior - (individual pt model). This finds the most likely compromise between the 2 data sets.

25 A mathematician named Bayes - Mooned people in various ways. He would show off his prior to any admirer, But to see his posterior You payes!

26 7.1. Monitoring the Patient and getting MM Bayesian posteriors. Pop Model Bayesian MM Posterior

27 7.2 MAP Bayesian reaches out Can reach out toward an unusual patient But the MAP point misses the true patient Held back toward the prior. Shrinkage, the compromise. Also, only 1 point. No graphic view of uncertainties. What to do?

28 7.3 Hybrid Bayesian posterior Start with MAP Bayesian. It reaches out, but not fully. Pop prior holds it back. Add new support points nearby, inside and mostly outside, to AUGMENT the pop model for the coming patient data. Then do MM Bayesian on ALL the support points.

29 Population model v, k support points

30 Estimates with MM posterior

31 Augmented hybrid pop model support points

32 Hybrid Bayesian posterior v,k, points

33 Estimates with hybrid MM posterior

34 Concentration in central compartment [ug/ml] WgtAvg Time [hours]

35 Concentration in central compartment [ug/ml] [%] 9.62 [%] 9.49 [%] 8.98 [%] WgtAvg Time [hours]

36

37 Probability [%] Percentile Distance Concentration in central compartment [ug/ml]

38 Describing and Managing Intra-individual Variability

39 Bayesian analysis for very unstable patients: interacting multiple model (IMM) fitting Limitation of all current Bayesian methods: assume only 1 set of fixed parameters to fit the data. Sequential MAP or MM Bayesian same as fitting all data at once. Relax this assumption. Let the true patient change during data analysis if more likely to do so. The Bayesian posterior can change with each new dose or serum level if more likely Hits evasive targets better. IMM.

40 MAP,MM IMM Errors in tracking serum conc: Sequential MAP, MM, and IMM Bayesian posteriors

41 C o n c e n t r a t i o n i n c e n t r a l c o m p a r t m MM Bayesian (Alison Thomson et al) W g t A v g T i m e [ h o u rs ]

42 C o n c e n t r a t i o n i n c e n t r a l c o m p a r t m e n t [ u g / m L ] Sequential IMM Bayesian (Alison Thomson et al) W g t A v g T i m e [ h o u rs ]

43 Summary of Bayesian fitting MAP - Only 1 point but reaches out somewhat. MM multiple points richer. Each point now has a Bayesian posterior probability. Hybrid best features of both. Still richer in relevant support points. But still has fixed parameter values. IMM- Changing parameter values if more likely.

44 Improving the Description and Reporting of Lab Assay Errors Using CV% is suboptimal. As measurement gets lower, CV% gets greater, think must censor low lab results. THIS IS AN ILLUSION! There is NO NEED to censor low data, or to have any LOQ!

45 Instead, Describe Assay Errors by Fisher Info: Fisher Info = 1/Variance of a data point. Need to estimate the SD of every TDM serum level that goes through the lab assay system. Variance = SD 2 Fisher info = 1/Variance = Weight. Assay Error Polynomial (AEP): SD = A 0 C 0 + A 1 C 1 + A 2 C 2 + A 3 C 3 Store it in the software.

46 SD CV% CV% SD Concentration (ug/ml) 5

47 Assay CV% versus Fisher Information Assume, for example, 10% assay CV If conc = 10, SD = 1, var = 1, weight = 1 If conc = 20, SD = 2, var = 4, weight = ¼ (aha!! That s the difference from CV%!) So a % error (the assay CV) is NOT the optmal measure of the error! Big limitation!! As conc approaches zero, CV% approaches infinity! Big limitation! Think must censor data! But assay SD, var, weight always finite. Fisher info is a better measure of assay error. Big advantage!!! NO LOQ! Big advantage! Everyone else uses Fisher info. Only the lab guys don t.

48 How about HIV, etc, assays? Drive the result to ZERO and document it! Never settle for <50 copies, etc! Same for HCV, Philadelphia chromosome, etc.

49 How get assay error polynomial? 1. Get samples a blank, a low one, a middle one, a high one, and the highest one, over the assay working range. 2. Divide each sample into at least 5 aliquots. 3. Get mean and SD of each sample. 4. Fit a polynomial to the relationship between assay mean and SD. 5. SD = A 0 C 0 + A 1 C 1 + A 2 C 2 + A 3 C 3 6. Then have good error estimate for each single result, to give good weight to data. 7. Store polynomial in the software

50 How about residual analysis? Don t ask if the stuff is there or not, and set a socially acceptable number of SD s above the blank. There are many policies for handling censored data. None is better that the measured result itself. The measurement itself is the best estimator of the true value.

BAYESIAN ESTIMATION OF POSTERIOR DENSITIES FOR PARAMETER VALUES

BAYESIAN ESTIMATION OF POSTERIOR DENSITIES FOR PARAMETER VALUES BAYESIAN ESTIMATION OF POSTERIOR DENSITIES FOR PHARMACOKINETIC MODELS HAVING CHANGING PARAMETER VALUES David S. Bayard and Roger W. Jellie Technical Report: -1 April 1, 2 Laboratory of Applied Pharmacokinetics

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Generalizing the MCPMod methodology beyond normal, independent data

Generalizing the MCPMod methodology beyond normal, independent data Generalizing the MCPMod methodology beyond normal, independent data José Pinheiro Joint work with Frank Bretz and Björn Bornkamp Novartis AG Trends and Innovations in Clinical Trial Statistics Conference

More information

Curve Fitting Re-visited, Bishop1.2.5

Curve Fitting Re-visited, Bishop1.2.5 Curve Fitting Re-visited, Bishop1.2.5 Maximum Likelihood Bishop 1.2.5 Model Likelihood differentiation p(t x, w, β) = Maximum Likelihood N N ( t n y(x n, w), β 1). (1.61) n=1 As we did in the case of the

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

Lecture 3. Linear Regression II Bastian Leibe RWTH Aachen

Lecture 3. Linear Regression II Bastian Leibe RWTH Aachen Advanced Machine Learning Lecture 3 Linear Regression II 02.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de This Lecture: Advanced Machine Learning Regression

More information

Sequential Logic (3.1 and is a long difficult section you really should read!)

Sequential Logic (3.1 and is a long difficult section you really should read!) EECS 270, Fall 2014, Lecture 6 Page 1 of 8 Sequential Logic (3.1 and 3.2. 3.2 is a long difficult section you really should read!) One thing we have carefully avoided so far is feedback all of our signals

More information

INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y

INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y Predictor or Independent variable x Model with error: for i = 1,..., n, y i = α + βx i + ε i ε i : independent errors (sampling, measurement,

More information

Ch. 12 Linear Bayesian Estimators

Ch. 12 Linear Bayesian Estimators Ch. 1 Linear Bayesian Estimators 1 In chapter 11 we saw: the MMSE estimator takes a simple form when and are jointly Gaussian it is linear and used only the 1 st and nd order moments (means and covariances).

More information

Generalizing the MCPMod methodology beyond normal, independent data

Generalizing the MCPMod methodology beyond normal, independent data Generalizing the MCPMod methodology beyond normal, independent data José Pinheiro Joint work with Frank Bretz and Björn Bornkamp Novartis AG ASA NJ Chapter 35 th Annual Spring Symposium June 06, 2014 Outline

More information

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 EPSY 905: Intro to Bayesian and MCMC Today s Class An

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Bayesian Nonparametric Accelerated Failure Time Models for Analyzing Heterogeneous Treatment Effects

Bayesian Nonparametric Accelerated Failure Time Models for Analyzing Heterogeneous Treatment Effects Bayesian Nonparametric Accelerated Failure Time Models for Analyzing Heterogeneous Treatment Effects Nicholas C. Henderson Thomas A. Louis Gary Rosner Ravi Varadhan Johns Hopkins University September 28,

More information

Multivariate Survival Analysis

Multivariate Survival Analysis Multivariate Survival Analysis Previously we have assumed that either (X i, δ i ) or (X i, δ i, Z i ), i = 1,..., n, are i.i.d.. This may not always be the case. Multivariate survival data can arise in

More information

R-squared for Bayesian regression models

R-squared for Bayesian regression models R-squared for Bayesian regression models Andrew Gelman Ben Goodrich Jonah Gabry Imad Ali 8 Nov 2017 Abstract The usual definition of R 2 (variance of the predicted values divided by the variance of the

More information

Modeling biological systems - The Pharmaco-Kinetic-Dynamic paradigm

Modeling biological systems - The Pharmaco-Kinetic-Dynamic paradigm Modeling biological systems - The Pharmaco-Kinetic-Dynamic paradigm Main features:. Time profiles and complex systems 2. Disturbed and sparse measurements 3. Mixed variabilities One of the most highly

More information

Accurate Maximum Likelihood Estimation for Parametric Population Analysis. Bob Leary UCSD/SDSC and LAPK, USC School of Medicine

Accurate Maximum Likelihood Estimation for Parametric Population Analysis. Bob Leary UCSD/SDSC and LAPK, USC School of Medicine Accurate Maximum Likelihood Estimation for Parametric Population Analysis Bob Leary UCSD/SDSC and LAPK, USC School of Medicine Why use parametric maximum likelihood estimators? Consistency: θˆ θ as N ML

More information

(1) Introduction to Bayesian statistics

(1) Introduction to Bayesian statistics Spring, 2018 A motivating example Student 1 will write down a number and then flip a coin If the flip is heads, they will honestly tell student 2 if the number is even or odd If the flip is tails, they

More information

[Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements

[Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements [Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements Aasthaa Bansal PhD Pharmaceutical Outcomes Research & Policy Program University of Washington 69 Biomarkers

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

Experimental Design and Data Analysis for Biologists

Experimental Design and Data Analysis for Biologists Experimental Design and Data Analysis for Biologists Gerry P. Quinn Monash University Michael J. Keough University of Melbourne CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv I I Introduction 1 1.1

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Subject CS1 Actuarial Statistics 1 Core Principles

Subject CS1 Actuarial Statistics 1 Core Principles Institute of Actuaries of India Subject CS1 Actuarial Statistics 1 Core Principles For 2019 Examinations Aim The aim of the Actuarial Statistics 1 subject is to provide a grounding in mathematical and

More information

Bayesian Updating: Discrete Priors: Spring

Bayesian Updating: Discrete Priors: Spring Bayesian Updating: Discrete Priors: 18.05 Spring 2017 http://xkcd.com/1236/ Learning from experience Which treatment would you choose? 1. Treatment 1: cured 100% of patients in a trial. 2. Treatment 2:

More information

Causal Inference with Big Data Sets

Causal Inference with Big Data Sets Causal Inference with Big Data Sets Marcelo Coca Perraillon University of Colorado AMC November 2016 1 / 1 Outlone Outline Big data Causal inference in economics and statistics Regression discontinuity

More information

Weakly informative priors

Weakly informative priors Department of Statistics and Department of Political Science Columbia University 23 Apr 2014 Collaborators (in order of appearance): Gary King, Frederic Bois, Aleks Jakulin, Vince Dorie, Sophia Rabe-Hesketh,

More information

Regression. Estimation of the linear function (straight line) describing the linear component of the joint relationship between two variables X and Y.

Regression. Estimation of the linear function (straight line) describing the linear component of the joint relationship between two variables X and Y. Regression Bivariate i linear regression: Estimation of the linear function (straight line) describing the linear component of the joint relationship between two variables and. Generally describe as a

More information

Hierarchical expectation propagation for Bayesian aggregation of average data

Hierarchical expectation propagation for Bayesian aggregation of average data Hierarchical expectation propagation for Bayesian aggregation of average data Andrew Gelman, Columbia University Sebastian Weber, Novartis also Bob Carpenter, Daniel Lee, Frédéric Bois, Aki Vehtari, and

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

Multivariate Assays With Values Below the Lower Limit of Quantitation: Parametric Estimation By Imputation and Maximum Likelihood

Multivariate Assays With Values Below the Lower Limit of Quantitation: Parametric Estimation By Imputation and Maximum Likelihood Multivariate Assays With Values Below the Lower Limit of Quantitation: Parametric Estimation By Imputation and Maximum Likelihood Robert E. Johnson and Heather J. Hoffman 2* Department of Biostatistics,

More information

Lecture 5. G. Cowan Lectures on Statistical Data Analysis Lecture 5 page 1

Lecture 5. G. Cowan Lectures on Statistical Data Analysis Lecture 5 page 1 Lecture 5 1 Probability (90 min.) Definition, Bayes theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests (90 min.) general concepts, test statistics,

More information

Probability and Discrete Distributions

Probability and Discrete Distributions AMS 7L LAB #3 Fall, 2007 Objectives: Probability and Discrete Distributions 1. To explore relative frequency and the Law of Large Numbers 2. To practice the basic rules of probability 3. To work with the

More information

Fundamental Issues in Bayesian Functional Data Analysis. Dennis D. Cox Rice University

Fundamental Issues in Bayesian Functional Data Analysis. Dennis D. Cox Rice University Fundamental Issues in Bayesian Functional Data Analysis Dennis D. Cox Rice University 1 Introduction Question: What are functional data? Answer: Data that are functions of a continuous variable.... say

More information

Linear models for the joint analysis of multiple. array-cgh profiles

Linear models for the joint analysis of multiple. array-cgh profiles Linear models for the joint analysis of multiple array-cgh profiles F. Picard, E. Lebarbier, B. Thiam, S. Robin. UMR 5558 CNRS Univ. Lyon 1, Lyon UMR 518 AgroParisTech/INRA, F-75231, Paris Statistics for

More information

Physics 509: Bootstrap and Robust Parameter Estimation

Physics 509: Bootstrap and Robust Parameter Estimation Physics 509: Bootstrap and Robust Parameter Estimation Scott Oser Lecture #20 Physics 509 1 Nonparametric parameter estimation Question: what error estimate should you assign to the slope and intercept

More information

Case Study in the Use of Bayesian Hierarchical Modeling and Simulation for Design and Analysis of a Clinical Trial

Case Study in the Use of Bayesian Hierarchical Modeling and Simulation for Design and Analysis of a Clinical Trial Case Study in the Use of Bayesian Hierarchical Modeling and Simulation for Design and Analysis of a Clinical Trial William R. Gillespie Pharsight Corporation Cary, North Carolina, USA PAGE 2003 Verona,

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS Parametric Distributions Basic building blocks: Need to determine given Representation: or? Recall Curve Fitting Binary Variables

More information

Modelling geoadditive survival data

Modelling geoadditive survival data Modelling geoadditive survival data Thomas Kneib & Ludwig Fahrmeir Department of Statistics, Ludwig-Maximilians-University Munich 1. Leukemia survival data 2. Structured hazard regression 3. Mixed model

More information

ebay/google short course: Problem set 2

ebay/google short course: Problem set 2 18 Jan 013 ebay/google short course: Problem set 1. (the Echange Parado) You are playing the following game against an opponent, with a referee also taking part. The referee has two envelopes (numbered

More information

BAYESIAN DECISION THEORY

BAYESIAN DECISION THEORY Last updated: September 17, 2012 BAYESIAN DECISION THEORY Problems 2 The following problems from the textbook are relevant: 2.1 2.9, 2.11, 2.17 For this week, please at least solve Problem 2.3. We will

More information

A Clinical Trial Simulation System, Its Applications, and Future Challenges. Peter Westfall, Texas Tech University Kuenhi Tsai, Merck Research Lab

A Clinical Trial Simulation System, Its Applications, and Future Challenges. Peter Westfall, Texas Tech University Kuenhi Tsai, Merck Research Lab A Clinical Trial Simulation System, Its Applications, and Future Challenges Peter Westfall, Texas Tech University Kuenhi Tsai, Merck Research Lab Acknowledgement Major collaborators Stephan Ogenstand,

More information

Heterogeneous shedding of influenza by human subjects and. its implications for epidemiology and control

Heterogeneous shedding of influenza by human subjects and. its implications for epidemiology and control 1 2 3 4 5 6 7 8 9 10 11 Heterogeneous shedding of influenza by human subjects and its implications for epidemiology and control Laetitia Canini 1*, Mark EJ Woolhouse 1, Taronna R. Maines 2, Fabrice Carrat

More information

TGDR: An Introduction

TGDR: An Introduction TGDR: An Introduction Julian Wolfson Student Seminar March 28, 2007 1 Variable Selection 2 Penalization, Solution Paths and TGDR 3 Applying TGDR 4 Extensions 5 Final Thoughts Some motivating examples We

More information

Theory of Maximum Likelihood Estimation. Konstantin Kashin

Theory of Maximum Likelihood Estimation. Konstantin Kashin Gov 2001 Section 5: Theory of Maximum Likelihood Estimation Konstantin Kashin February 28, 2013 Outline Introduction Likelihood Examples of MLE Variance of MLE Asymptotic Properties What is Statistical

More information

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein Kalman filtering and friends: Inference in time series models Herke van Hoof slides mostly by Michael Rubinstein Problem overview Goal Estimate most probable state at time k using measurement up to time

More information

Chapter 4 Multi-factor Treatment Designs with Multiple Error Terms 93

Chapter 4 Multi-factor Treatment Designs with Multiple Error Terms 93 Contents Preface ix Chapter 1 Introduction 1 1.1 Types of Models That Produce Data 1 1.2 Statistical Models 2 1.3 Fixed and Random Effects 4 1.4 Mixed Models 6 1.5 Typical Studies and the Modeling Issues

More information

Choosing among models

Choosing among models Eco 515 Fall 2014 Chris Sims Choosing among models September 18, 2014 c 2014 by Christopher A. Sims. This document is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported

More information

Chapter 6 The Standard Deviation as a Ruler and the Normal Model

Chapter 6 The Standard Deviation as a Ruler and the Normal Model Chapter 6 The Standard Deviation as a Ruler and the Normal Model Overview Key Concepts Understand how adding (subtracting) a constant or multiplying (dividing) by a constant changes the center and/or spread

More information

Parameter Estimation. Industrial AI Lab.

Parameter Estimation. Industrial AI Lab. Parameter Estimation Industrial AI Lab. Generative Model X Y w y = ω T x + ε ε~n(0, σ 2 ) σ 2 2 Maximum Likelihood Estimation (MLE) Estimate parameters θ ω, σ 2 given a generative model Given observed

More information

Business Statistics. Lecture 10: Course Review

Business Statistics. Lecture 10: Course Review Business Statistics Lecture 10: Course Review 1 Descriptive Statistics for Continuous Data Numerical Summaries Location: mean, median Spread or variability: variance, standard deviation, range, percentiles,

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Integrating Mathematical and Statistical Models Recap of mathematical models Models and data Statistical models and sources of

More information

The Generalized Roy Model and Treatment Effects

The Generalized Roy Model and Treatment Effects The Generalized Roy Model and Treatment Effects Christopher Taber University of Wisconsin November 10, 2016 Introduction From Imbens and Angrist we showed that if one runs IV, we get estimates of the Local

More information

COMP 551 Applied Machine Learning Lecture 20: Gaussian processes

COMP 551 Applied Machine Learning Lecture 20: Gaussian processes COMP 55 Applied Machine Learning Lecture 2: Gaussian processes Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: (herke.vanhoof@mcgill.ca) Class web page: www.cs.mcgill.ca/~hvanho2/comp55

More information

Parameter Estimation

Parameter Estimation Parameter Estimation Chapters 13-15 Stat 477 - Loss Models Chapters 13-15 (Stat 477) Parameter Estimation Brian Hartman - BYU 1 / 23 Methods for parameter estimation Methods for parameter estimation Methods

More information

Computer Vision Group Prof. Daniel Cremers. 3. Regression

Computer Vision Group Prof. Daniel Cremers. 3. Regression Prof. Daniel Cremers 3. Regression Categories of Learning (Rep.) Learnin g Unsupervise d Learning Clustering, density estimation Supervised Learning learning from a training data set, inference on the

More information

Statistical Distribution Assumptions of General Linear Models

Statistical Distribution Assumptions of General Linear Models Statistical Distribution Assumptions of General Linear Models Applied Multilevel Models for Cross Sectional Data Lecture 4 ICPSR Summer Workshop University of Colorado Boulder Lecture 4: Statistical Distributions

More information

Weakly informative priors

Weakly informative priors Department of Statistics and Department of Political Science Columbia University 21 Oct 2011 Collaborators (in order of appearance): Gary King, Frederic Bois, Aleks Jakulin, Vince Dorie, Sophia Rabe-Hesketh,

More information

BIOSTATISTICAL METHODS

BIOSTATISTICAL METHODS BIOSTATISTICAL METHODS FOR TRANSLATIONAL & CLINICAL RESEARCH Cross-over Designs #: DESIGNING CLINICAL RESEARCH The subtraction of measurements from the same subject will mostly cancel or minimize effects

More information

Measuring relationships among multiple responses

Measuring relationships among multiple responses Measuring relationships among multiple responses Linear association (correlation, relatedness, shared information) between pair-wise responses is an important property used in almost all multivariate analyses.

More information

F denotes cumulative density. denotes probability density function; (.)

F denotes cumulative density. denotes probability density function; (.) BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information

Mixture modelling of recurrent event times with long-term survivors: Analysis of Hutterite birth intervals. John W. Mac McDonald & Alessandro Rosina

Mixture modelling of recurrent event times with long-term survivors: Analysis of Hutterite birth intervals. John W. Mac McDonald & Alessandro Rosina Mixture modelling of recurrent event times with long-term survivors: Analysis of Hutterite birth intervals John W. Mac McDonald & Alessandro Rosina Quantitative Methods in the Social Sciences Seminar -

More information

Lecture 16: Small Sample Size Problems (Covariance Estimation) Many thanks to Carlos Thomaz who authored the original version of these slides

Lecture 16: Small Sample Size Problems (Covariance Estimation) Many thanks to Carlos Thomaz who authored the original version of these slides Lecture 16: Small Sample Size Problems (Covariance Estimation) Many thanks to Carlos Thomaz who authored the original version of these slides Intelligent Data Analysis and Probabilistic Inference Lecture

More information

Monte Carlo Simulation

Monte Carlo Simulation Monte Carlo Simulation Overview Repeatedly draw random samples from a joint parameter probability distribution Calculate outputs given a set of inputs and the simulated parameter values Laboratory of Applied

More information

Lesson Plan. Answer Questions. Summary Statistics. Histograms. The Normal Distribution. Using the Standard Normal Table

Lesson Plan. Answer Questions. Summary Statistics. Histograms. The Normal Distribution. Using the Standard Normal Table Lesson Plan Answer Questions Summary Statistics Histograms The Normal Distribution Using the Standard Normal Table 1 2. Summary Statistics Given a collection of data, one needs to find representations

More information

An Introduction to Bayesian Linear Regression

An Introduction to Bayesian Linear Regression An Introduction to Bayesian Linear Regression APPM 5720: Bayesian Computation Fall 2018 A SIMPLE LINEAR MODEL Suppose that we observe explanatory variables x 1, x 2,..., x n and dependent variables y 1,

More information

CHGA (Human) ELISA Kit

CHGA (Human) ELISA Kit CHGA (Human) ELISA Kit Catalog Number KA1884 96 assays Version: 03 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Intended Use... 3 Principle of the Assay... 3 General

More information

Or How to select variables Using Bayesian LASSO

Or How to select variables Using Bayesian LASSO Or How to select variables Using Bayesian LASSO x 1 x 2 x 3 x 4 Or How to select variables Using Bayesian LASSO x 1 x 2 x 3 x 4 Or How to select variables Using Bayesian LASSO On Bayesian Variable Selection

More information

BAYESIAN ANALYSIS OF DOSE-RESPONSE CALIBRATION CURVES

BAYESIAN ANALYSIS OF DOSE-RESPONSE CALIBRATION CURVES Libraries Annual Conference on Applied Statistics in Agriculture 2005-17th Annual Conference Proceedings BAYESIAN ANALYSIS OF DOSE-RESPONSE CALIBRATION CURVES William J. Price Bahman Shafii Follow this

More information

Journal of Statistical Research 2007, Vol. 41, No. 1, pp Bangladesh

Journal of Statistical Research 2007, Vol. 41, No. 1, pp Bangladesh Journal of Statistical Research 007, Vol. 4, No., pp. 5 Bangladesh ISSN 056-4 X ESTIMATION OF AUTOREGRESSIVE COEFFICIENT IN AN ARMA(, ) MODEL WITH VAGUE INFORMATION ON THE MA COMPONENT M. Ould Haye School

More information

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Guosheng Yin Department of Statistics and Actuarial Science The University of Hong Kong Joint work with J. Xu PSI and RSS Journal

More information

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing STAT 135 Lab 5 Bootstrapping and Hypothesis Testing Rebecca Barter March 2, 2015 The Bootstrap Bootstrap Suppose that we are interested in estimating a parameter θ from some population with members x 1,...,

More information

Luke B Smith and Brian J Reich North Carolina State University May 21, 2013

Luke B Smith and Brian J Reich North Carolina State University May 21, 2013 BSquare: An R package for Bayesian simultaneous quantile regression Luke B Smith and Brian J Reich North Carolina State University May 21, 2013 BSquare in an R package to conduct Bayesian quantile regression

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Recap on Data Assimilation

Recap on Data Assimilation Concluding Thoughts Recap on Data Assimilation FORECAST ANALYSIS Kalman Filter Forecast Analysis Analytical projection of the ANALYSIS mean and cov from t-1 to the FORECAST mean and cov for t Update FORECAST

More information

A Discussion of the Bayesian Approach

A Discussion of the Bayesian Approach A Discussion of the Bayesian Approach Reference: Chapter 10 of Theoretical Statistics, Cox and Hinkley, 1974 and Sujit Ghosh s lecture notes David Madigan Statistics The subject of statistics concerns

More information

Collinearity/Confounding in richly-parameterized models

Collinearity/Confounding in richly-parameterized models Collinearity/Confounding in richly-parameterized models For MLM, it often makes sense to consider X + Zu to be the mean structure, especially for new-style random e ects. This is like an ordinary linear

More information

Intro to Probability. Andrei Barbu

Intro to Probability. Andrei Barbu Intro to Probability Andrei Barbu Some problems Some problems A means to capture uncertainty Some problems A means to capture uncertainty You have data from two sources, are they different? Some problems

More information

1 Bayesian Linear Regression (BLR)

1 Bayesian Linear Regression (BLR) Statistical Techniques in Robotics (STR, S15) Lecture#10 (Wednesday, February 11) Lecturer: Byron Boots Gaussian Properties, Bayesian Linear Regression 1 Bayesian Linear Regression (BLR) In linear regression,

More information

Previous lecture. P-value based combination. Fixed vs random effects models. Meta vs. pooled- analysis. New random effects testing.

Previous lecture. P-value based combination. Fixed vs random effects models. Meta vs. pooled- analysis. New random effects testing. Previous lecture P-value based combination. Fixed vs random effects models. Meta vs. pooled- analysis. New random effects testing. Interaction Outline: Definition of interaction Additive versus multiplicative

More information

Confidence and Prediction Intervals for Pharmacometric Models

Confidence and Prediction Intervals for Pharmacometric Models Citation: CPT Pharmacometrics Syst. Pharmacol. (218) 7, 36 373; VC 218 ASCPT All rights reserved doi:1.12/psp4.12286 TUTORIAL Confidence and Prediction Intervals for Pharmacometric Models Anne K ummel

More information

New Statistical Methods That Improve on MLE and GLM Including for Reserve Modeling GARY G VENTER

New Statistical Methods That Improve on MLE and GLM Including for Reserve Modeling GARY G VENTER New Statistical Methods That Improve on MLE and GLM Including for Reserve Modeling GARY G VENTER MLE Going the Way of the Buggy Whip Used to be gold standard of statistical estimation Minimum variance

More information

Statistics. Lent Term 2015 Prof. Mark Thomson. 2: The Gaussian Limit

Statistics. Lent Term 2015 Prof. Mark Thomson. 2: The Gaussian Limit Statistics Lent Term 2015 Prof. Mark Thomson Lecture 2 : The Gaussian Limit Prof. M.A. Thomson Lent Term 2015 29 Lecture Lecture Lecture Lecture 1: Back to basics Introduction, Probability distribution

More information

Course Introduction and Overview Descriptive Statistics Conceptualizations of Variance Review of the General Linear Model

Course Introduction and Overview Descriptive Statistics Conceptualizations of Variance Review of the General Linear Model Course Introduction and Overview Descriptive Statistics Conceptualizations of Variance Review of the General Linear Model EPSY 905: Multivariate Analysis Lecture 1 20 January 2016 EPSY 905: Lecture 1 -

More information

SPRING 2007 EXAM C SOLUTIONS

SPRING 2007 EXAM C SOLUTIONS SPRING 007 EXAM C SOLUTIONS Question #1 The data are already shifted (have had the policy limit and the deductible of 50 applied). The two 350 payments are censored. Thus the likelihood function is L =

More information

Small domain estimation using probability and non-probability survey data

Small domain estimation using probability and non-probability survey data Small domain estimation using probability and non-probability survey data Adrijo Chakraborty and N Ganesh March 2018, FCSM Outline Introduction to the Problem Approaches for Combining Probability and Non-Probability

More information

STATISTICS/ECONOMETRICS PREP COURSE PROF. MASSIMO GUIDOLIN

STATISTICS/ECONOMETRICS PREP COURSE PROF. MASSIMO GUIDOLIN Massimo Guidolin Massimo.Guidolin@unibocconi.it Dept. of Finance STATISTICS/ECONOMETRICS PREP COURSE PROF. MASSIMO GUIDOLIN SECOND PART, LECTURE 2: MODES OF CONVERGENCE AND POINT ESTIMATION Lecture 2:

More information

3 Joint Distributions 71

3 Joint Distributions 71 2.2.3 The Normal Distribution 54 2.2.4 The Beta Density 58 2.3 Functions of a Random Variable 58 2.4 Concluding Remarks 64 2.5 Problems 64 3 Joint Distributions 71 3.1 Introduction 71 3.2 Discrete Random

More information

Simulation. Where real stuff starts

Simulation. Where real stuff starts 1 Simulation Where real stuff starts ToC 1. What is a simulation? 2. Accuracy of output 3. Random Number Generators 4. How to sample 5. Monte Carlo 6. Bootstrap 2 1. What is a simulation? 3 What is a simulation?

More information

Supporting Information for Estimating restricted mean. treatment effects with stacked survival models

Supporting Information for Estimating restricted mean. treatment effects with stacked survival models Supporting Information for Estimating restricted mean treatment effects with stacked survival models Andrew Wey, David Vock, John Connett, and Kyle Rudser Section 1 presents several extensions to the simulation

More information

Markov Chain Monte Carlo in Practice

Markov Chain Monte Carlo in Practice Markov Chain Monte Carlo in Practice Edited by W.R. Gilks Medical Research Council Biostatistics Unit Cambridge UK S. Richardson French National Institute for Health and Medical Research Vilejuif France

More information

Bayesian Model Diagnostics and Checking

Bayesian Model Diagnostics and Checking Earvin Balderama Quantitative Ecology Lab Department of Forestry and Environmental Resources North Carolina State University April 12, 2013 1 / 34 Introduction MCMCMC 2 / 34 Introduction MCMCMC Steps in

More information

A comparison of estimation methods in nonlinear mixed effects models using a blind analysis

A comparison of estimation methods in nonlinear mixed effects models using a blind analysis A comparison of estimation methods in nonlinear mixed effects models using a blind analysis Pascal Girard, PhD EA 3738 CTO, INSERM, University Claude Bernard Lyon I, Lyon France Mentré, PhD, MD Dept Biostatistics,

More information

9 Multi-Model State Estimation

9 Multi-Model State Estimation Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof. N. Shimkin 9 Multi-Model State

More information

Supplemental Resource: Brain and Cognitive Sciences Statistics & Visualization for Data Analysis & Inference January (IAP) 2009

Supplemental Resource: Brain and Cognitive Sciences Statistics & Visualization for Data Analysis & Inference January (IAP) 2009 MIT OpenCourseWare http://ocw.mit.edu Supplemental Resource: Brain and Cognitive Sciences Statistics & Visualization for Data Analysis & Inference January (IAP) 2009 For information about citing these

More information

Description of UseCase models in MDL

Description of UseCase models in MDL Description of UseCase models in MDL A set of UseCases (UCs) has been prepared to illustrate how different modelling features can be implemented in the Model Description Language or MDL. These UseCases

More information

Bayes: All uncertainty is described using probability.

Bayes: All uncertainty is described using probability. Bayes: All uncertainty is described using probability. Let w be the data and θ be any unknown quantities. Likelihood. The probability model π(w θ) has θ fixed and w varying. The likelihood L(θ; w) is π(w

More information

Introduction to Applied Bayesian Modeling. ICPSR Day 4

Introduction to Applied Bayesian Modeling. ICPSR Day 4 Introduction to Applied Bayesian Modeling ICPSR Day 4 Simple Priors Remember Bayes Law: Where P(A) is the prior probability of A Simple prior Recall the test for disease example where we specified the

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information