Requirements for the Star Tracker Parallel Science Programme

Size: px
Start display at page:

Download "Requirements for the Star Tracker Parallel Science Programme"

Transcription

1 Requirements for the Star Tracker Parallel Science Programme Rømer System Definition Phase 2000/2001 Document no.: MONS/IFA/PL/RS/0003(1) Date: Prepared by: Hans Kjeldsen and Tim Bedding Checked by: Jørgen Christensen-Dalsgaard Authorized by: Jørgen Christensen-Dalsgaard Classification: Open: The document is unclassified and there are no restrictions in circulation.

2 Requirements for the Star Tracker Parallel Science Programme Teoretisk Astrofysik Center, Institut for Fysik og Astronomi, Aarhus Universitet This document may only be reproduced with permission of TAC/IFA, except within the Rømer project where any type of reproduction is allowed. MONS/IFA/PL/RS/0003(1) 2

3 DISTRIBUTION This document is for internal use by the Rømer project. All Rømer key persons will be able to access the document via the DSRI webpage: MONS/IFA/PL/RS/0003(1) 3

4 Contents 1. SCOPE 5 2. APPLICABLE DOCUMENTS 6 3. STAR TRACKER PARALLEL SCIENCE REQUIREMENTS Assumed detector properties Assumed read-out electronics Assumed optical system Required readout procedure for parallel science Output data produced Data volume and rate 12 MONS/IFA/PL/RS/0003(1) 4

5 1. SCOPE This document specifies the requirements for the Parallel Science Programme on the Rømer Star Trackers. The document has been prepared by the Theoretical Astrophysics Center and the Institute of Physics and Astronomy at Aarhus University as a contribution to the Rømer System Definition Phase (The Danish Small Satellite Programme). MONS/IFA/PL/RS/0003(1) 5

6 2. APPLICABLE DOCUMENTS AD1: Rømer Science Mission Specification MONS/IFA/MIS/RS/0001(1) AD2: MONS Payload Requirements Specification MONS/IFA/PL/RS/0001(2) AD3: MONS Field Monitor Requirements Specification and Parallel Science MONS/IFA/PL/RS/0002(1) AD4: MONS Payload Electronics Requirement Specification TERMA # DT AD5: MONS Field Monitor System Definition Phase Design Report MONS/AUS/PL/RP/0002(1) MONS/IFA/PL/RS/0003(1) 6

7 3. STAR TRACKER PARALLEL SCIENCE REQUIREMENTS The Attitude Control Subsystem on the Rømer platform will include two Star Trackers in order to provide the needed attitude information for calibrating the ACS. The ACS update frequency will be 1 mhz. In order to increase the science output of the Rømer mission, we are planning a parallel science programme aiming at surveying the field of view for variable stars. We also plan to collect integrated images of the whole field of view in order to allow more general programmes in cosmology, solar system work and stellar physics. The baseline for the Star Tracker parallel science programme is a standard TERMA Star Tracker, which consists of the following major parts: Optics Mounting interface to the spacecraft Baffle Radiator for cooling the detector CCD Detector Unit Read-out Electronics Unit Data Processing Unit (Rømer main computer - CDH) 3.1 Assumed detector properties CCD chip: Image: Image Area Size: Frame transfer Operation: Pixel Size: CCD Operating Temperature: CCD Temperature Stability: CCD Temperature Measurement Accuracy (Telemetry): Marconi Applied Technologies CCD Front Illuminated (AIMO CCD Sensor) 1024 x 1024 pixels 13.3 x 13.3 mm x 1024 pixels Storage area 13 um square -10 degc 5 degc (RMS) 1 degc (RMS) MONS/IFA/PL/RS/0003(1) 7

8 3.2 Assumed read-out electronics Saturation Level: e/pix A/D-Conversion: 8 bits or better Conversion factor: 35 e/adu (soft saturation: 8960 e) Readout noise: 20 e/pix Readout Frequency 1 MHz Integration Time: 25 msec - 2 sec programmable Accuracy of Integration time: 1 usec (RMS) Read-out Modes: Full frame and window read-out Read-out time: 1 usec/pix (1 MHz) Full frame: 1049 msec Vertical shift time: 6.0 usec (0.166 MHz) Horizontal shift time: 380 nsec/pix (2.6 MHz) Full frame: 398 msec Read-out per field: 7 x 13 x 13 pixels: 42 msec 28 x 13 x 13 pixels: 149 msec 64 x 13 x 13 pixels: 332 msec 630 x 630 pixels: 494 msec 1024 x 1024 pixels: 1049 msec 3.3 Assumed optical system Lens Aperture, D 24 mm Focal Length, f 35 mm f-ratio f/1.46 Image scale at detector: 0.61 mm/deg Field of view: 22 deg x 22 deg Pixel-Size: 77 arcsec/pix FWHM (star) 2.5 arcmin (2 pix) Transmission Efficiency: 50 % (no filter) incl. CCD: 20 % Optical Bandpass: 400 nm nm (no filter) No. of photons V=5 36,000 e/sec Saturation V=5: exp=1 sec Saturation 43 msec: V = msec: V = msec: V = msec: V = msec: V = 4.2 MONS/IFA/PL/RS/0003(1) 8

9 3.4 Required readout procedure for parallel science 5 sec procedure: Time: (msec) EXPOSURE: READ OUT: msec (STR1) 42 msec - 7 stars (43 msec exp) msec transfer msec (1) 332 msec - 64 stars (150 msec exp) msec transfer msec (2) 494 msec x 630 pix (332 msec exp) msec transfer msec (STR2) 149 msec - 28 stars (497 msec exp) msec transfer msec (3) 332 msec - 64 stars (150 msec exp) msec transfer msec (4) 494 msec x 630 pix (332 msec exp) msec transfer msec (STR3) 149 msec - 28 stars (497 msec exp) msec transfer msec (5) 332 msec - 64 stars (150 msec exp) msec transfer msec (6) 494 msec x 630 pix (332 msec exp) msec transfer msec (STR4) 149 msec - 28 stars (497 msec exp) msec transfer msec (7) 332 msec - 64 stars (150 msec exp) msec transfer msec (8) 42 msec 7 stars (336 msec exp) msec transfer x 43 msec (9-17) + 9 x 7 msec transfer 9 x 42 msec 9 x 7 stars (9 x 43 msec exp) msec (STR5) 42 msec - 7 stars (43 msec exp) msec transfer msec (18) 332 msec - 64 stars (150 msec exp) msec transfer msec (19) 42 msec 7 stars (336 msec exp) msec transfer x 43 msec (20-28) + 9 x 7 msec transfer 9 x 42 msec 9 x 7 stars (9 x 43 msec exp) MONS/IFA/PL/RS/0003(1) 9

10 3.5 Output data produced 5 sec. procedure: 5 x 150 msec: STR-frames: 64 stars (NO SCIENCE) 3 x 332 msec: 630 x 630 pix IMAGE: 235 stars (V > 3.8) 3 x 497 msec: 28 stars: (V > 4.3) 2 x 336 msec: 7 stars: (V > 3.8) 20 x 43 msec: 7 stars: (V > 1.6) 33 exposures Stellar classes: Magnitude limit Exposures: Number of stars: Class-I: V > x 43 msec 7 Class-II V > x x 332 msec 7 Class-III V > x x 332 msec 28 Class-IV V > x 332 msec 200 Photometric precision per minute for the star trackers used for parallel science. Curves for the four different stellar classes are show. Saturation for class I is at V=1.6, for class II and IV at V=3.8 and for class III at V=4.3. In order to estimate amplitudes for coherent oscillations that can be detected at S/N=4 using the Star Tracker, one should multiply the scatter by We will therefore be able to detect oscillations with amplitudes below 30 ppm for the brightest candidate stars. MONS/IFA/PL/RS/0003(1) 10

11 The following table shows the noise for stars of different magnitude observed using the four different exposure times. Stellar magnitude 20 x 43 msec 3 x 332 msec 2 x 336 msec 3 x 497 msec V = V = V = V = V = V = V = V = V = V = V = V = Based on this table we can estimate the noise per min for the four different types of exposure sequences (stellar classes). Stellar magnitude Class I (7 stars) Class II (7 stars) Class III (28 stars) Class IV (200 stars) V = V = V = V = V = V = V = V = V = V = V = V = Finally we may estimate the amplitude of modes that can be detected by the Star Tracker after 30 days of observing (duty cycle = 85 %). The table below indicate amplitudes that can be detected at S/N=4. Stellar magnitude Class I (7 stars) Class II (7 stars) Class III (28 stars) Class IV (200 stars) V = ppm V = ppm V = ppm V = ppm 33 ppm 43 ppm V = ppm 50 ppm V = ppm 36 ppm 61 ppm V = ppm 60 ppm 100 ppm V = ppm 130 ppm 240 ppm V = ppm 320 ppm 570 ppm V = % 780 ppm 0.14 % V = % 0.19 % 0.35 % V = % 0.48 % 0.85 % Milli-magnitude oscillations can be detected in stars down to magnitude V=8. MONS/IFA/PL/RS/0003(1) 11

12 3.5.1 Data volume and rate We will produce data for 242 stars per minute (each in 2 apertures), plus housekeeping (e.g., pitch, yaw, roll and background estimates). The total data rate will be 1050 bytes per minute. This means 636 kbytes per orbit and 1.27 Mbytes per 24 hr. + 25% margin: 1.6 Mbytes/24 hr. MONS/IFA/PL/RS/0003(1) 12

Kepler photometric accuracy with degraded attitude control

Kepler photometric accuracy with degraded attitude control Kepler photometric accuracy with degraded attitude control Hans Kjeldsen, Torben Arentoft and Jørgen Christensen-Dalsgaard KASOC, Stellar Astrophysics Centre, Aarhus University, Denmark - 25 July 2013

More information

arxiv:astro-ph/ v1 17 Mar 2000

arxiv:astro-ph/ v1 17 Mar 2000 The MONS Star Trackers 1 Timothy R. Bedding School of Physics, University of Sydney 2006, Australia arxiv:astro-ph/0003249v1 17 Mar 2000 Hans Kjeldsen Teoretisk Astrofysik Center, Danmarks Grundforskningsfond,

More information

A CubeSat Mission for Exoplanet Transit Detection and Astroseismology

A CubeSat Mission for Exoplanet Transit Detection and Astroseismology A CubeSat Mission for Exoplanet Transit Detection and Astroseismology Jeremy Bailey (UNSW, Physics) Steve Tsitas (UNSW, ACSER) Daniel Bayliss (RSAA, ANU) Tim Bedding (Univ. Sydney) ESO Very Large Telescope

More information

Rømer Science Mission Plan

Rømer Science Mission Plan Institute of Physics and Astronomy, University of Aarhus Rømer Science Mission Plan Danish Small Satellite Programme Document No.(issue): MONS/IFA/MAN/PLN/0001(1) Date: 2001-05-29 Prepared by: Jørgen Christensen-Dalsgaard,

More information

Spacecraft Bus / Platform

Spacecraft Bus / Platform Spacecraft Bus / Platform Propulsion Thrusters ADCS: Attitude Determination and Control Subsystem Shield CDH: Command and Data Handling Subsystem Payload Communication Thermal Power Structure and Mechanisms

More information

arxiv:astro-ph/ v1 19 Oct 2001

arxiv:astro-ph/ v1 19 Oct 2001 1 MONS ON THE DANISH RØMER SATELLITE: MEASURING OSCILLATIONS IN NEARBY STARS Jørgen Christensen-Dalsgaard arxiv:astro-ph/0110444 v1 19 Oct 2001 Teoretisk Astrofysik Center, Danmarks Grundforskningsfond,

More information

Asteroseismology with the Kepler mission

Asteroseismology with the Kepler mission Comm. in Asteroseismology Vol. 150, 2007 Asteroseismology with the Kepler mission J. Christensen-Dalsgaard, 1,2 T. Arentoft, 1,2 T. M. Brown, 3 R. L. Gilliland, 4 H. Kjeldsen, 1,2 W. J. Borucki, 5 D. Koch

More information

Diffusion and helioseismology

Diffusion and helioseismology Diffusion and helioseismology Jørgen Christensen-Dalsgaard Institut for Fysik og Astronomi, Aarhus Universitet & Danish AsteroSeismology Centre (DASC) Eddington (1926): The internal constitution of the

More information

Spacecraft Bus / Platform

Spacecraft Bus / Platform Spacecraft Bus / Platform Propulsion Thrusters ADCS: Attitude Determination and Control Subsystem Shield CDH: Command and Data Handling Subsystem Thermal Payload Power Communication Structure and Mechanisms

More information

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna Presentation by Indian Delegation to 49 th STSC UNCOPUOS February 2012 Vienna ASTROSAT Astrosat is India s first dedicated multiwavelength astronomy satellite with a capability to observe target sources

More information

1 A photometric probe for Pan-STARRS

1 A photometric probe for Pan-STARRS The Pan-STARRS Imaging Sky Probe B.R. Granett, K.C. Chambers, E.A. Magnier, K. Fletcher and the Pan-STARRS Project Team University of Hawai i Institute for Astronomy Abstract Photometric performance is

More information

Plato, Euclid and the New Hard X-Ray mission

Plato, Euclid and the New Hard X-Ray mission Schiaparelli and his Legacy Meeting on Future planetary, scientific and robotic space missions Biblioteca Nazionale Universitaria, Torino, 21/10/2010 Template reference : 100181670S-EN Plato, Euclid and

More information

Lightweight, Low-Power Coarse Star Tracker

Lightweight, Low-Power Coarse Star Tracker Lightweight, Low-Power Coarse Star Tracker Ray Zenick AeroAstro Inc. 17th Annual AIAA/USU Conference on Small Satellites Paper Number SSC03-X-7 August 14, 2003 The LIST Concept Medium accuracy star tracker

More information

Auto-guiding System for CQUEAN

Auto-guiding System for CQUEAN Auto-guiding System for CQUEAN ( CQUEAN 을위한 2.1m Otto Struve 망원경의자동추적장치개발 ) 2010-10-08 Eunbin Kim 한국천문학회가을학술대회 Contents 1. About CQUEAN 2. Otto Struve Telescope dynamics 3. Expected number of stars - expected

More information

A Stellar Gyroscope for CubeSat Attitude Determination

A Stellar Gyroscope for CubeSat Attitude Determination A Stellar Gyroscope for CubeSat Attitude Determination Samir A. Rawashdeh and James E. Lumpp, Jr. Space Systems Laboratory University of Kentucky James Barrington-Brown and Massimiliano Pastena SSBV Space

More information

The MOST data pipeline: Lessons for Kepler? Jaymie M. Matthews University of British Columbia Vancouver, Canada

The MOST data pipeline: Lessons for Kepler? Jaymie M. Matthews University of British Columbia Vancouver, Canada The MOST data pipeline: Lessons for Kepler? Jaymie M. Matthews University of British Columbia Vancouver, Canada Observing modes Fabry Imaging Targets: 0 < V < 6 Pupil image: ~1500 pixels fixed to < 0.01

More information

Astronomical Experiments for the Chang E-2 Project

Astronomical Experiments for the Chang E-2 Project Astronomical Experiments for the Chang E-2 Project Maohai Huang 1, Xiaojun Jiang 1, and Yihua Yan 1 1 National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road,Chaoyang District,

More information

Space astrometry with the Joint Milliarcsecond Astrometry Pathfinder

Space astrometry with the Joint Milliarcsecond Astrometry Pathfinder Relativity in Fundamental Astronomy Proceedings IAU Symposium No. 261, 2009 S. A. Klioner, P. K. Seidelman & M. H. Soffel, eds. c International Astronomical Union 2010 doi:10.1017/s1743921309990640 Space

More information

ADCSS 2017: Sodern presentation

ADCSS 2017: Sodern presentation ADCSS 2017: Sodern presentation 1 Agenda Star trackers road map: a wide range of products End of CCD star trackers: SED26 replaced by Horus as standalone multi mission star tracker Hydra maintained beyond

More information

Small Satellite Laser Comm Pointing

Small Satellite Laser Comm Pointing Small Satellite Laser Comm Pointing Darren Rowen July 11, 2016 2016 The Aerospace Corporation Agenda Optical Ground Station Tracking Demo of Cubesat Laser OCSD-B/C Design & Configuration OCSD-A Star Tracker

More information

Stellar Observations Network Group

Stellar Observations Network Group Stellar Observations Network Group Frank Grundahl, Jørgen Christensen Dalsgaard, Uffe Gråe Jørgensen, Hans Kjeldsen, Søren Frandsen, Per Kjærgaard Rasmussen + participation from IAC (Pere Pallé, Orlagh

More information

Final Presentation of Assessment Star Tracker for Asteroid Search. By Peter Davidsen

Final Presentation of Assessment Star Tracker for Asteroid Search. By Peter Davidsen Final Presentation of Assessment Star Tracker for Asteroid Search By Peter Davidsen Study Overview Study name: Assessment of Star Tracker use for Asteroid Search ESA contract: ESA contract 4000105591/12/NL/AF

More information

Southern African Large Telescope. Prime Focus Imaging Spectrograph. Instrument Acceptance Testing Plan

Southern African Large Telescope. Prime Focus Imaging Spectrograph. Instrument Acceptance Testing Plan Southern African Large Telescope Prime Focus Imaging Spectrograph Instrument Acceptance Testing Plan Eric B. Burgh University of Wisconsin Document Number: SALT-3160AP0003 Revision 1.0 18 February 2003

More information

Do red giants have short mode lifetimes?

Do red giants have short mode lifetimes? Mem. S.A.It. Vol. 77, 406 c SAIt 2006 Memorie della Do red giants have short mode lifetimes? D. Stello 1,2,3, H. Kjeldsen 1, T. R. Bedding 2, and D. Buzasi 3 1 Institute for Fysik og Astronomi (IFA), Aarhus

More information

Jim Hagerman 4/12/99

Jim Hagerman 4/12/99 This is an electro-optical analysis of the UCMS (underwater camera mapping system) designed for TerraSystems. Jim Hagerman 4/1/99 For simplicity the SNR of only one 5nm wide channel near 5nm is determined.

More information

The Kepler Exoplanet Survey: Instrumentation, Performance and Results

The Kepler Exoplanet Survey: Instrumentation, Performance and Results The Kepler Exoplanet Survey: Instrumentation, Performance and Results Thomas N. Gautier, Kepler Project Scientist Jet Propulsion Laboratory California Institute of Technology 3 July 2012 SAO STScI 2012

More information

ExoplanetSat: A Nanosatellite Space Telescope for Detecting Transiting Exoplanets

ExoplanetSat: A Nanosatellite Space Telescope for Detecting Transiting Exoplanets 1 2 ExoplanetSat: A Nanosatellite Space Telescope for Detecting Transiting Exoplanets Matthew W. Smith 1 (m_smith@mit.edu), Sara Seager 1, Christopher M. Pong 1, Sungyung Lim 2, Matthew W. Knutson 1, Timothy

More information

The Joint Milli-Arcsecond Pathfinder Survey: Introduction and Applications

The Joint Milli-Arcsecond Pathfinder Survey: Introduction and Applications AIAA SPACE 2009 Conference & Exposition 14-17 September 2009, Pasadena, California AIAA 2009-6458 The Joint Milli-Arcsecond Pathfinder Survey: Introduction and Applications Ralph A. Gaume * and Bryan N.

More information

Focal plane instrumentation for the Wide-Field X-ray Telescope

Focal plane instrumentation for the Wide-Field X-ray Telescope Focal plane instrumentation for the Wide-Field X-ray Telescope The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Status and Calibration of the erosita X ray Telescope

Status and Calibration of the erosita X ray Telescope Status and Calibration of the erosita X ray Telescope Vadim Burwitz Max Planck Institut für extraterrestrische Physik on behalf of the erosita Team IACHEC, Lake Arrowhead, USA, 29 Mar 2017 Spektr Rentgen

More information

Joint Milli-Arcsecond Pathfinder Survey (JMAPS): Overview and Application to NWO Mission

Joint Milli-Arcsecond Pathfinder Survey (JMAPS): Overview and Application to NWO Mission Joint Milli-Arcsecond Pathfinder Survey (JMAPS): Overview and Application to NWO Mission B. Dorland and R. Dudik US Naval Observatory 11 March 2009 1 Mission Overview The Joint Milli-Arcsecond Pathfinder

More information

The J-MAPS Mission: Improvements to Orientation Infrastructure and Support for Space Situational Awareness

The J-MAPS Mission: Improvements to Orientation Infrastructure and Support for Space Situational Awareness AIAA SPACE 2007 Conference & Exposition 18-20 September 2007, Long Beach, California AIAA 2007-9927 The J-MAPS Mission: Improvements to Orientation Infrastructure and Support for Space Situational Awareness

More information

CIRiS: Compact Infrared Radiometer in Space LCPM, August 16, 2017 David Osterman PI, CIRiS Mission

CIRiS: Compact Infrared Radiometer in Space LCPM, August 16, 2017 David Osterman PI, CIRiS Mission 1 CIRiS: Compact Infrared Radiometer in Space LCPM, August 16, 2017 David Osterman PI, CIRiS Mission 8/15/201 7 Overview of the CIRiS instrument and mission The CIRiS instrument is a radiometric thermal

More information

PLAnetary Transits and Oscillations of stars

PLAnetary Transits and Oscillations of stars PLATO: Contribución n española PLAnetary Transits and Oscillations of stars J. Miguel Mas-Hesse Centro de Astrobiología (CSIC-INTA) 29 de junio 2011 Introduction PLATO: PLAnetary Transits and Oscillations

More information

Dark Energy & GEST: the Galactic Exoplanet Survey Telescope

Dark Energy & GEST: the Galactic Exoplanet Survey Telescope Dark Energy & GEST: the Galactic Exoplanet Survey Telescope Cosmology with a Exoplanet Search Mission a MIDEX Proposal currently under review $180M NASA OSS Cost cap Related option STEP (Survey for Terrestrial

More information

Chandra was launched aboard Space Shuttle Columbia on July 23, 1999!!!

Chandra was launched aboard Space Shuttle Columbia on July 23, 1999!!! Chandra was launched aboard Space Shuttle Columbia on July 23, 1999!!! Crew Lost During Re-Entry Modern X-ray Telescopes and Detectors X-ray Telescopes X-ray Instruments Some early highlights Observations

More information

THE DYNAMIC TEST EQUIPMENT FOR THE STAR TRACKERS PROCESSING

THE DYNAMIC TEST EQUIPMENT FOR THE STAR TRACKERS PROCESSING THE DYNAMIC TEST EQUIPMENT FOR THE STAR TRACKERS PROCESSING ABSTRACT Sergey Voronkov Space Research Institute, Russian Academy of Sciences, 117997, Profsoyuznaya str., 84/32, Moscow, Russia Phone: +7 095

More information

Impressions: First Light Images from UVIT in Orbit

Impressions: First Light Images from UVIT in Orbit Impressions: First Light Images from UVIT in Orbit Drafted by S N Tandon on behalf of UVIT team. December 4, 2015; V1.0 1. Introduction: Ultraviolet Imaging Telescope (UVIT) is the long wavelength eye

More information

Exploring the Mysteries of the Cosmos on the MOST Microsatellite Mission

Exploring the Mysteries of the Cosmos on the MOST Microsatellite Mission Exploring the Mysteries of the Cosmos on the MOST Microsatellite Mission Dr. Simon Grocott Dr. Robert E Zee Dr. Jaymie Matthews Dynacon Inc UTIAS SFL UBC 13 August 2003 Outline MOST (Microvariability and

More information

arxiv: v1 [astro-ph] 3 Jul 2008

arxiv: v1 [astro-ph] 3 Jul 2008 Transiting Planets Proceedings IAU Symposium No. 253, 2008 c 2008 International Astronomical Union DOI: 00.0000/X000000000000000X Measurements of Stellar Properties through Asteroseismology: A Tool for

More information

An Agile Multi-Use Nano Star Camera for Constellation Applications

An Agile Multi-Use Nano Star Camera for Constellation Applications An Agile Multi-Use Nano Star Camera for Constellation Applications Scott Palo 1,2, George Stafford 2 and Alan Hoskins 1 1 University of Colorado 2 Blue Canyon Technologies Partnership The BCT technical

More information

3.3 ANALYSIS. H2RG CHARACTERISATION METHODS Bogna Kubik, analyst. NISP, NI-SCS Test Readiness Review IPNL, October 2016

3.3 ANALYSIS. H2RG CHARACTERISATION METHODS Bogna Kubik, analyst. NISP, NI-SCS Test Readiness Review IPNL, October 2016 3.3 ANALYSIS H2RG CHARACTERISATION METHODS Bogna Kubik, analyst NISP, NI-SCS Test Readiness Review IPNL, October 2016 1 Goals Reference pixels correction: Find and implement the optimal correction. Signal

More information

BRITE One Year in Orbit

BRITE One Year in Orbit BRITE One Year in Orbit O. Koudelka, M.Unterberger, P.Romano Graz University of Technology W.Weiss, R.Kuschnig University of Vienna 1 Contents Scientific Goals Mission Description Commissioning Science

More information

Spitzer Space Telescope

Spitzer Space Telescope Spitzer Space Telescope (A.K.A. The Space Infrared Telescope Facility) The Infrared Imaging Chain 1/38 The infrared imaging chain Generally similar to the optical imaging chain... 1) Source (different

More information

Webster Cash University of Colorado. X-ray Interferometry

Webster Cash University of Colorado. X-ray Interferometry Webster Cash University of Colorado X-ray Interferometry Co-Investigators Steve Kahn - Columbia University Mark Schattenburg - MIT David Windt Columbia University Dennis Gallagher Ball Aerospace A Sufficiently

More information

Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis, V. Antakis, G.

Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis, V. Antakis, G. GLEME: GLOBAL LIDAR EXPLORATION OF THE MESOSPHERE Project Technical Officer: E. Armandillo Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis,

More information

Why Go To Space? Leon Golub, SAO BACC, 27 March 2006

Why Go To Space? Leon Golub, SAO BACC, 27 March 2006 Why Go To Space? Leon Golub, SAO BACC, 27 March 2006 Solar Observation Observation of the Sun has a long and distinguished history Especially important as calendar where e.g. seasonal monsoons produced

More information

The Dark Energy Survey Public Data Release 1

The Dark Energy Survey Public Data Release 1 The Dark Energy Survey Public Data Release 1 Matias Carrasco Kind (NCSA/UIUC) and the DR1 Release Team https://des.ncsa.illinois.edu/ Near-Field Cosmology with DES DR1 and Beyond Workshop, June 27-29th,

More information

Wide and Fast: A new Era of EMCCD and CMOS?

Wide and Fast: A new Era of EMCCD and CMOS? Wide and Fast: A new Era of EMCCD and CMOS? ZTF PTF?????? Gregg Hallinan California Institute of Technology gh@astro.caltech.edu Negligible 1 sec Transient Phase Space: Mansi Kasliwal Conventional CCDs

More information

UVIT IN ORBIT CALIBRATIONS AND CALIBRATION TOOLS. Annapurni Subramaniam IIA (On behalf of the UVIT team)

UVIT IN ORBIT CALIBRATIONS AND CALIBRATION TOOLS. Annapurni Subramaniam IIA (On behalf of the UVIT team) UVIT IN ORBIT CALIBRATIONS AND CALIBRATION TOOLS Annapurni Subramaniam IIA (On behalf of the UVIT team) Calibrations: : Calibrations are of two types: 1. Ground calibrations 2. In orbit calibrations In

More information

Steeve Kowaltschek (ESA/ESTEC TEC-SAA) 17/10/ ADCSS. ESA UNCLASSIFIED - For Official Use

Steeve Kowaltschek (ESA/ESTEC TEC-SAA) 17/10/ ADCSS. ESA UNCLASSIFIED - For Official Use Steeve Kowaltschek (ESA/ESTEC TEC-SAA) 17/10/2017 - ADCSS ESA UNCLASSIFIED - For Official Use Late 1990, autonomy reaches Star Trackers devices First Star Trackers were single-star, The improvement in

More information

Detection and characterization of exoplanets from space

Detection and characterization of exoplanets from space Detection and characterization of exoplanets from space Heike Rauer 1,2, 1:Institute for Planetary Research, DLR, Berlin 2:Center for Astronomy and Astrophysics, TU Berlin Exoplanet Space Missions and

More information

The High Definition X-ray Imager (HDXI) Instrument on the Lynx X-Ray Surveyor

The High Definition X-ray Imager (HDXI) Instrument on the Lynx X-Ray Surveyor The High Definition X-ray Imager (HDXI) Instrument on the Lynx X-Ray Surveyor Abraham D. Falcone* a, Ralph P. Kraft b, Marshall W. Bautz c, Jessica A. Gaskin d, John A. Mulqueen d, Doug A. Swartz d, for

More information

MIRIS. Korean Compact Infrared Space Telescope, MIRIS

MIRIS. Korean Compact Infrared Space Telescope, MIRIS Korean Compact Infrared Space Telescope, D.-H. Lee 1, W.-S. Jeong 1, Y. Park 1, C.H. Ree 1, U.-W. Nam 1, B. Moon 1, S.-J. Park 1, S.-M. Cha 1, J. Pyo 1, J.-H. Park 1, K. Seon 1, D. Lee 1,2, S.-W. Rhee

More information

GAIA: THE SATELLITE AND PAYLOAD. Oscar Pace European Space Agency, ESA-ESTEC, Keplerlaan 1, 2200AG Noordwijk, The Netherlands

GAIA: THE SATELLITE AND PAYLOAD. Oscar Pace European Space Agency, ESA-ESTEC, Keplerlaan 1, 2200AG Noordwijk, The Netherlands 23 GAIA: THE SATELLITE AND PAYLOAD Oscar Pace European Space Agency, ESA-ESTEC, Keplerlaan 1, 2200AG Noordwijk, The Netherlands ABSTRACT This paper summarises the main features of the Gaia technical baseline

More information

Fundamental limits to the precision in astrometry and photometry using array detectors through the Cramér-Rao minimum variance bound

Fundamental limits to the precision in astrometry and photometry using array detectors through the Cramér-Rao minimum variance bound Fundamental limits to the precision in astrometry and photometry using array detectors through the Cramér-Rao minimum variance bound Jorge Silva, Marcos Orchard DIE Rene Mendez DAS U. de Chile Espinosa

More information

Observing the dark Universe with Euclid

Observing the dark Universe with Euclid Euclid Imaging Instrument Observing the dark Universe with Euclid 18 november 2009 Jerome Amiaux CEA Saclay EIC System Manager On Behalf of the Euclid Imaging Consortium The presented document is Proprietary

More information

Grand Canyon 8-m Telescope 1929

Grand Canyon 8-m Telescope 1929 1 2 Grand Canyon 8-m Telescope 1929 3 A World-wide Sample of Instruments 4 Instrumentation Details Instrument name Observing Modes Start of operations Wavelength Coverage Field of View Instrument cost

More information

cheops Assemble your own planet watcher cheops Paper Model Scale 1:15

cheops Assemble your own planet watcher cheops Paper Model Scale 1:15 cheops cheops Assemble your own planet watcher Paper Model Scale 1:15 About CHEOPS The CHaracterising ExOPlanet Satellite, or CHEOPS, is a space science mission dedicated to the study of known exoplanets

More information

BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings

BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings COSGC Space Research Symposium 2009 BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings BOWSER 1 Mission Premise 4.3 km above sea level 402.3km above sea level BOWSER 2 Information

More information

X-ray burst science with Astrosat

X-ray burst science with Astrosat X-ray burst science with Astrosat A R Rao Tata Institute of Fundamental Research, India (arrao@tifr.res.in) 40 years of X-ray bursts: Extreme explosions in dense environments 19 June 2015 17-19 June 2015

More information

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation.

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation. Problem Solving picture θ f = 10 m s =1 cm equation rearrange numbers with units θ factors to change units s θ = = f sinθ fθ = s / cm 10 m f 1 m 100 cm check dimensions 1 3 π 180 radians = 10 60 arcmin

More information

WHAT PHOTOMETRIC PRECISION CAN I ACHIEVE? DAVID BOYD

WHAT PHOTOMETRIC PRECISION CAN I ACHIEVE? DAVID BOYD WHAT PHOTOMETRIC PRECISION CAN I ACHIEVE? DAVID BOYD If you start using a CCD camera to carry out photometry on variable stars, this is a question that sooner or later you will ask yourself. Prompted by

More information

Fundamentals of Exoplanet Observing

Fundamentals of Exoplanet Observing Fundamentals of Exoplanet Observing Dennis M. Conti Chair, AAVSO Exoplanet Section Copyright Dennis M. Conti 2017 1 The Strange World of Exoplanets Most exoplanets we have discovered are close-in, large

More information

Fundamentals of Exoplanet Observing

Fundamentals of Exoplanet Observing Fundamentals of Exoplanet Observing Dennis M. Conti Chair, AAVSO Exoplanet Section Copyright Dennis M. Conti 2017 1 The Strange World of Exoplanets Most exoplanets we have discovered are close-in, large

More information

Helioseismology: GONG/BiSON/SoHO

Helioseismology: GONG/BiSON/SoHO Helioseismology: GONG/BiSON/SoHO Asteroseismology: Solar-like oscillations in other stars Study stars of different Masses, Ages and Chemical Composition Stellar Structure and Evolution Solar-like oscillations

More information

SALT s Venture into Near Infrared Astronomy with RSS NIR

SALT s Venture into Near Infrared Astronomy with RSS NIR SALT s Venture into Near Infrared Astronomy with RSS NIR Marsha Wolf University of Wisconsin Madison IUCAA RSS VIS future RSS NIR 5 June 2015 SALT Science Conference 2015 2 Robert Stobie Spectrograph 5

More information

Accurate Determination of the Solar Photospheric Radius

Accurate Determination of the Solar Photospheric Radius Accurate Determination of the Solar Photospheric Radius T. M. Brown High Altitude Observatory, National Center for Atmospheric Research, 1 P.O. Box 3000, Boulder, CO 80307, USA and J. Christensen-Dalsgaard

More information

Atmospheric Extinction

Atmospheric Extinction Atmospheric Extinction Calibrating stellar photometry requires correction for loss of light passing through the atmosphere. Atmospheric Rayleigh and aerosol scattering preferentially redirects blue light

More information

Attitude Determination and. Attitude Control

Attitude Determination and. Attitude Control Attitude Determination and Placing the telescope in orbit is not the end of the story. It is necessary to point the telescope towards the selected targets, or to scan the selected sky area with the telescope.

More information

arxiv: v1 [astro-ph.sr] 20 Oct 2016

arxiv: v1 [astro-ph.sr] 20 Oct 2016 On the detectability of solar-like oscillations with the NASA TESS mission arxiv:.00v [astro-ph.sr] 20 Oct 20 Tiago L. Campante,2, School of Physics and Astronomy, University of Birmingham, Edgbaston,

More information

Theoretical Examination

Theoretical Examination Page 1 of (T1) True or False Determine if each of the following statements is True or False. In the Summary Answersheet, tick the correct answer (TRUE / FALSE) for each statement. No justifications are

More information

An Accurate and Efficient Gaussian Fit Centroiding Algorithm for. Star Trackers

An Accurate and Efficient Gaussian Fit Centroiding Algorithm for. Star Trackers An Accurate and Efficient Gaussian Fit Centroiding Algorithm for Star Trackers Tjorven Delabie, Joris De Schutter, Bart Vandenbussche ABSTRACT This paper presents a novel centroiding algorithm for star

More information

JWST Fine Guidance Sensor Calibration

JWST Fine Guidance Sensor Calibration The 2010 STScI Calibration Workshop Space Telescope Science Institute, 2010 Susana Deustua and Cristina Oliveira, eds. JWST Fine Guidance Sensor Calibration P. Chayer, S. Holfeltz, E. Nelan Space Telescope

More information

EXPOSURE TIME ESTIMATION

EXPOSURE TIME ESTIMATION ASTR 511/O Connell Lec 12 1 EXPOSURE TIME ESTIMATION An essential part of planning any observation is to estimate the total exposure time needed to satisfy your scientific goal. General considerations

More information

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO?

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? Astronomy 418/518 final practice exam 1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? b. Describe the visibility vs. baseline for a two element,

More information

AS750 Observational Astronomy

AS750 Observational Astronomy Lecture 9 0) Poisson! (quantum limitation) 1) Diffraction limit 2) Detection (aperture) limit a)simple case b)more realistic case 3) Atmosphere 2) Aperture limit (More realistic case) Aperture has m pixels

More information

TESS and Galactic Science

TESS and Galactic Science TESS and Galactic Science! Keivan Stassun!! WFIRST Meeting! 18 November 2014! 1! Preliminary TESS Mission Schedule! Activity! Date! Status! Systems Requirement Review! 12-13 Feb 2014! Completed! Preliminary

More information

Multi-aperture miniaturized star sensors, modular building blocks for small satellite AOCS systems

Multi-aperture miniaturized star sensors, modular building blocks for small satellite AOCS systems Multi-aperture miniaturized star sensors, modular building blocks for small satellite AOCS systems Jeroen Rotteveel ISIS Innovative Solutions In Space BV Rotterdamseweg 380, 2629HG Delft, The Netherlands;

More information

First observations of the second solar spectrum with spatial resolution at the Lunette Jean Rösch

First observations of the second solar spectrum with spatial resolution at the Lunette Jean Rösch First observations of the second solar spectrum with spatial resolution at the Lunette Jean Rösch Malherbe, J.-M., Moity, J., Arnaud, J., Roudier, Th., July 2006 The experiment setup in spectroscopic mode

More information

Naoteru Gouda(NAOJ) Taihei Yano (NAOJ) Nano-JASMINE project team

Naoteru Gouda(NAOJ) Taihei Yano (NAOJ) Nano-JASMINE project team A very small satellite for space astrometry: Nano-JASMINE Yoichi Hatsutori(NAOJ) Naoteru Gouda(NAOJ) Yukiyasu Kobayashi(NAOJ) Taihei Yano (NAOJ) Yoshiyuki Yamada (Kyoto Univ.) Nano-JASMINE project team

More information

Spinning Satellites Examples. ACS: Gravity Gradient. ACS: Single Spin

Spinning Satellites Examples. ACS: Gravity Gradient. ACS: Single Spin Attitude Determination and Attitude Control Placing the telescope in orbit is not the end of the story. It is necessary to point the telescope towards the selected targets, or to scan the selected sky

More information

WFC3 TV3 Testing: Orbital Cycling Effects on IR Images

WFC3 TV3 Testing: Orbital Cycling Effects on IR Images WFC3 TV3 Testing: Orbital Cycling Effects on IR Images H. Bushouse March 26, 2009 ABSTRACT Orbital cycling tests were performed on WFC3 during Thermal-Vacuum test #3 in order to assess the impact of changing

More information

Lab 1: Introduction to the sky and making telescopic observations with the CCD camera. AST 152M Lab Instructor: Greg Doppmann Due: Feb 11, 2000

Lab 1: Introduction to the sky and making telescopic observations with the CCD camera. AST 152M Lab Instructor: Greg Doppmann Due: Feb 11, 2000 Lab 1: Introduction to the sky and making telescopic observations with the CCD camera. AST 152M Lab Instructor: Greg Doppmann Due: Feb 11, 2000 Objective: The goal of this lab is to give students their

More information

R. Alonso, 11th CoRoT Week, La Laguna, 22 Mars The. CHEOPS Mission

R. Alonso, 11th CoRoT Week, La Laguna, 22 Mars The. CHEOPS Mission R. Alonso, 11th CoRoT Week, La Laguna, 22 Mars 2013 The CHEOPS Mission ESA s ESA s first first small small mission mission ESA small missions requirements Science top rated science in any area of space

More information

An Astrophysics Mission of Opportunity on the International Space Station

An Astrophysics Mission of Opportunity on the International Space Station GSFC 1 An Astrophysics Mission of Opportunity on the International Space Station Science: Understanding ultra-dense matter through observations of neutron stars in the soft X-ray band Launch: October 2016,

More information

Webster Cash University of Colorado. X-ray Interferometry

Webster Cash University of Colorado. X-ray Interferometry Webster Cash University of Colorado X-ray Interferometry Co-Investigators Steve Kahn - Columbia University Mark Schattenburg - MIT David Windt - Lucent (Bell-Labs) Outline of Presentation Science Potential

More information

GCOM-C SGLI calibration and characterization. Hiroshi Murakami JAXA/EORC Satellite instrument pre- and post-launch calibration

GCOM-C SGLI calibration and characterization. Hiroshi Murakami JAXA/EORC Satellite instrument pre- and post-launch calibration GCOM-C SGLI calibration and characterization Hiroshi Murakami JAXA/EORC Satellite instrument pre- and post-launch calibration 1 1. SGLI sensor system and onboard calibration system Target: Improvement

More information

Reduction procedure of long-slit optical spectra. Astrophysical observatory of Asiago

Reduction procedure of long-slit optical spectra. Astrophysical observatory of Asiago Reduction procedure of long-slit optical spectra Astrophysical observatory of Asiago Spectrograph: slit + dispersion grating + detector (CCD) It produces two-dimension data: Spatial direction (x) along

More information

Breathing, Position Drift, and PSF Variations on the UVIS Detector

Breathing, Position Drift, and PSF Variations on the UVIS Detector SPACE TELESCOPE SCIENCE INSTITUTE Operated for NASA by AURA Instrument Science Report WFC3 1-1 Breathing, Position Drift, and PSF Variations on the UVIS Detector L. Dressel July 13, 1 ABSTRACT This study

More information

MERIS US Workshop. Instrument Characterization Overview. Steven Delwart

MERIS US Workshop. Instrument Characterization Overview. Steven Delwart MERIS US Workshop Instrument Characterization Overview Steven Delwart Presentation Overview On-Ground Characterisation 1. Diffuser characterisation 2. Polarization sensitivity 3. Optical Transmission 4.

More information

DISTRIBUTION LIST. Others original copies Name amount. Lens Research & Development 1x Uittenhout, J.M.M. 1x DOCUMENT CHANGE RECORD

DISTRIBUTION LIST. Others original copies Name amount. Lens Research & Development 1x Uittenhout, J.M.M. 1x DOCUMENT CHANGE RECORD 2 of 15 DISTRIBUTION LIST Others original copies Name amount Lens Research & Development 1x Uittenhout, J.M.M. 1x DOCUMENT CHANGE RECORD Issue Date Total pages Pages affected Brief description of change

More information

Gaia: Mapping the Milky Way

Gaia: Mapping the Milky Way Gaia: Mapping the Milky Way (A very brief overview, and something about the Swedish participation) Lennart Lindegren Lund Observatory Department of Astronomy and Theoretical Physics Lund University 1 Gaia

More information

Upgraded Photometric System of The 85-cm Telescope at Xinglong Station

Upgraded Photometric System of The 85-cm Telescope at Xinglong Station Research in Astron. Astrophys. 217 Vol. X No. XX, http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics Upgraded Photometric System of The 85-cm Telescope at

More information

TROPOMI. Sentinel 5 Precursor instrument for air quality and climate observations. R. Voors Dutch Space. ICSO, 11 October 2012

TROPOMI. Sentinel 5 Precursor instrument for air quality and climate observations. R. Voors Dutch Space. ICSO, 11 October 2012 TROPOMI Sentinel 5 Precursor instrument for air quality and climate observations R. Voors Dutch Space ICSO, 11 October 2012 Sentinel 5 precursor and the TROPOMI payload Climate and Air quality Precursor

More information

High-resolution échelle at Skalnaté Pleso: future plans and development T. Pribulla

High-resolution échelle at Skalnaté Pleso: future plans and development T. Pribulla High-resolution échelle at Skalnaté Pleso: future plans and development T. Pribulla Astronomical Institute of the Slovak Academy of Sciences, Tatranská Lomnica, Slovakia PLATOSpec workshop, Ondřejov observatory,

More information

Quasars: Imaging the Visible Edge of the Universe. David Haworth Copyright 2010

Quasars: Imaging the Visible Edge of the Universe. David Haworth   Copyright 2010 Quasars: Imaging the Visible Edge of the Universe David Haworth www.stargazing.net/david Copyright 2010 Imaging Equipment OSP 2008 QSI 532ws-M1 camera 9.7mm x 14.9mm Tele Vue NP-101is APO refractor 4 inch

More information

PLANET-C: Venus Climate Orbiter mission -Updates- Takehiko Satoh (Kumamoto Univ / JAXA) George Hashimoto (Kobe Univ) PLANET-C team

PLANET-C: Venus Climate Orbiter mission -Updates- Takehiko Satoh (Kumamoto Univ / JAXA) George Hashimoto (Kobe Univ) PLANET-C team PLANET-C: Venus Climate Orbiter mission -Updates- Takehiko Satoh (Kumamoto Univ / JAXA) George Hashimoto (Kobe Univ) PLANET-C team Venus Climate Orbiter JAXA s 24th science spacecraft dedicated to the

More information

A Random Walk Through Astrometry

A Random Walk Through Astrometry A Random Walk Through Astrometry Astrometry: The Second Oldest Profession George H. Kaplan Astronomical Applications Department Astrometry Department U.S. Naval Observatory Random Topics to be Covered

More information

Earth Flats. 1. Introduction. Instrument Science Report ACS R. C. Bohlin, J. Mack, G. Hartig, & M. Sirianni October 25, 2005

Earth Flats. 1. Introduction. Instrument Science Report ACS R. C. Bohlin, J. Mack, G. Hartig, & M. Sirianni October 25, 2005 Instrument Science Report ACS 2005-12 Earth Flats R. C. Bohlin, J. Mack, G. Hartig, & M. Sirianni October 25, 2005 ABSTRACT Since the last ISR 2003-02 on the use of Earth observations for a source of flat

More information