@K302. Yasuyuki Matsuda

Size: px
Start display at page:

Download "@K302. Yasuyuki Matsuda"

Transcription

1 Introductory Physics (week Yasuyuki Matsuda

2 Today s Contents Velocity and Acceleration Newton s Laws of Motion

3 Position, Velocity, Acceleration

4 Particle Particle : An point-like object with its mass Has no volume, no shape, no structure Result of idealization/abstraction/approximation of a (real) object surrounding us. As a first step towards understand our world, We first describe the motion of a particle with laws of physics. Then we describe the motion of an object (which has volume), later in the course.

5 Motion of a particle The aim: We want to know the position of the particle as a function of time. Important quantities in the motion of a particle are Velocity Acceleration

6 Position vector To locate a particle, we need to Define a reference point (the origin) Define the distance from the origin Define the direction from the origin Definition Vector : A quantity which has its magnitude and direction the magnitude is always positive real number Scalar : A quantity which is represented by a single real number It can be positive or negative

7 Position vector To locate a particle, we need to Define a reference point (the origin) Define the distance from the origin : the magnitude Define the direction from the origin : the direction of the position vector of the particle Definition Vector : A quantity which has its magnitude and direction the magnitude is always positive real number Scalar : A quantity which is represented by a single real number It can be positive or negative

8 Velocity (1-dim) Velocity of a moving particle P O x 1 x 2 x This is the mean velocity over the time interval t 1 and t 2

9 Example x the average velocity between t 1 and t 2 is x 2 = x (t 2 ) displacement x 1 = x(t 1 ) this value is the slope of the green line O t 1 t 2 time t

10 Example x x (t 1 + t) average velocity during x (t 1 ) O t 1 t 1 + t t

11 Example x average velocity during average velocity during x (t 1 + t) x (t 1 ) O t 1 t 1 + t t

12 Example x average velocity during average velocity during average velocity during x(t 1 + t) x (t 1 ) O t 1 t 1 + t t

13 Example x at the limit of t 0 Instantaneous velocity at t = t 1 derivative x (t 1 ) is the slope of the tangent line average velocity during average velocity during average velocity during x(t 1 ) O t 1 t

14 Velocity (1-dim) Velocity of a moving particle P O P1 P2 x This is the mean velocity over the time interval t 1 and t 2 Definition: This can be positive (moving towards the direction increasing x) or negative.

15 Velocity (2- and 3-dim) When a particle moves in 2-dim or 3-dim space, its position is described by its displacement vector from an origin O. is a function of time O

16 Velocity (2- and 3-dim) When a particle moves in 2-dim or 3-dim space, its position is described by its displacement vector from an origin O. is a function of time O

17 Velocity (2- and 3-dim) When a particle moves in 2-dim or 3-dim space, its position is described by its displacement vector from an origin O. is a function of time O

18 Velocity (2- and 3-dim) When a particle moves in 2-dim or 3-dim space, its position is described by its displacement vector from an origin O. is a function of time The velocity vector is always tangential to the path the tangent line of the path O

19 Velocity (2- and 3-dim) When a particle moves in 2-dim or 3-dim space, its position is described by its displacement vector from an origin O. is a function of time Definition: The velocity is a vector quantity (it has its magnitude and its direction). The magnitude of velocity is called speed.

20 Differentiation of scalar & vector functions The scalar f is a function of the scalar variable t, f(t). The derivative of the function f(x) with respect to t is The vector is a function of the scalar variable t,. The derivative of the function with respect to t is

21 Differentiation rules for vector functions Rules Formula is often used.

22 Acceleration The rate at which the velocity changes Definition

23 Acceleration In a linear (1-dim) motion In a linear motion, the acceleration vector is parallel to the velocity vector.

24 Acceleration In a uniform circular motion (circular motion with a constant speed) In a uniform circular motion, the acceleration vector is perpendicular to the velocity vector. (We will prove it later).

25 Acceleration In general three-dimentional motion of a particle the tangent line of the path The acceleration vector has a component which is tangential to the path, and a component which is normal to the path. cf. The velocity vector is always tangential to the path

26 Memo: Newton s notation A derivative of a function with respect to time (time derivative) is often denoted using over-dot. This is called Newton s notation. First derivative Second derivative This notation o is only used for time derivatives. ves.

27 Differentiation in Cartesian Coordinate System When we use the Cartesian Coordinate System This simplicity is one of the reasons for which we often This simplicity is one of the reasons for which we often use the Cartesian Coordinate System.

28 Example: constant acceleration in linear motion A particle is moving with a constant acceleration on a straight line. O x

29 Example: constant acceleration in linear motion A particle is moving with a constant acceleration on a straight line. O x integration

30 Example: constant acceleration in linear motion A particle is moving with a constant acceleration on a straight line. O x integration integration

31 Example: constant acceleration in linear motion A particle is moving with a constant acceleration on a straight line. O x integration integration

32 Example: constant acceleration in linear motion When a particle is moving on a straight line with a constant acceleration, following equations hold true. Some of you have learned the equations above as formulas to solve the problem dealing with a linear motion with a constant acceleration. Now we have proved the formula mathematically. So we don t have to remember the formula what we need to remember is the way of thinking in which we derived the formula.

33 Reference Frames Reference Frame : a coordinate system on which the motion of a particle is described. When we have two frames P r If Frame 2 does not rotate relative to Frame 1, r O Frame 1 D O Frame 2 the velocity of P observed in Frame 1 the velocity of P observed in Frame 2 the velocity of Frame 2 observed in Frame 1 This is the so-called velocityaddition rule.

34 Reference Frames Reference Frame : a coordinate system on which the motion of a particle is described. P r If Frame 2 does not rotate relative to Frame 1,. Differentiate t it leads to. r D O Frame 2 Especially when Frame 2 is moving with a constant velocity, O Frame 1

35 Summary of position, velocity, and acceleration The position of a particle is described by position vector. The velocity of the particle is defined as The velocity vector is tangential to the path of the particle. The acceleration of the particle is defined as The acceleration vector has a component tangential to the path, and a component normal to the path.

36 Newton s Laws of Motion Newton s Laws of Motion and the law of gravitation

37 Newton s Laws of Motion Principia (1687) by Issac Newton First Law When all external influences on a particle are removed, the particle moves with constant velocity. Second Law When a force acts on a particle of mass, the particle moves with acceleration a given by the formula Third Law When two particles exert forces upon each other, these forces are equal in magnitude, opposite in direction, and parallel to the straight line joining the two particles.

38 Inertial Frame In what frame of reference are the laws true? Definition : Inertial Frame is a reference frame in which the First Law is true. If there exists one inertial frame, all frames moving with constant velocity y( (and no rotation) relative to the one are inertial frame. The First Law is a statement that there exist inertial frames.

39 Note: The Newton s Laws of Motion are laws of physics they are founded d upon experimental evidence, and stand or fail according to the accuracy of their predictions. Einstein s s special relativity (1905) When we describe the motion of a particle, exact inertial frames are not available. But practically, we can take a reference frame and consider it as an inertial frame. Motion of a ball, a pendulum Frame attached to the Earth Rotation of the Earth is normally a small correction, which is often negligible. Motion of a satellite around the Earth the geocentric frame Motion of a planet the heliocentric frame

40 Question: Are these are inertial frames? Suppose the frame attached to the earth is a inertial frame, The frame attached to a bicycle running down a slope without applying a brake? No. It is accelerating relative to the reference frame. The frame attached to the floor of a train whose speed is constant? Yes. The frame attached to the floor of a carousel whose rotating speed is constant? No. It is rotating.

41 Inertial mass Second Law When a force F acts on a particle of mass m, the particle moves with acceleration a given by the formula Definition : Inertial mass of a particle is a numerical measure of the reluctance of the particle to be accelerated.

42 The third law (action-reaction law) When two particles exert forces upon each other, these forces are equal in magnitude, opposite in direction, i and parallel l to the straight line joining the two particles. F 12 particle 1 F 21 particle 2

43 The third law mass m A gravitational force mg, which is proportional to the mass is exerted on a dropping apple. Where is the reaction to this force? The force with same magnitude, with opposite direction is exerted on the Earth.

44 The third law The forces acting on the apple The earth exerts downward force mg The desk exerts upward force with same magnitude mg The apple does not move, because it is in a state of equilibrium. The forces acting on the desk The apple exerts downward force mg The Earth exerts upward force mg The desk does not move, because it is in a state of equilibrium. The forces acting on the Earth The apple exerts upward force mg The desk exerts downward force mg The earth does not move, because it is in a state of equilibrium.

45 The second law : the Equation of Motion Given the force F acting the particle P, the position r of P is determined by the equation of motion F determines, not r In order to determine r as a function of t, we need to solve differential equation.

46 The law of Gravitation The gravitational force that two particles exert upon each other have magnitude where M and m are the particle masses, R is the distance between the particles. G is the constant of gravitation. The value of the constant of gravitation G= Nm 2 /kg 2 must be determined by experiments. No explanation why this constant should have this value.

47 Measurement of G Cavendish experiment (1797~1798) Using a torsion balance, he measured the attraction force (gravitational force) between lead balls. large ball: 158kg, small ball 0.73kg, length of the rod 1.8m

48 Gravitational force by spheres The gravitational force exerted by a symmetric sphere of The gravitational force exerted by a symmetric sphere of mass M is exactly the same as if the sphere were replaced by a particle of mass M located at the center.

49 The gravitation acceleration g two particles are under gravitational attraction force exerted by a particle of mass M The induced acceleration of particle is independent of the particle s mass

50 The gravitation acceleration g When we consider the motion of a particle under the gravity of the Earth, the motion often has an extent that is insignificant compared to the Earth s radius. In this case, it is often appropriate to approximate that the particle s acceleration is a constant vertical (downward) vector. This is called uniform gravity.

51 The gravitation acceleration g

52 Measurement of G Cavendish experiment (1797~1798) Using a torsion balance, he measured the attraction force (gravitational force) between lead balls. This was actually the first measurement of the mass of This was actually the first measurement of the mass of the Earth!

53 Gravitational mass Newton s law of gravity states the mass acts as a source of gravitational force. Definition: Gravitational mass of a particle is a property of the particle to determine the gravitational force.

54 Inertial mass Second Law When a force acts on a particle of mass m, the particle moves with acceleration a given by the formula Definition : Inertial mass of a particle is a numerical measure of the reluctance of the particle to be accelerated.

55 The principle of equivalence The proposition that inertial mass and gravitational mass are exactly equal is called the principle of equivalence. There have been many experiments to detect any difference between inertial mass and gravitational mass. The legend says that Galileo released different masses from the top of the Leaning Tower of Pisa, and found that they reached the ground at the same time. This is an experiment to test the principle of equivalence! Th l t t i t th diff i l th The latest experiment says the difference is less than (one in 100 billion), if any.

II. Universal Gravitation - Newton 4th Law

II. Universal Gravitation - Newton 4th Law Periodic Motion I. Circular Motion - kinematics & centripetal acceleration - dynamics & centripetal force - centrifugal force II. Universal Gravitation - Newton s 4 th Law - force fields & orbits III.

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in motion included its position, velocity, and acceleration. There was no consideration of what might influence that motion.

More information

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life.

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life. Forces and Newton s Laws Reading Notes Name: Section 4-1: Force What is force? Give an example of a force you have experienced continuously all your life. Give an example of a situation where an object

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass: Section 5.1

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Chapter 13: universal gravitation

Chapter 13: universal gravitation Chapter 13: universal gravitation Newton s Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler s Laws and the Motion of Planets Spherical Mass Distributions Apparent

More information

PY1008 / PY1009 Physics Gravity I

PY1008 / PY1009 Physics Gravity I PY1008 / PY1009 Physics Gravity I M.P. Vaughan Learning Objectives The concept of the centre of mass Fundamental forces Newton s Law of Gravitation Coulomb s Law (electrostatic force) Examples of Newton

More information

CHAPTER 10 GRAVITATION

CHAPTER 10 GRAVITATION CHAPTER 10 GRAVITATION Earth attracts everything towards it by an unseen force of attraction. This force of attraction is known as gravitation or gravitation pull. Universal Law of Gravitation:- Every

More information

Misconceptions in Mechanics

Misconceptions in Mechanics Misconceptions in Mechanics Sharon Tripconey MEI Conference 2014 Sometimes, always or never true? Sometimes, always or never true? Sort the cards into three piles For each of the three piles, order the

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion Sir Isaac Newton 1642 1727 Formulated basic laws of mechanics Discovered Law of Universal Gravitation Invented form of calculus Many observations dealing with light and optics

More information

Circular Motion. Gravitation

Circular Motion. Gravitation Circular Motion Gravitation Circular Motion Uniform circular motion is motion in a circle at constant speed. Centripetal force is the force that keeps an object moving in a circle. Centripetal acceleration,

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Physics I Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass:

More information

Physics 8 Wednesday, October 19, Troublesome questions for HW4 (5 or more people got 0 or 1 points on them): 1, 14, 15, 16, 17, 18, 19. Yikes!

Physics 8 Wednesday, October 19, Troublesome questions for HW4 (5 or more people got 0 or 1 points on them): 1, 14, 15, 16, 17, 18, 19. Yikes! Physics 8 Wednesday, October 19, 2011 Troublesome questions for HW4 (5 or more people got 0 or 1 points on them): 1, 14, 15, 16, 17, 18, 19. Yikes! Troublesome HW4 questions 1. Two objects of inertias

More information

Unit 1: Mechanical Equilibrium

Unit 1: Mechanical Equilibrium Unit 1: Mechanical Equilibrium Chapter: Two Mechanical Equilibrium Big Idea / Key Concepts Student Outcomes 2.1: Force 2.2: Mechanical Equilibrium 2.3: Support Force 2.4: Equilibrium for Moving Objects

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The astronaut orbiting the Earth in the Figure is preparing to dock with a Westar VI satellite. The satellite is in a circular orbit 700 km above the Earth's surface, where

More information

An Overview of Mechanics

An Overview of Mechanics An Overview of Mechanics Mechanics: The study of how bodies react to forces acting on them. Statics: The study of bodies in equilibrium. Dynamics: 1. Kinematics concerned with the geometric aspects of

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in There was no consideration of what might influence that motion. Two main factors need to be addressed to answer questions

More information

Study Guide Solutions

Study Guide Solutions Study Guide Solutions Table of Contents Chapter 1 A Physics Toolkit... 3 Vocabulary Review... 3 Section 1.1: Mathematics and Physics... 3 Section 1.2: Measurement... 3 Section 1.3: Graphing Data... 4 Chapter

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION APPLICATIONS OF INTEGRATION 6.4 Work In this section, we will learn about: Applying integration to calculate the amount of work done in performing a certain physical task.

More information

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc. Chapter 5 Centripetal Force and Gravity v Centripetal Acceleration v Velocity is a Vector v It has Magnitude and Direction v If either changes, the velocity vector changes. Tumble Buggy Demo v Centripetal

More information

Version 001 circular and gravitation holland (2383) 1

Version 001 circular and gravitation holland (2383) 1 Version 00 circular and gravitation holland (383) This print-out should have 9 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. AP B 993 MC

More information

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc. Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

More information

HW Chapter 5 Q 7,8,18,21 P 4,6,8. Chapter 5. The Law of Universal Gravitation Gravity

HW Chapter 5 Q 7,8,18,21 P 4,6,8. Chapter 5. The Law of Universal Gravitation Gravity HW Chapter 5 Q 7,8,18,21 P 4,6,8 Chapter 5 The Law of Universal Gravitation Gravity Newton s Law of Universal Gravitation Every particle in the Universe attracts every other particle with a force that

More information

Chapter 6 Dynamics I: Motion Along a Line

Chapter 6 Dynamics I: Motion Along a Line Chapter 6 Dynamics I: Motion Along a Line Chapter Goal: To learn how to solve linear force-and-motion problems. Slide 6-2 Chapter 6 Preview Slide 6-3 Chapter 6 Preview Slide 6-4 Chapter 6 Preview Slide

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Quiz 3 4.7 The Gravitational Force Newton s Law of Universal Gravitation Every particle in the universe exerts an attractive force on every other

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

Chapter 5 Gravitation Chapter 6 Work and Energy

Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 (5.6) Newton s Law of Universal Gravitation (5.7) Gravity Near the Earth s Surface Chapter 6 (today) Work Done by a Constant Force Kinetic Energy,

More information

PH 221-3A Fall Force and Motion. Lecture 8. Chapter 5 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 221-3A Fall Force and Motion. Lecture 8. Chapter 5 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 221-3A Fall 2010 Force and Motion Lecture 8 Chapter 5 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 5 Force and Motion In chapters 2 and 4 we have studied kinematics i.e.

More information

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc. Chapter 12 Gravity Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

Topic 6 The Killers LEARNING OBJECTIVES. Topic 6. Circular Motion and Gravitation

Topic 6 The Killers LEARNING OBJECTIVES. Topic 6. Circular Motion and Gravitation Topic 6 Circular Motion and Gravitation LEARNING OBJECTIVES Topic 6 The Killers 1. Centripetal Force 2. Newton s Law of Gravitation 3. Gravitational Field Strength ROOKIE MISTAKE! Always remember. the

More information

11 Newton s Law of Universal Gravitation

11 Newton s Law of Universal Gravitation Physics 1A, Fall 2003 E. Abers 11 Newton s Law of Universal Gravitation 11.1 The Inverse Square Law 11.1.1 The Moon and Kepler s Third Law Things fall down, not in some other direction, because that s

More information

PS113 Chapter 4 Forces and Newton s laws of motion

PS113 Chapter 4 Forces and Newton s laws of motion PS113 Chapter 4 Forces and Newton s laws of motion 1 The concepts of force and mass A force is described as the push or pull between two objects There are two kinds of forces 1. Contact forces where two

More information

ME 230 Kinematics and Dynamics

ME 230 Kinematics and Dynamics ME 230 Kinematics and Dynamics Wei-Chih Wang Department of Mechanical Engineering University of Washington Lecture 6: Particle Kinetics Kinetics of a particle (Chapter 13) - 13.4-13.6 Chapter 13: Objectives

More information

The... of a particle is defined as its change in position in some time interval.

The... of a particle is defined as its change in position in some time interval. Distance is the. of a path followed by a particle. Distance is a quantity. The... of a particle is defined as its change in position in some time interval. Displacement is a.. quantity. The... of a particle

More information

Newton s Laws.

Newton s Laws. Newton s Laws http://mathsforeurope.digibel.be/images Forces and Equilibrium If the net force on a body is zero, it is in equilibrium. dynamic equilibrium: moving relative to us static equilibrium: appears

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Gravitation 1. Each of five satellites makes a circular orbit about an object that is much more massive than any of the satellites. The mass and orbital radius of each

More information

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc. Chapter 12 Gravity Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

Physics A - PHY 2048C

Physics A - PHY 2048C Physics A - PHY 2048C Mass & Weight, Force, and Friction 10/04/2017 My Office Hours: Thursday 2:00-3:00 PM 212 Keen Building Warm-up Questions 1 Did you read Chapters 6.1-6.6? 2 In your own words: What

More information

Mechanics Lecture Notes

Mechanics Lecture Notes Mechanics Lecture Notes Lectures 0 and : Motion in a circle. Introduction The important result in this lecture concerns the force required to keep a particle moving on a circular path: if the radius of

More information

Extension of Circular Motion & Newton s Laws. Chapter 6 Mrs. Warren Kings High School

Extension of Circular Motion & Newton s Laws. Chapter 6 Mrs. Warren Kings High School Extension of Circular Motion & Newton s Laws Chapter 6 Mrs. Warren Kings High chool Review from Chapter 4 Uniform Circular Motion Centripetal Acceleration Uniform Circular Motion, Force F r A force is

More information

Year 11 Physics Tutorial 84C2 Newton s Laws of Motion

Year 11 Physics Tutorial 84C2 Newton s Laws of Motion Year 11 Physics Tutorial 84C2 Newton s Laws of Motion Module Topic 8.4 Moving About 8.4.C Forces Name Date Set 1 Calculating net force 1 A trolley was moved to the right by a force applied to a cord attached

More information

Chapter 7. Work and Kinetic Energy

Chapter 7. Work and Kinetic Energy Chapter 7 Work and Kinetic Energy P. Lam 7_16_2018 Learning Goals for Chapter 7 To understand the concept of kinetic energy (energy of motion) To understand the meaning of work done by a force. To apply

More information

HW Chapter 3 Q 14,15 P 2,7,812,18,24,25. Chapter 3. Motion in the Universe. Dr. Armen Kocharian

HW Chapter 3 Q 14,15 P 2,7,812,18,24,25. Chapter 3. Motion in the Universe. Dr. Armen Kocharian HW Chapter 3 Q 14,15 P 2,7,812,18,24,25 Chapter 3 Motion in the Universe Dr. Armen Kocharian Predictability The universe is predictable and quantifiable Motion of planets and stars description of motion

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

More information

Dynamics. Dynamics of mechanical particle and particle systems (many body systems)

Dynamics. Dynamics of mechanical particle and particle systems (many body systems) Dynamics Dynamics of mechanical particle and particle systems (many body systems) Newton`s first law: If no net force acts on a body, it will move on a straight line at constant velocity or will stay at

More information

Chapter 4. Dynamics: Newton s Laws of Motion

Chapter 4. Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Types of Forces: An Overview In nature there are two general types of forces, fundamental and nonfundamental. Fundamental Forces -- three have been identified,

More information

Physics for Scientists and Engineers 4th Edition, 2017

Physics for Scientists and Engineers 4th Edition, 2017 A Correlation of Physics for Scientists and Engineers 4th Edition, 2017 To the AP Physics C: Mechanics Course Descriptions AP is a trademark registered and/or owned by the College Board, which was not

More information

Chapter 5 Lecture Notes

Chapter 5 Lecture Notes Formulas: a C = v 2 /r a = a C + a T F = Gm 1 m 2 /r 2 Chapter 5 Lecture Notes Physics 2414 - Strauss Constants: G = 6.67 10-11 N-m 2 /kg 2. Main Ideas: 1. Uniform circular motion 2. Nonuniform circular

More information

AP Physics I Summer Work

AP Physics I Summer Work AP Physics I Summer Work 2018 (20 points) Please complete the following set of questions and word problems. Answers will be reviewed in depth during the first week of class followed by an assessment based

More information

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively.

More information

December 04, Monday Gravitational force.notebook. Gravitational Force. Return to Table of Contents.

December 04, Monday Gravitational force.notebook. Gravitational Force. Return to Table of Contents. Gravitational Force https://www.njctl.org/video/?v=ip_u0xqvp04 Return to Table of Contents 1 Newton s Law of Universal Gravitation It has been well known since ancient times that Earth is a sphere and

More information

Chapter 6. Circular Motion and Other Applications of Newton s Laws

Chapter 6. Circular Motion and Other Applications of Newton s Laws Chapter 6 Circular Motion and Other Applications of Newton s Laws Circular Motion Two analysis models using Newton s Laws of Motion have been developed. The models have been applied to linear motion. Newton

More information

Wiley Plus Reminder! Assignment 1

Wiley Plus Reminder! Assignment 1 Wiley Plus Reminder! Assignment 1 6 problems from chapters and 3 Kinematics Due Monday October 5 Before 11 pm! Chapter 4: Forces and Newton s Laws Force, mass and Newton s three laws of motion Newton s

More information

NEWTON S LAWS OF MOTION (EQUATION OF MOTION) (Sections )

NEWTON S LAWS OF MOTION (EQUATION OF MOTION) (Sections ) NEWTON S LAWS OF MOTION (EQUATION OF MOTION) (Sections 13.1-13.3) Today s Objectives: Students will be able to: a) Write the equation of motion for an accelerating body. b) Draw the free-body and kinetic

More information

2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws.

2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws. Catalyst 1.What is the unit for force? Newton (N) 2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws. HANDS UP!! 441 N 4. What is net force? Give an example.

More information

Rotational Motion and the Law of Gravity 1

Rotational Motion and the Law of Gravity 1 Rotational Motion and the Law of Gravity 1 Linear motion is described by position, velocity, and acceleration. Circular motion repeats itself in circles around the axis of rotation Ex. Planets in orbit,

More information

Page 1. Name:

Page 1. Name: Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

More information

FORCE AND MOTION. Conceptual Questions F G as seen in the figure. n, and a kinetic frictional force due to the rough table surface f k

FORCE AND MOTION. Conceptual Questions F G as seen in the figure. n, and a kinetic frictional force due to the rough table surface f k FORCE AND MOTION 5 Conceptual Questions 5.1. Two forces are present, tension T in the cable and gravitational force 5.. F G as seen in the figure. Four forces act on the block: the push of the spring F

More information

Describing motion: Kinematics in one dimension

Describing motion: Kinematics in one dimension Describing motion: Kinematics in one dimension Scientist Galileo Galilei Issac Newton Vocabulary Mechanics Kinematics Dynamics Translational Motion Particle Frame of Reference Coordinate axes Position

More information

CHAPTER 7 GRAVITATION

CHAPTER 7 GRAVITATION Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 7 GRAVITATION Day Plans for the day Assignments for the day 1 7.1 Planetary Motion & Gravitation Assignment

More information

Physics B Newton s Laws AP Review Packet

Physics B Newton s Laws AP Review Packet Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

More information

Newton's Law of Universal Gravitation

Newton's Law of Universal Gravitation Section 2.17: Newton's Law of Universal Gravitation Gravity is an attractive force that exists between all objects that have mass. It is the force that keeps us stuck to the earth and the moon orbiting

More information

(A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III

(A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III 1. A solid metal ball and a hollow plastic ball of the same external radius are released from rest in a large vacuum chamber. When each has fallen 1m, they both have the same (A) inertia (B) speed (C)

More information

Dynamics: Forces. Lecture 7. Chapter 5. Course website:

Dynamics: Forces. Lecture 7. Chapter 5. Course website: Lecture 7 Chapter 5 Dynamics: Forces Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Some leftovers from rotational motion Ch.4 Force,

More information

Mass & Weight. weight a force acting on a body due to the gravitational attraction pulling that body to another. NOT constant.

Mass & Weight. weight a force acting on a body due to the gravitational attraction pulling that body to another. NOT constant. Mass & Weight mass how much stuff a body has. Doesn t change. Is responsible for the inertial properties of a body. The greater the mass, the greater the force required to achieve some acceleration: Fnet

More information

Physics 1010: The Physics of Everyday Life. TODAY More Acceleration Newton s Second Law Gravity

Physics 1010: The Physics of Everyday Life. TODAY More Acceleration Newton s Second Law Gravity Physics 11: The Physics of Everyday Life TODAY More Acceleration Newton s Second Law Gravity 1 Help, Office and Tutorial Hours TUTORIALS (G1B75/77/79) Isidoros: 12:32:3 Thursday (same as office hours)

More information

Newton s Laws of Motion

Newton s Laws of Motion Chapter 5 Newton s Laws of Motion Pui K. Lam 7_8_2018 Learning Goals for Chapter 5 Newton s Laws Recognize that forces arise from interaction between objects Learn to identify action reaction force pair

More information

1 gt. AP Physics 1 Lab: ACCELERATION DUE TO GRAVITY. Purpose. Theory. LAB#02-2: Free Fall & Acceleration (g)

1 gt. AP Physics 1 Lab: ACCELERATION DUE TO GRAVITY. Purpose. Theory. LAB#02-2: Free Fall & Acceleration (g) LAB#0-: Free Fall & Acceleration (g) AP Physics 1 McNutt Name: Date: Period: AP Physics 1 Lab: ACCELERATION DUE TO GRAVITY Purpose To determine the value of the gravitational acceleration Theory When we

More information

l Register your iclicker on LON-CAPA

l Register your iclicker on LON-CAPA l LON-CAPA #3 and Mastering Physics due next Tuesday help room hours (Strosacker Help Room, 1248 BPS): M: 5-8 PM W: 5-8 PM F: 2-6 PM l Register for Mastering Physics >95% of you have l Register your iclicker

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LSN 2-2A THE CONCEPT OF FORCE Introductory Video Introducing Sir Isaac Newton Essential Idea: Classical physics requires a force to change a

More information

In this chapter, you will consider the force of gravity:

In this chapter, you will consider the force of gravity: Gravity Chapter 5 Guidepost In this chapter, you will consider the force of gravity: What were Galileo s insights about motion and gravity? What were Newton s insights about motion and gravity? How does

More information

Newton s Laws of Motion. Monday, September 26, 11

Newton s Laws of Motion. Monday, September 26, 11 Newton s Laws of Motion Introduction We ve studied motion in one, two, and three dimensions but what causes motion? This causality was first studied in the late 1600s by Sir Isaac Newton. The laws are

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Circular Motion 04-2 1 Exam 1: Next Tuesday (9/23/14) In Stolkin (here!) at the usual lecture time Material covered: Textbook chapters 1 4.3 s up through 9/16

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis The Laws of Motion The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis Models using Newton s Second Law Forces

More information

Physics Test 7: Circular Motion page 1

Physics Test 7: Circular Motion page 1 Name Physics Test 7: Circular Motion page 1 hmultiple Choice Read each question and choose the best answer by putting the corresponding letter in the blank to the left. 1. The SI unit of angular speed

More information

PSI AP Physics C Universal Gravity Multiple Choice Questions

PSI AP Physics C Universal Gravity Multiple Choice Questions PSI AP Physics C Universal Gravity Multiple Choice Questions 1. Who determined the value of the gravitational constant (G)? (A) Newton (B) Galileo (C) Einstein (D) Schrödinger (E) Cavendish 2. Who came

More information

Chapter 13. Universal Gravitation 13.1: Newton's Law of Universal Gravitation 13.2: Free-Fall Acceleration and the Gravitational Force

Chapter 13. Universal Gravitation 13.1: Newton's Law of Universal Gravitation 13.2: Free-Fall Acceleration and the Gravitational Force Chapter 13 Universal Gravitation 13.1: Newton's Law of Universal Gravitation 13.2: Free-Fall Acceleration and the Gravitational Force 1 Planetary Motion A large amount of data had been collected by 1687.

More information

Dynamics: Newton s Laws of Motion

Dynamics: Newton s Laws of Motion Lecture 6 Chapter 4 Physics I 02.10.2013 Dynamics: Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1spring.html

More information

Angel International School - Manipay 1 st Term Examination November, 2015

Angel International School - Manipay 1 st Term Examination November, 2015 Grade 09 Angel International School - Manipay 1 st Term Examination November, 2015 Physics Duration: 3.00 Hours Index No:- Part 1 1) What is the SI unit of mass? a) kg b) mg c) g d) t 2) Which list contains

More information

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12 GRAVITY Chapter 12 Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

Contents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents

Contents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents Physics 121 for Majors Today s Class You will see how motion in a circle is mathematically similar to motion in a straight line. You will learn that there is a centripetal acceleration (and force) and

More information

EQUATIONS OF MOTION: RECTANGULAR COORDINATES

EQUATIONS OF MOTION: RECTANGULAR COORDINATES EQUATIONS OF MOTION: RECTANGULAR COORDINATES Today s Objectives: Students will be able to: 1. Apply Newton s second law to determine forces and accelerations for particles in rectilinear motion. In-Class

More information

Gravitation & Kepler s Laws

Gravitation & Kepler s Laws Gravitation & Kepler s Laws What causes YOU to be pulled down to the surface of the earth? THE EARTH.or more specifically the EARTH S MASS. Anything that has MASS has a gravitational pull towards it. F

More information

Energy graphs and work

Energy graphs and work Energy graphs and work Saturday physics at 2pm tomorrow on music. LA info session on Monday at 5pm in UMC235 Clicker scores have been updated. If you have a 0, contact me and include your clicker ID number.

More information

Chapter 6 Gravitation and Newton s Synthesis

Chapter 6 Gravitation and Newton s Synthesis Chapter 6 Gravitation and Newton s Synthesis If the force of gravity is being exerted on objects on Earth, what is the origin of that force? Newton s realization was that the force must come from the Earth.

More information

2 o. (2) Here, the parameters vo and g are, respectively, the initial velocity and the acceleration.

2 o. (2) Here, the parameters vo and g are, respectively, the initial velocity and the acceleration. PHY101 Physics Lab: TO GRAVITY ACCELERATION DUE Purpose To determine the value of the gravitational acceleration Theory When we use the word acceleration we mean the rate at which the velocity of a moving

More information

Newton s Laws of Motion

Newton s Laws of Motion Chapter 4 Newton s Laws of Motion PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 4 To understand the meaning

More information

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension)

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension) Force 10/01/2010 = = Friction Force (Weight) (Tension), coefficient of static and kinetic friction MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236 2008 midterm posted for practice. Help sessions Mo, Tu

More information

UNIT-07. Newton s Three Laws of Motion

UNIT-07. Newton s Three Laws of Motion 1. Learning Objectives: UNIT-07 Newton s Three Laws of Motion 1. Understand the three laws of motion, their proper areas of applicability and especially the difference between the statements of the first

More information

Chapters 5-6. Dynamics: Forces and Newton s Laws of Motion. Applications

Chapters 5-6. Dynamics: Forces and Newton s Laws of Motion. Applications Chapters 5-6 Dynamics: orces and Newton s Laws of Motion. Applications That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal,

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

Why Doesn t the Moon Hit us? In analysis of this question, we ll look at the following things: i. How do we get the acceleration due to gravity out

Why Doesn t the Moon Hit us? In analysis of this question, we ll look at the following things: i. How do we get the acceleration due to gravity out Why Doesn t the oon Hit us? In analysis of this question, we ll look at the following things: i. How do we get the acceleration due to gravity out of the equation for the force of gravity? ii. How does

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapter 5 Force and Motion Chapter Goal: To establish a connection between force and motion. Slide 5-2 Chapter 5 Preview Slide 5-3 Chapter 5 Preview Slide 5-4 Chapter 5 Preview Slide 5-5 Chapter 5 Preview

More information

CIRCULAR MOTION AND GRAVITATION

CIRCULAR MOTION AND GRAVITATION CIRCULAR MOTION AND GRAVITATION An object moves in a straight line if the net force on it acts in the direction of motion, or is zero. If the net force acts at an angle to the direction of motion at any

More information

GRAVITATIONAL FORCE AND FIELD

GRAVITATIONAL FORCE AND FIELD POINT AND FORCES A. POINT AND FORCES A FACT: Every particle of matter in the universe attracts every other particle with a force which is directly proportional to the product of their masses and inversely

More information

Quest Chapter 12. What things did Newton bring together and what did he toss? Read the text or check your notes. How does the moon move?

Quest Chapter 12. What things did Newton bring together and what did he toss? Read the text or check your notes. How does the moon move? 1 What is the Newtonian synthesis? 1. All objects near the Earth free-fall with the same acceleration. 2. The combination of forces on each planet directed towards the Sun 3. The combination of all forces

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information