Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite

Size: px
Start display at page:

Download "Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite"

Transcription

1 In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: /NPHOTON Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite Hideki Takenaka, Alberto Carrasco-Casado, Mikio Fujiwara, Mitsuo Kitamura, Masahide Sasaki*, and Morio Toyoshima National Institute of Information and Communications Technology (NICT), Nukui-kitamachi, Koganei, Tokyo , Japan. * psasaki@nict.go.jp Recent optical satellite communication demonstrations Optical satellite communications have been demonstrated so far by several missions with satellites larger than SOCRATES, typically several hundred kg, with the lasercom-terminal mass usually over 10 kg. SOCRATES has been the first micro-satellite with a fully-operational on board lasercom system. Other projects based on smaller terminals are being planned as well. Supplementary Figure 1 summarizes the most significant lasercom demonstrations. 1.0E+12 Data rate [bit/s] 1.0E E+06 OSIRISv3 TerraSAR-X OSIRISv2 (2007) (2016) OPTEL-μ LCRD OSIRISv1 LLCD (2013) SOTA (2015) VSOTA ETS-VI (1994) OICETS (2006) SILEX (2001) Planned Space-qualified 1.0E Onboard laser communication terminal mass [kg] Supplementary Figure 1. Comparison of data rates as a function of the on board lasercommunication terminal mass. ETS-VI: Engineering Test Satellite VI; SILEX: Semiconductor-laser Intersatellite Link EXperiment; OICETS: Optical Inter-orbit Communications Engineering Test Satellite; TerraSAR- X: German Synthetic Aperture Radar (SAR) Earth observation satellite; LLCD: Lunar Laser Communications Demonstration; SOTA: Small Optical TrAnsponder; OSIRIS: Optical Space Infrared Downlink System; OPTEL-μ: Optical Terminal for Small Satellite LEO Applications; LCRD: Laser Communications Relay Demonstration. NATURE PHOTONICS Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

2 Clock-data recovery and timing-offset identification Supplementary Figure 2 illustrates an example to understand how to perform the clock-data recovery and timing-offset identification. Suppose we have a received time-tagged photon-count sequence as depicted in Supplementary Fig. 2a, whose duration is over 1.9 s. The thick black arrows represent the signal counts, while the thin red ones represent dark counts. We then choose 10.1 MHz as the candidate clock frequency and divide this sequence into blocks for the corresponding UTI of T = 99 ns. Supplementary Figure 2b depicts the waveform for these blocks. Since the time span of each block is slightly shorter than the clock period (100 ns), the positions of the signal counts, which must appear according to the clock period, deviate in later time, while the positions of the dark counts distribute randomly in the time domain. Finally, we divide the time span of each block into an appropriate bin, which is determined by the time resolution of 1 ns (0.01 UTI), to make a histogram of photon-count events. The histogram should have a sharp peak at around the timing offset if the clock frequency were correctly chosen. We repeated this procedure with various possible UTIs, or equivalently clock frequencies. 2

3 Supplementary Figure 2. Example to illustrate the clock-data recovery and timing-offset identification. a, Received time-tagged photon-count sequence. The thick black arrows represent the signal counts while the thin red ones represent dark counts. b, Waveform blocks for a candidate UTI T. c, Histogram of photon-count events. Supplementary Figure 3 shows an experimental example of the histograms illustrated in Supplementary Fig. 2c taken at 23:59:00 JST (13:59:00 UTC) for a duration of 1 sec on 5 th August 2016, which includes a total of 7119 photon counts. The clock rate and the frequency drift at the OGS which best fitted the received photon-count sequence were identified to be f = 10,000,096.5 Hz and Hz/s, respectively. The timing offset of the click time could also be found to be 0.64 T [sec] in the UTI. As shown in Supplementary Fig. 3, for other choices of clock rates, f-0.3 Hz and f+0.1 Hz, the histograms did not show a sharp peak, meaning that these clock frequencies were wrong. 3

4 Supplementary Figure 3. Experimental example of histograms of received photon-count sequences over unit time interval. Binary sequences related to bit-pattern synchronization Supplementary Figure 4 shows the pattern a as well as the unit sequences which determines this pattern, namely the PN15 sequence, the emission/no-emission (on/off) sequences of Tx2 and Tx3, a 2 and a 3, respectively. Note that a = a 2 + a 3. For the later purpose of cross-correlation calculation, the pattern a is converted into the sequence of -1 and 1, denoted by, by shifting each 0 to a -1. Supplementary Figure 4. Binary sequences related to bit-pattern synchronization. The PN15 PRBS (top), the on/off sequences of a 2 from Tx2 (second top), a 3 from Tx3 (third top), the summed sequence a, and the converted sequence for one period of bits. 4

5 Post-calibration of the quantum receiver. Supplementary Figure 5 shows the configuration of the receiver for the calibration by using the stars. The characteristics of the SPCM channels in the optical link campaign on 5 th August 2016 are summarized in Supplementary Table 1. Supplementary Figure 5. Configuration of the post-calibration of the quantum receiver. Supplementary Table 1. Characteristics of the SPCM channels measured in the optical link campaign on 5th August Detection efficiency Dark count rate Total noise count rate including sky background SPCM1 23% 200 c/s 290 c/s SPCM2 26% 150 c/s 220 c/s SPCM3 46% 150 c/s 160 c/s SPCM4 23% 150 c/s 230 c/s Supplementary Table 2 shows the observed stars at various elevation angles, the input and outputs counts, and the evaluated overall receiver loss in the post-calibration of the quantum receiver. The input counts to the quantum receiver were measured by tapping the star light from the telescope at the entrance of the quantum receiver, and guiding it into an SPCM (not shown in Supplementary Fig. 5). On the other hand, the output counts at each SPCM were measured by directly guiding the star light into the quantum receiver, rotating the linear polarizer over the whole rotation angle of 360. The output counts were then averaged over the whole rotation angle. The overall 5

6 quantum receiver losses could then be evaluated at various elevation angles, and be used for the calibration chart. As a typical value of the quantum receiver loss, we used db for the elevation angles for 53 ~55, for which polarization-reference frame synchronization and QBER estimation were carried out. Supplementary Table 2. Star observation results for post-calibration of the quantum receiver. Date Time Star Input counts to Averaged The overall Telescope the quantum output counts quantum elevation receiver at each SPCM receiver loss [deg] entrance [c/s] [c/s] [db] 2016/12/2 21:30 Capella 59 1,186,253 7, /12/14 19:20 Capella ,514 10, /12/14 19:40 Bellatrix 30 21, /12/14 20:15 Mirfak ,574 4, /12/14 20:40 Deneb 26 3, Supplementary Figure 6 shows an example of the data set acquired from the observed star, Capella, which has almost the same telescope elevation angle as that of the campaign period for 22:59~23:00 on 5 th August 2016, in the post-calibration of the quantum receiver. As seen in Supplementary Fig. 6a, there is the large difference in the SPCM counts of the four polarization channels in the quantum receiver, although the detection efficiencies of SPCM themselves are within 23% ~ 46%. This is due to residual misalignment of optical beam axis in the quantum receiver. Such misalignment should ideally be adjusted by a careful tuning and may be performed with additional optical components. Unfortunately, however, the alignment of the receiver was not optimal because the quantumlimited communication experiment was carried out in parallel with other experiments within the SOTA mission. Moreover, the quantum receiver had been implemented in a compact package, which made it difficult to adjust optical misalignment by using additional optics in the quantum-limited communication experiments using SOTA. This low flexibility in the quantum receiver should be revised in future experiments. Such an imbalance between the detection channels should be compensated in the actual QKD protocol, because it would leave a risk of side-channel attacks. Usually additional attenuators are installed in front of the detectors with higher efficiencies to balance the effective detection efficiencies. This, on the other hand, introduces further losses, reducing the signal count rate. In our experiment, we can effectively emulate this procedure by renormalizing the count rates by that of the channel with the minimum count rate, as shown in Supplementary Fig. 6c. Then the typical value of the quantum receiver loss was reduced from db to db. 6

7 Supplementary Figure 6. Example of the data acquired from the star, Capella, in the post-calibration of the quantum receiver. a, Photon counts of four SPCMs as functions of the polarizer s angle. b, Sinusoidal fitting results of SPCM counts. c, Normalized four SPCM-count values with the highest count value. Calculation of the received polarization angle The predicted linear-polarization angle received at the OGS shown in Fig. 4 in this article was calculated considering the set of information on the SOCRATES orbit, and the reference frames of SOCRATES and SOTA shown in Supplementary Fig. 7: (1) the SOCRATES orbital information during the quantum experiment, which defines the SOCRATES velocity vector; (2) the SOCRATES attitude within the orbit, which defines the SOCRATES reference-frame; the position and the orientation of the SOTA gimbal in SOCRATES, which defines the SOTA reference-frame; and (3) the azimuth and elevation of the SOTA gimbal necessary to track the OGS, which defines the laser-beam vector joining the SOTA reference-frame and the OGS reference-frame. The rotation of these two reference frames along the laser-beam vector defines the rotation of the Tx2/Tx3 received linear-polarization angle. 7

8 Supplementary Figure 7. SOCRATES orbit and the configuration of the reference frames of SOCRATES and SOTA, considered in the calculation of the predicted received polarization angle. Quantum bit error rate Supplementary Table 3 shows the observed transition statistics N(y x). The inputs x=0, 1, are encoded into binary non-orthogonal quantum states, i.e., H- and -45 -polarization states, which are emitted from Tx2 and Tx3, respectively, in SOTA. The outputs from the quantum receiver for the QBER evaluation interval of 12 sec (22:59:21~22:59:33) on 5 th August 2016, denoted as y=0, 1, and F, correspond to the clicks at (i) SPCM3 for y=0, (ii) SPCM2 for y=1, and (iii) SPCM1 or SPCM4 for y=f. Note that some non-integer values appear in Supplementary Table 3. This is because the raw count numbers from each SPCM, which were integer values, were calibrated with the calibration chart to compensate the relative sensitivity of each port for various telescope elevation and azimuth angles. 8

9 Supplementary Table 3. The observed photon-count statistics for each input from Tx2 and Tx3. The transition statistics N(y x) were calculated from the values in this table. Input Tx2 (x=0) Tx3 (x=1) Output (c/s) Output (c/s) JST SPCM1 SPCM2 SPCM3 SPCM4 SPCM1 SPCM2 SPCM3 SPCM4 (y=f) (y=1) (y=0) (y=f) (y=f) (y=1) (y=0) (y=f) 22:59: :59: :59: :59: :59: :59: :59: :59: :59: :59: :59: :59: :59:

Satellite-to-ground quantum communication using a 50-kg-class micro-satellite

Satellite-to-ground quantum communication using a 50-kg-class micro-satellite Satellite-to-ground quantum communication using a 50-kg-class micro-satellite Hideki Takenaka, Alberto Carrasco-Casado, Mikio Fujiwara, Mitsuo Kitamura, Masahide Sasaki*, and Morio Toyoshima National Institute

More information

QKD from a microsatellite: The SOTA experience

QKD from a microsatellite: The SOTA experience The final version of this manuscript is accessible through the SPIE Digital Library website: https://doi.org/10.1117/12.2309624 QKD from a microsatellite: The SOTA experience Alberto Carrasco-Casado* a,

More information

Current Status of the ALOS-2 Operation and PALSAR-2 Calibration Activities

Current Status of the ALOS-2 Operation and PALSAR-2 Calibration Activities Current Status of the ALOS-2 Operation and PALSAR-2 Calibration Activities Takeshi Motohka, Ryo Natsuaki, Yukihiro Kankaku, Shinichi Suzuki, Masanobu Shimada (JAXA) Osamu Isoguchi (RESTEC) CEOS SAR CALVAL

More information

Environmental-data Collection System for Satellite-to-Ground Optical Communications

Environmental-data Collection System for Satellite-to-Ground Optical Communications Environmental-data Collection System for Satellite-to-Ground Optical Communications Kenji Suzuki, Dimitar Kolev, Alberto Carrasco-Casado, and Morio Toyoshima National Institute of Information and Communications

More information

Naoteru Gouda(NAOJ) Taihei Yano (NAOJ) Nano-JASMINE project team

Naoteru Gouda(NAOJ) Taihei Yano (NAOJ) Nano-JASMINE project team A very small satellite for space astrometry: Nano-JASMINE Yoichi Hatsutori(NAOJ) Naoteru Gouda(NAOJ) Yukiyasu Kobayashi(NAOJ) Taihei Yano (NAOJ) Yoshiyuki Yamada (Kyoto Univ.) Nano-JASMINE project team

More information

Environmental-data Collection System for Satellite-to-Ground Optical Communications

Environmental-data Collection System for Satellite-to-Ground Optical Communications Trans. JSASS Aerospace Tech. Japan Vol. 16, No. 1, pp. 35-39, 2018 DOI: 10.2322/tastj.16.35 Environmental-data Collection System for Satellite-to-Ground Optical Communications By Kenji SUZUKI, Dimitar

More information

Abstract HISAKI (SPRINT A) satellite is an earth orbiting EUV spectroscopic mission and launched on 14 Sep Extreme ultraviolet spectroscope (EX

Abstract HISAKI (SPRINT A) satellite is an earth orbiting EUV spectroscopic mission and launched on 14 Sep Extreme ultraviolet spectroscope (EX Pointing control of extreme ultraviolet spectroscope onboard the SPRINT A satellite F. Tsuchiya(1*), A. Yamazaki(2), G. Murakami(2), K. Yoshioka(2), T. Kimura(2), S. Sakai(2), K. Uemizu(3), T. Sakanoi(1),

More information

Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695

Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695 Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695 Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 26 July 2004 Revised

More information

NASA Plan for Development of Optical Communication for Space Applications

NASA Plan for Development of Optical Communication for Space Applications NASA Plan for Development of Optical Communication for Space Applications Titan Saturn Neptune Uranus Pluto Charon Jupiter SCaN Integra ISS ted NISNMC Service C Portal Cx MCC Mars Sun For National Research

More information

New Observation Results from A Rotating-drift-scan CCD System

New Observation Results from A Rotating-drift-scan CCD System New Observation Results from A Rotating-drift-scan CCD System TANG Zheng-Hong, MAO Yin-Dun, LI Yan, YU Yong Shanghai Astronomical Observatory, Chinese Academy of Sciences Abstract: A Rotating-drift-scan

More information

TOYOSHIMA Morio, TAKENAKA Hideki, SHOJI Yozo, TAKAYAMA Yoshihisa, KOYAMA Yoshisada, and KUNIMORI Hiroo

TOYOSHIMA Morio, TAKENAKA Hideki, SHOJI Yozo, TAKAYAMA Yoshihisa, KOYAMA Yoshisada, and KUNIMORI Hiroo 4-6 Experimental Results of Polarization Characteristics Measurements through Satellite-to-Ground Propagation Paths toward Satellite Quantum Key Distribution TOYOSHIMA Morio, TAKENAKA Hideki, SHOJI Yozo,

More information

Characterization of the VIIRS Blackbody Emittance

Characterization of the VIIRS Blackbody Emittance Characterization of the VIIRS Blackbody Emittance Jeremy Kloepfer, Chris Taylor, and Vijay Murgai jeremiah_kloepfer@raytheon.com Conference on Characterization and Radiometric Calibration for Remote Sensing,

More information

Development of Laser Measurement to Space Debris at Shanghai SLR Station

Development of Laser Measurement to Space Debris at Shanghai SLR Station Abstract Development of Laser Measurement to Space Debris at Shanghai SLR Station Zhang Zhongping, Deng Huarong, Tang Kai, Wu Zhibo, Zhang Haifeng (Shanghai Astronomical Observatory of Chinese Academy

More information

Accommodation of a quantum communication transceiver in an optical terminal

Accommodation of a quantum communication transceiver in an optical terminal Accommodation of a quantum communication transceiver in an optical terminal J.M. Perdigues Armengol 1, C.J. de Matos 1 W. R. Leeb 2, M. Pfennigbauer 2 G. Neckamm 3, F. Tiefenbacher 3, M. Aspelmeyer 3,

More information

PoS(ICRC2015)641. Cloud Monitoring using Nitrogen Laser for LHAASO Experiment. Z.D. Sun 1,Y. Zhang 2,F.R. Zhu 1 for the LHAASO Collaboration

PoS(ICRC2015)641. Cloud Monitoring using Nitrogen Laser for LHAASO Experiment. Z.D. Sun 1,Y. Zhang 2,F.R. Zhu 1 for the LHAASO Collaboration Cloud Monitoring using Nitrogen Laser for LHAASO Experiment Z.D. Sun 1,Y. Zhang 2,F.R. Zhu 1 for the LHAASO Collaboration [1]School of Physical Science and Technology, Southwest Jiaotong University, Chengdu

More information

A Stellar Gyroscope for CubeSat Attitude Determination

A Stellar Gyroscope for CubeSat Attitude Determination A Stellar Gyroscope for CubeSat Attitude Determination Samir A. Rawashdeh and James E. Lumpp, Jr. Space Systems Laboratory University of Kentucky James Barrington-Brown and Massimiliano Pastena SSBV Space

More information

PoS(PhotoDet 2012)010

PoS(PhotoDet 2012)010 Study on Large Area Photomultipliers with Super Bialkali Photocathode 1 Sebastiano Aiello Domenico Lo Presti, Dipartimento di Fisica ed Astronomia di Catania Valentina Giordano Fabio Longhitano Cristina

More information

PRECISE DOPPLER MEASUREMENTS FOR NAVIGATION AND PLANETARY GEODESY USING LOW GAIN ANTENNAS: TEST RESULTS FROM CASSINI

PRECISE DOPPLER MEASUREMENTS FOR NAVIGATION AND PLANETARY GEODESY USING LOW GAIN ANTENNAS: TEST RESULTS FROM CASSINI PRECISE DOPPLER MEASUREMENTS FOR NAVIGATION AND PLANETARY GEODESY USING LOW GAIN ANTENNAS: TEST RESULTS FROM CASSINI Francesco Barbaglio 1), J. W. Armstrong 2), Luciano Iess 3) francesco.barbaglio@uniroma1.it

More information

Sub-millimeter size debris monitoring system with IDEA OSG 1

Sub-millimeter size debris monitoring system with IDEA OSG 1 Sub-millimeter size debris monitoring system with IDEA OSG 1 Masahiko Uetsuhara, Mitsunobu Okada, Yasunori Yamazaki, Astroscale Pte. Ltd. Toshiya Hanada Kyushu University ABSTRACT The 20-kg class microsatellite

More information

The preliminary analysis of Tianqin mission and developments of key technologies

The preliminary analysis of Tianqin mission and developments of key technologies The3 rd KAGRA International Workshop The preliminary analysis of Tianqin mission and developments of key technologies Hsien-Chi Yeh Tianqin Research Center for Gravitational Physics Sun Yat-sen University

More information

Parametric down-conversion

Parametric down-conversion Parametric down-conversion 1 Introduction You have seen that laser light, for all its intensity and coherence, gave us the same PP(mm) counts distribution as a thermal light source with a high fluctuation

More information

Ground-Satellite QKD Through Free Space. Steven Taylor

Ground-Satellite QKD Through Free Space. Steven Taylor Ground-Satellite QKD Through Free Space Steven Taylor Quantum Computation and Quantum Information, Spring 2014 Introduction: In this paper I will provide a brief introduction on what Quantum Key Distribution

More information

Francesco Vedovato Admission to III year 22 September 2017

Francesco Vedovato Admission to III year 22 September 2017 QUANTUM OPTICS EXPERIMENTS IN SPACE Francesco Vedovato Admission to III year 22 September 217 Research project goal Study the feasibility, from the theoretical and experimental point of view, of different

More information

Interplanetary CubeSats: Opening the Solar System to a Broad Community at Lower Cost

Interplanetary CubeSats: Opening the Solar System to a Broad Community at Lower Cost CubeSat Workshop 2011 August 6-7 Logan, Utah Valles Marineris Interplanetary CubeSats: Opening the Solar System to a Broad Community at Lower Cost Robert Staehle* Diana Blaney Hamid Hemmati Martin Lo Pantazis

More information

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna Presentation by Indian Delegation to 49 th STSC UNCOPUOS February 2012 Vienna ASTROSAT Astrosat is India s first dedicated multiwavelength astronomy satellite with a capability to observe target sources

More information

Daily Alignment Procedure with 2 AO Wave Front Sensors

Daily Alignment Procedure with 2 AO Wave Front Sensors Daily Alignment Procedure with 2 AO Wave Front Sensors First Version Judit Sturmann Talk Outline AO at CHARA design scheme Before sky alignment Keeping the alignment during the night Lab and Telescope

More information

MERIS US Workshop. Instrument Characterization Overview. Steven Delwart

MERIS US Workshop. Instrument Characterization Overview. Steven Delwart MERIS US Workshop Instrument Characterization Overview Steven Delwart Presentation Overview On-Ground Characterisation 1. Diffuser characterisation 2. Polarization sensitivity 3. Optical Transmission 4.

More information

Laboratory 3&4: Confocal Microscopy Imaging of Single-Emitter Fluorescence and Hanbury Brown and Twiss setup for Photon Antibunching

Laboratory 3&4: Confocal Microscopy Imaging of Single-Emitter Fluorescence and Hanbury Brown and Twiss setup for Photon Antibunching Laboratory 3&4: Confocal Microscopy Imaging of Single-Emitter Fluorescence and Hanbury Brown and Twiss setup for Photon Antibunching Jose Alejandro Graniel Institute of Optics University of Rochester,

More information

Satellite baseline determination with phase cycle slip fixing over long data gaps

Satellite baseline determination with phase cycle slip fixing over long data gaps Satellite baseline determination with phase cycle slip fixing over long data gaps Grzegorz Michalak and Rolf König Overview The cycle slip fixing methode 3 solutions Float ambiguities Ambiguities fixed

More information

T. Matsuo (NAOJ) ISS dimension ~ football stadium ISS mass ~ Jumbo jet ISS space = 1.5 x Jumbo jet. 90 min per orbit

T. Matsuo (NAOJ) ISS dimension ~ football stadium ISS mass ~ Jumbo jet ISS space = 1.5 x Jumbo jet. 90 min per orbit ISS/JEM M. Tamura T. Matsuo (NAOJ) ISS dimension ~ football stadium ISS mass ~ Jumbo jet ISS space = 1.5 x Jumbo jet ISS orbit ~ 400 km above ground 90 min per orbit Japanese Experiment Module (JEM):"KIBO

More information

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING Elias F. Solorzano University of Toronto (Space Flight Laboratory) Toronto, ON (Canada) August 10 th, 2016 30 th AIAA/USU

More information

Burst overlapping of ALOS-2 PALSAR-2 ScanSAR-ScanSAR interferometry

Burst overlapping of ALOS-2 PALSAR-2 ScanSAR-ScanSAR interferometry Burst overlapping of ALOS-2 PALSAR-2 ScanSAR-ScanSAR interferometry Japan Aerospace Exploration Agency Earth Observation Research Center Ryo Natsuaki, Takeshi Motohka, Shinichi Suzuki and Masanobu Shimada

More information

GLAS Atmospheric HDF5 Products User Guide July, 2012

GLAS Atmospheric HDF5 Products User Guide July, 2012 GLAS Atmospheric HDF5 Products User Guide July, 2012 General The final GLAS data products (rel33) exist in two formats; the original binary format and HDF5 (Hierarchical Data Format). The HDF5 products

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NPHOTON.13.355 A quantum memory for orbital angular momentum photonic qubits - Supplementary Information - A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, J. Laurat Laboratoire Kastler

More information

APPLICATIONS. Quantum Communications

APPLICATIONS. Quantum Communications SOFT PROCESSING TECHNIQUES FOR QUANTUM KEY DISTRIBUTION APPLICATIONS Marina Mondin January 27, 2012 Quantum Communications In the past decades, the key to improving computer performance has been the reduction

More information

Copyright 2016 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS)

Copyright 2016 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) Application of satellite laser ranging techniques for space situational awareness efforts M. Shappirio, NASA Goddard Space Flight Center J.F. McGarry, NASA Goddard Space Flight Center J. Bufton, Global

More information

The CTA SST-1M cherenkov telescope. for high-energy gamma-ray astronomy. and its SiPM-based camera. Victor Coco (DPNC, Universite de Geneve)

The CTA SST-1M cherenkov telescope. for high-energy gamma-ray astronomy. and its SiPM-based camera. Victor Coco (DPNC, Universite de Geneve) The SST-1M Cherenkov telescope for high-energy gamma-ray astronomy and its SiPM-based camera (DPNC, Universite de Geneve) on behalf of the SST-1M sub-consortium and the CTA consortium The CTA SST-1M cherenkov

More information

The Silicon-Tungsten Tracker of the DAMPE Mission

The Silicon-Tungsten Tracker of the DAMPE Mission The Silicon-Tungsten Tracker of the DAMPE Mission Philipp Azzarello, DPNC, University of Geneva for the DAMPE-STK collaboration 10th International Hiroshima Symposium on the Development and Application

More information

On the possibility to create a prototype of laser system for space debris movement control on the basis of the 3-meter telescope.

On the possibility to create a prototype of laser system for space debris movement control on the basis of the 3-meter telescope. OJC «RPC «Precision Systems and Instruments», Moscow, Russia A. Alexandrov, V. Shargorodskiy On the possibility to create a prototype of laser system for space debris movement control on the basis of the

More information

Time-domain astronomy with the Fermi Gamma-ray Burst Monitor

Time-domain astronomy with the Fermi Gamma-ray Burst Monitor Time-domain astronomy with the Fermi Gamma-ray Burst Monitor C. Michelle Hui (NASA/MSFC) on behalf of the Fermi GBM team TeVPA, Aug 11 2017 GBM: FOV >8sr Whole sky every ~90min Fermi Gamma-ray Space Telescope

More information

Polar alignment in 5 steps based on the Sánchez Valente method

Polar alignment in 5 steps based on the Sánchez Valente method 1 Polar alignment in 5 steps based on the Sánchez Valente method Compared to the drift alignment method, this one, allows you to easily achieve a perfect polar alignment in just one step. By "perfect polar

More information

Radio occultation at GFZ Potsdam: Current status and future prospects

Radio occultation at GFZ Potsdam: Current status and future prospects Radio occultation at GFZ Potsdam: Current status and future prospects J. Wickert, T. Schmidt, G. Beyerle, S. Heise, R. Stosius GFZ German Research Centre for Geosciences, Potsdam, Germany The CHAMP, GRACE,

More information

GLAS Atmospheric Products User Guide November, 2008

GLAS Atmospheric Products User Guide November, 2008 GLAS Atmospheric Products User Guide November, 2008 Overview The GLAS atmospheric measurements utilize a dual wavelength (532 nm and 1064 nm) transmitting laser to obtain backscattering information on

More information

Reduction of the Response Time of Earth Observation Satellite Constellations using Inter-satellite Links

Reduction of the Response Time of Earth Observation Satellite Constellations using Inter-satellite Links Reduction of the Response Time of Earth Observation Satellite Constellations using Inter-satellite Links S. De Florio Data quality of Earth observation satellites is often evaluated in terms of short system

More information

The Galaxy Viewed at Very Short Time-Scales with the Berkeley Visible Image Tube (BVIT)

The Galaxy Viewed at Very Short Time-Scales with the Berkeley Visible Image Tube (BVIT) The Galaxy Viewed at Very Short Time-Scales with the Berkeley Visible Image Tube (BVIT) Barry Y. Welsh, O.H.W. Siegmund, J. McPhate, D. Rogers & J.V. Vallerga Space Sciences Laboratory University of California,

More information

The Cosmic Ray Air Fluorescence Fresnel lens Telescope (CRAFFT) for the next generation UHECR observatory

The Cosmic Ray Air Fluorescence Fresnel lens Telescope (CRAFFT) for the next generation UHECR observatory The Cosmic Ray Air Fluorescence Fresnel lens Telescope (CRAFFT) for the next generation UHECR observatory Shinshu University, Nagano, JAPAN E-mail: 17w211k@shinshu-u.ac.jp Yuichiro TAMEDA 1, Takayuki TOMIDA

More information

Progress Report on the WLRS: Getting ready for GGOS, LLR and Time Transfer

Progress Report on the WLRS: Getting ready for GGOS, LLR and Time Transfer 13-0219 Progress Report on the WLRS: Getting ready for GGOS, LLR and Time Transfer G. Herold (1), J. Eckl (1), M. Mühlbauer (1), A. Leidig (1), J. Kodet (2), U. Schreiber (2) (1) Geodetic Observatory Wettzell,

More information

Differential Phase Shift Quantum Key Distribution and Beyond

Differential Phase Shift Quantum Key Distribution and Beyond Differential Phase Shift Quantum Key Distribution and Beyond Yoshihisa Yamamoto E. L. Ginzton Laboratory, Stanford University National Institute of Informatics (Tokyo, Japan) DPS-QKD system Protocol System

More information

imin...

imin... Pulsar Timing For a detailed look at pulsar timing and other pulsar observing techniques, see the Handbook of Pulsar Astronomy by Duncan Lorimer and Michael Kramer. Pulsars are intrinsically interesting

More information

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates:

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: a, Photoluminescence (PL) spectrum of localized excitons in a WSe 2 monolayer, exfoliated onto a SiO 2 /Si substrate

More information

Overview of the Current Baseline of the Solar-C Spacecraft System

Overview of the Current Baseline of the Solar-C Spacecraft System Overview of the Current Baseline of the Solar-C Spacecraft System Keisuke YOSHIHARA (JAXA) 11 November, 2013 Solar-C Science Meeting Hida Earth Wisdom Center, Takayama, Japan Solar-C Spacecraft System

More information

1

1 Daniel.Schuetze@aei.mpg.de 1 Satellite gravimetry Mapping the global gravity field Static and dynamic components Many applications in geosciences Techniques Orbit determination and tracking Satellite-to-satellite

More information

Establishment and Observation of Space Debris Laser Ranging

Establishment and Observation of Space Debris Laser Ranging Establishment and Observation of Space Debris Laser Ranging Zhang Zhongping, Zhang Haifeng, Wu Zhibo, Li Pu, Meng Wendong, Chen Juping, Chen WanZhen Shanghai Observatory, Chinese Academy of Sciences Contents:

More information

The Swarm Vector Field Magnetometer (VFM): instrument commissioning & performance assessment José M. G. Merayo

The Swarm Vector Field Magnetometer (VFM): instrument commissioning & performance assessment José M. G. Merayo instrument commissioning & performance assessment José M. G. Merayo DTU Space, Technical University of Denmark Division Measurement & Instrumentation Systems overview Fluxgate principle Amorphous magnetic

More information

Feasibility of Using Commercial Star Trackers for On-Orbit Resident Space Object Detection

Feasibility of Using Commercial Star Trackers for On-Orbit Resident Space Object Detection Feasibility of Using Commercial Star Trackers for On-Orbit Resident Space Object Detection Samuel Clemens York University Regina Lee York University Paul Harrison Magellan Aerospace Warren Soh Magellan

More information

Results and Analyses of Debris Tracking from Mt Stromlo

Results and Analyses of Debris Tracking from Mt Stromlo Results and Analyses of Debris Tracking from Mt Stromlo Jizhang Sang 1, Ian Ritchie, Matt Pearson, and Craig Smith EOS Space Systems Pty Ltd, Australia Abstract In the last 2 years, EOS Space Systems has

More information

Imagent for fnirs and EROS measurements

Imagent for fnirs and EROS measurements TECHNICAL NOTE Imagent for fnirs and EROS measurements 1. Brain imaging using Infrared Photons Brain imaging techniques can be broadly classified in two groups. One group includes the techniques that have

More information

Gravitational-Wave Data Analysis: Lecture 2

Gravitational-Wave Data Analysis: Lecture 2 Gravitational-Wave Data Analysis: Lecture 2 Peter S. Shawhan Gravitational Wave Astronomy Summer School May 29, 2012 Outline for Today Matched filtering in the time domain Matched filtering in the frequency

More information

PROBA 1. F. Teston ESA/ESTEC D/TEC-EL

PROBA 1. F. Teston ESA/ESTEC D/TEC-EL PROBA 1 F. Teston ESA/ESTEC D/TEC-EL Frederic.Teston@esa.int PROBA 1 launch PROBA 1 has been launched on 21 October 2001 Orbital parameters: Altitude: 681-561 km Near polar (inclination of 97.9 ) Sun-synchronous

More information

ACS after SM4: RELATIVE GAIN VALUES AMONG THE FOUR WFC AMPLIFIERS

ACS after SM4: RELATIVE GAIN VALUES AMONG THE FOUR WFC AMPLIFIERS Instrument Science Report ACS 2009-03 ACS after SM4: RELATIVE GAIN VALUES AMONG THE FOUR WFC AMPLIFIERS R. C. Bohlin, A. Maybhate, & J. Mack 2009 October 8 ABSTRACT For the default setting of gain=2, the

More information

Detecting Earth-Sized Planets with Laser Frequency Combs

Detecting Earth-Sized Planets with Laser Frequency Combs Detecting Earth-Sized Planets with Laser Frequency Combs Hayley Finley Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104 Abstract Detection of Earth-mass

More information

First results from the NEMO Phase 1 experiment

First results from the NEMO Phase 1 experiment First results from the NEMO Phase 1 experiment Isabella Amore a,b for the NEMO Collaboration a Dipartimento di Fisica e Astronomia, Università di Catania, Italy b INFN Laboratori Nazionali del Sud, Catania,

More information

Labs 3-4: Single-photon Source

Labs 3-4: Single-photon Source Labs 3-4: Single-photon Source Lab. 3. Confocal fluorescence microscopy of single-emitter Lab. 4. Hanbury Brown and Twiss setup. Fluorescence antibunching 1 Labs 3-4: Single-photon Source Efficiently produces

More information

arxiv:quant-ph/ v1 4 Apr 2003

arxiv:quant-ph/ v1 4 Apr 2003 Experimental demonstration of quantum source coding arxiv:quant-ph/3436 v 4 pr 23 Yasuyoshi Mitsumori,2, John. Vaccaro 3, Stephen M. arnett 4, Erika ndersson 4, tsushi Hasegawa,2, Masahiro Takeoka,2, and

More information

Requirements for the Star Tracker Parallel Science Programme

Requirements for the Star Tracker Parallel Science Programme Requirements for the Star Tracker Parallel Science Programme Rømer System Definition Phase 2000/2001 Document no.: MONS/IFA/PL/RS/0003(1) Date: 22.04.2001 Prepared by: Hans Kjeldsen and Tim Bedding Checked

More information

Experimental realization of quantum cryptography communication in free space

Experimental realization of quantum cryptography communication in free space Science in China Ser. G Physics, Mechanics & Astronomy 2005 Vol.48 No.2 237 246 237 Experimental realization of quantum cryptography communication in free space WANG Chuan 1, ZHANG Jingfu 1, WANG Pingxiao

More information

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space.

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space. www.esa.int EarthCARE mission instruments ESA s EarthCARE satellite payload comprises four instruments: the Atmospheric Lidar, the Cloud Profiling Radar, the Multi-Spectral Imager and the Broad-Band Radiometer.

More information

Summary. The prospect of a factoring. Consumer key generation. Future long range key. Commercial systems. Metro Networks. exchange. machine. Spin-off.

Summary. The prospect of a factoring. Consumer key generation. Future long range key. Commercial systems. Metro Networks. exchange. machine. Spin-off. The future of quantum cryptography BCS Meeting 17th Sept 2009 J. G. Rarity University of Bristol john.rarity@bristol.ac.uk Summary Commercial systems. Metro Networks. Future long range key exchange. Consumer

More information

STE-QUEST (Space-Time Explorer and Quantum Test of the Equivalence Principle): the mission concept test of gravitational time dilation

STE-QUEST (Space-Time Explorer and Quantum Test of the Equivalence Principle): the mission concept test of gravitational time dilation 13th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications Como, 3. -7. 10. 2011 STE-QUEST (Space-Time Explorer and Quantum Test of the Equivalence Principle):

More information

Space Surveillance with Star Trackers. Part II: Orbit Estimation

Space Surveillance with Star Trackers. Part II: Orbit Estimation AAS -3 Space Surveillance with Star Trackers. Part II: Orbit Estimation Ossama Abdelkhalik, Daniele Mortari, and John L. Junkins Texas A&M University, College Station, Texas 7783-3 Abstract The problem

More information

HYPER Industrial Feasibility Study Final Presentation Precision Star Tracker Activity 3, WP 3100

HYPER Industrial Feasibility Study Final Presentation Precision Star Tracker Activity 3, WP 3100 HYPER Industrial Feasibility Study Final Presentation Precision Star Tracker Activity 3, WP 3100 ESTEC, Noordwijk The Netherlands 6 -th March 2003 Agenda Introduction 1 PST Requirements 2 PST CCD Characteristics

More information

Keck Adaptive Optics Note #385. Feasibility of LGS AO observations in the vicinity of Jupiter. Stephan Kellner and Marcos van Dam

Keck Adaptive Optics Note #385. Feasibility of LGS AO observations in the vicinity of Jupiter. Stephan Kellner and Marcos van Dam Keck Adaptive Optics Note #385 Feasibility of LGS AO observations in the vicinity of Jupiter Stephan Kellner and Marcos van Dam Version 2: 25 July 2006 1 Introduction It has been proposed by Imke De Pater

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information I. Schematic representation of the zero- n superlattices Schematic representation of a superlattice with 3 superperiods is shown in Fig. S1. The superlattice

More information

Mandatory Assignment 2013 INF-GEO4310

Mandatory Assignment 2013 INF-GEO4310 Mandatory Assignment 2013 INF-GEO4310 Deadline for submission: 12-Nov-2013 e-mail the answers in one pdf file to vikashp@ifi.uio.no Part I: Multiple choice questions Multiple choice geometrical optics

More information

Commissioning of the Hanle Autoguider

Commissioning of the Hanle Autoguider Commissioning of the Hanle Autoguider Copenhagen University Observatory Edited November 10, 2005 Figure 1: First light image for the Hanle autoguider, obtained on September 17, 2005. A 5 second exposure

More information

arxiv:quant-ph/ v1 21 Apr 2004

arxiv:quant-ph/ v1 21 Apr 2004 Distribution of time-bin entangled qubits over 5 km of optical fiber I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré and N. Gisin Group of Applied Physics-Optique, University of Geneva,

More information

Calibration of the IXPE Instrument

Calibration of the IXPE Instrument Calibration of the IXPE Instrument Fabio Muleri (INAF-IAPS) On behalf of the IXPE Italian Team 13th IACHEC Meeting 2018 Avigliano Umbro (Italy), 9-12 April 2018 IXPE MISSION IXPE will (re-)open the polarimetric

More information

Issues with sampling time and jitter in Annex 93A. Adam Healey IEEE P802.3bj Task Force May 2013

Issues with sampling time and jitter in Annex 93A. Adam Healey IEEE P802.3bj Task Force May 2013 Issues with sampling time and jitter in Annex 93A Adam Healey IEEE P802.3bj Task Force May 2013 Part 1: Jitter (comment #157) 2 Treatment of jitter in COM Draft 2.0 h (0) (t s ) slope h(0) (t s ) 1 UI

More information

The ACES Mission. Fundamental Physics Tests with Cold Atom Clocks in Space. L. Cacciapuoti European Space Agency

The ACES Mission. Fundamental Physics Tests with Cold Atom Clocks in Space. L. Cacciapuoti European Space Agency The ACES Mission Fundamental Physics Tests with Cold Atom Clocks in Space L. Cacciapuoti European Space Agency La Thuile, 20-27 March 2011 Gravitational Waves and Experimental Gravity 1 ACES Mission Concept

More information

A CubeSat Mission for Exoplanet Transit Detection and Astroseismology

A CubeSat Mission for Exoplanet Transit Detection and Astroseismology A CubeSat Mission for Exoplanet Transit Detection and Astroseismology Jeremy Bailey (UNSW, Physics) Steve Tsitas (UNSW, ACSER) Daniel Bayliss (RSAA, ANU) Tim Bedding (Univ. Sydney) ESO Very Large Telescope

More information

arxiv:gr-qc/ v1 4 Dec 2003

arxiv:gr-qc/ v1 4 Dec 2003 Testing the LIGO Inspiral Analysis with Hardware Injections arxiv:gr-qc/0312031 v1 4 Dec 2003 Duncan A. Brown 1 for the LIGO Scientific Collaboration 1 Department of Physics, University of Wisconsin Milwaukee,

More information

Large FOV Mobile E-O Telescope for Searching and Tracking Low-earth Orbit Micro-satellites and Space Debris

Large FOV Mobile E-O Telescope for Searching and Tracking Low-earth Orbit Micro-satellites and Space Debris Large FOV Mobile E-O Telescope for Searching and Tracking Low-earth Orbit Micro-satellites and Space Debris WANG Jian-li, ZHAO Jin-yu, ZHANG Shi-xue Changchun Institute of Optics, Fine Mechanics and Physics,

More information

Emission Limb sounders (MIPAS)

Emission Limb sounders (MIPAS) Emission Limb sounders (MIPAS) Bruno Carli ENVISAT ATMOSPHERIC PACKAGE MIPAS Michelson Interferometric Passive Atmospheric Sounder GOMOS Global Ozone Monitoring by Occultation of Stars SCIAMACHY Scanning

More information

Nano-JASMINE project

Nano-JASMINE project Nano-JASMINE project NAOJ Y. Kobayashi Overview nj project Plan of talk Aim of nj project Historic facts Collaboration with University of Tokyo Telescope and CCD Observation along great circle Cosmic radiation

More information

ACHIEVING THE ERS-2 ENVISAT INTER-SATELLITE INTERFEROMETRY TANDEM CONSTELLATION.

ACHIEVING THE ERS-2 ENVISAT INTER-SATELLITE INTERFEROMETRY TANDEM CONSTELLATION. ACHIEVING THE ERS-2 ENVISAT INTER-SATELLITE INTERFEROMETRY TANDEM CONSTELLATION M. A. Martín Serrano (1), M. A. García Matatoros (2), M. E. Engdahl (3) (1) VCS-SciSys at ESA/ESOC, Robert-Bosch-Strasse

More information

Quantum Cryptography in Full Daylight Ilja Gerhardt, Matthew P. Peloso, Caleb Ho, Antía Ilja Gerhardt Lamas-Linares and Christian Kurtsiefer

Quantum Cryptography in Full Daylight Ilja Gerhardt, Matthew P. Peloso, Caleb Ho, Antía Ilja Gerhardt Lamas-Linares and Christian Kurtsiefer Centre for Quantum Technologies, Singapore QUANTUM OPTICS Entanglement-based Free Space Quantum Cryptography in Full Daylight, Matthew P. Peloso, Caleb Ho, Antía Lamas-Linares and Christian Kurtsiefer

More information

Calibration of the AGILE Gamma Ray Imaging Detector

Calibration of the AGILE Gamma Ray Imaging Detector Calibration of the AGILE Gamma Ray Imaging Detector Andrew Chen on behalf of the AGILE Team April 11, 2011 AGILE Astrorivelatore Gamma ad Immagini LEggero Italian Space Agency (ASI) small mission Participation

More information

Reduction procedure of long-slit optical spectra. Astrophysical observatory of Asiago

Reduction procedure of long-slit optical spectra. Astrophysical observatory of Asiago Reduction procedure of long-slit optical spectra Astrophysical observatory of Asiago Spectrograph: slit + dispersion grating + detector (CCD) It produces two-dimension data: Spatial direction (x) along

More information

ESA ITT AO/1-5209/07/NL/HE Contract No /07/NL/HE. NOVEL TIME SYNCHRONISATION TECHNIQUES FOR DEEP SPACE PROBES Executive Summary

ESA ITT AO/1-5209/07/NL/HE Contract No /07/NL/HE. NOVEL TIME SYNCHRONISATION TECHNIQUES FOR DEEP SPACE PROBES Executive Summary Page: 1 ESA ITT AO/1-5209/07/NL/HE Contract No. 21063/07/NL/HE NOVEL TIME SYNCHRONISATION TECHNIQUES FOR DEEP SPACE PROBES Executive Summary Responsibility: Name: Date: Approval: Prepared by: E. Rossini

More information

NEWFIRM Quick Guide for Proposal Preparation

NEWFIRM Quick Guide for Proposal Preparation NEWFIRM Quick Guide for Proposal Preparation Ron Probst NEWFIRM Instrument Scientist September 2008 NEWFIRM is a 1-2.4 micron IR camera for the NOAO 4-m telescopes. It has a flexible complement of broad

More information

Applications of Quantum Key Distribution (QKD)

Applications of Quantum Key Distribution (QKD) Applications of Quantum Key Distribution (QKD) Olav Tirkkonen, Iikka Elonsalo, Jari Lietzen, Teemu Manninen, Ilkka Tittonen, Roope Vehkalahti Departments of Communications and Networking & Micro and Nano,

More information

BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings

BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings COSGC Space Research Symposium 2009 BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings BOWSER 1 Mission Premise 4.3 km above sea level 402.3km above sea level BOWSER 2 Information

More information

Fundamentals of Exoplanet Observing

Fundamentals of Exoplanet Observing Fundamentals of Exoplanet Observing Dennis M. Conti Chair, AAVSO Exoplanet Section Copyright Dennis M. Conti 2017 1 The Strange World of Exoplanets Most exoplanets we have discovered are close-in, large

More information

Fundamentals of Exoplanet Observing

Fundamentals of Exoplanet Observing Fundamentals of Exoplanet Observing Dennis M. Conti Chair, AAVSO Exoplanet Section Copyright Dennis M. Conti 2017 1 The Strange World of Exoplanets Most exoplanets we have discovered are close-in, large

More information

Design of a Radar Based Space Situational Awareness System

Design of a Radar Based Space Situational Awareness System Design of a Radar Based Space Situational Awareness System Toni Liebschwager University of Federal Armed Forces, Munich, Germany toniliebschwager@web.de Dr.-Ing. Thomas Neff German Aerospace Center, Oberpfaffenhofen,

More information

Improvement of Himawari-8 observation data quality

Improvement of Himawari-8 observation data quality Improvement of Himawari-8 observation data quality 3 July 2017 Meteorological Satellite Center Japan Meteorological Agency The Japan Meteorological Agency (JMA) plans to modify its Himawari-8 ground processing

More information

Accelerometers for GNSS Orbit Determination

Accelerometers for GNSS Orbit Determination Accelerometers for GNSS Orbit Determination Urs Hugentobler, Anja Schlicht Technische Universität München 5th International Colloquium on Scientific and Fundamental Aspects of the Galileo Programme October

More information

Simulation of UV-VIS observations

Simulation of UV-VIS observations Simulation of UV-VIS observations Hitoshi Irie (JAMSTEC) Here we perform radiative transfer calculations for the UV-VIS region. In addition to radiance spectra at a geostationary (GEO) orbit, air mass

More information

Istituto di Radioastronomia INAF -Italy-

Istituto di Radioastronomia INAF -Italy- S. Montebugnoli, G. Bianchi, C. Bortolotti, A. Cattani, A. Cremonini, A. Maccaferri, F. Perini, M. Roma, J. Roda, P. Zacchiroli. Istituto di Radioastronomia INAF -Italy- The planned re-instrumentation

More information

Spectroscopy for planetary upper atmospheres きょくたん

Spectroscopy for planetary upper atmospheres きょくたん Spectroscopy for planetary upper atmospheres きょくたん Spectrum of Venus atmosphere Spectrum of Jupiter and Io Figure 1. An EUV spectrum measured by Hisaki spacecraft. The spectrograph mixes spatial and spectral

More information