A Comparison of Particle Filters for Personal Positioning

Size: px
Start display at page:

Download "A Comparison of Particle Filters for Personal Positioning"

Transcription

1 VI Hotine-Marussi Symposium of Theoretical and Computational Geodesy May 9-June 6. A Comparison of Particle Filters for Personal Positioning D. Petrovich and R. Piché Institute of Mathematics Tampere University of Technology P.O. Bo Tampere Finland Abstract. Particle filters also nown as sequential Monte Carlo methods are a convenient and popular way to numerically approimate optimal Bayesian filters for nonlinear non-gaussian problems. In the literature the performance of different filters is often determined empirically by comparing the filter s conditional with the true trac in a set of simulations. This is not ideal. Because these filters produce approimations of the optimal Bayesian posterior distribution the comparison should be based on the quality of this approimation rather than on an estimate formed from the distribution. In this wor we apply a multivariate binning technique to compare the performance of different particle filters. In our simulation we find that the conclusions of the distribution comparison are similar to the conclusions of a root square error analysis of the conditional estimate. Keywords. Sequential Monte Carlo Particle Filter Bayesian estimation Introduction Particle filters (PFs implement the recursive Bayesian filter with Monte Carlo (MC simulation and approimate the posterior distribution by a set of samples with appropriate weights. This is most attractive in nonlinear and non-gaussian situations where the integrals of Bayes recursions are not tractable. In the literature many PF simulations focus on the MC variation of the estimates i.e. the randomness introduced by the MC algorithm that can be observed from the empirical estimates. Better PFs vary less. In this wor we develop a method to compare PF performance that uses the distribution approimation itself rather than a single estimate formed from it. A distribution analysis could be more useful than an estimate analysis. As eamples two filters could give similar estimates although one of them has a distribution closer to the true distribution. Also in a bimodal case the could be between the two modes in a region of the state-space where there is little probability of the target being located; in a case such as this the is less interesting to analyze and we are more concerned if our filter appropriately characterizes this bimodal characteristic. We will discuss one proposed method for comparing distributions and then apply this method to the comparison of four PFs (SIR SIR SIR3 SIR4 described in the Appendi. Comparing Distributions with χ -tests An interesting application of distribution comparisons was given by Roederer et al. ( in the field of cytometry. Test samples i.e. sets of multidimensional data are to be raned according to their similarity to a control sample which is a sample of data chosen to represent some nown behavior. A multivariate data-dependent binning technique was proposed that adaptively constructed bins according to the control sample followed by the use of a test statistic to quantify the difference between the test and control sample. Baggerly ( provides a more theoretical discussion of this approach with the recommendation to use the standard two-sample χ - test statistic. The form of the computed test statistic is (Baggerly ( B ( oi ei ψ = i= = ei where B is the number of bins o i is the observed count of the th bin of the i th sample set and e i is the epected count of the th bin of the i th sample set given by ( o + o ei = ni ( n + n where n i is the number of samples in set i. The algorithm of Roederer et al. ( that is used for constructing the bins is called probability binning and is as follows. The variance of the control sample along each of the d dimensions is computed and the dimension with the largest variance is chosen to be divided. The sample median value of the chosen dimension is then chosen as the point at which to partition the state-

2 space in two. This is then repeated for each partitioned subspace continuing until the desired number of bins has been reached. The result is a set of d-dimensional hyper-rectangular bins with sides parallel to the coordinate aes and each bin containing roughly the same number of control samples see Figure. Assuming then that a test sample is from the same distribution as the control sample each bin will roughly have the same epected frequency. The two-sample test statistic is then approimately χ B distributed i.e. approimately distributed according to a χ distribution with B- degrees of freedom. The binning of the PF samples is done as follows. At each time step we simulate M=N= 4 samples using multinomial sampling from the importance distribution evaluate weights and sip the final resampling step. The binning at each time step uses the weighted samples. We draw 4 samples using systematic resampling from this weighted discrete distribution bin the equallyweighted samples compute the test score and discard these resampled points. If the weights are equal then the binning can proceed without resampling. To verify that the test score analysis is ingful we can compare our conclusions to those made from a root square error (RMSE analysis of the estimates. The RMSE is given as RMSE = Ε ˆ μ μ ( Fig. Probability Binning in R with B=3 3 Application to Linear and Gaussian Filtering Scenarios Assume for a moment that we are able to generate IID samples from the true marginal posterior. We can then apply the probability binning procedure at each time step so that the state-space R n is partitioned into bins using a sample from the true marginal posterior. It might be reasonable then to assume that the quality of a PF approimation of the marginal posterior can be assessed using the twosample χ -test where the hypothesis is that the samples from the true marginal posterior and the samples from the PF approimation are from the same distribution. Roughly speaing we might epect better PFs to give better test scores where better test scores refers to realizations of a random variable with distribution closer to the assumed χ distribution. We chec this empirically by repeating the simulation times and comparing the of the realized test scores to that from the assumed χ distribution. For a χ B distribution the is B-. All of our simulations use B=64. where μˆ is the random posterior estimate and μ is the true posterior. The epectation in equation is approimated by repeating the simulation 5 times and using the sample. Due to lac of space we have omitted our linear- Gaussian simulations and proceed directly to the general filtering scenario. The interested reader is referred to Petrovich (6. 4 Application to General Filtering Scenarios We would lie to apply this distribution analysis to PFs in the general filtering scenario where we do not have an analytic form for the posterior. The difficulty is then to determine a control sample that can be used to partition the state-space. Ideally we would have some algorithm that was nown to produce IID samples from the marginal posterior that we could use to produce the control sample. In the absence of such an ideal algorithm we have chosen one PF algorithm as a reference. The partitioning of the state-space using a reference PF is done as follows. We have used the SIR3 importance distribution and at each time step draw M= 7 samples from the importance distribution evaluate weights and then resample N= 4 samples from this weighted distribution. The importance sampling uses deterministic sampling ( 3 samples from each miture component and the resampling uses systematic sampling. The binning at each time step uses the M weighted samples. We draw 6 samples from this weighted discrete distribution perform the probability binning on these equally-weighted samples and discard these resampled points.

3 It should be mentioned that the simulation scenario of this section is the same simulation scenario as that in Heine (5 i.e. the same signal and measurement models and the same realized measurement and signal process. We have reproduced the results (i.e. the relative RMSE plots and review the conclusions of that publication here for convenience. The contribution of this wor is the application of the probability binning method to the comparison of PFs. 4. Simulation Description For this simulation the state is in R 4 with two position coordinates r and two velocity coordinates u i.e. e n e n T = [ r r u u ]. The evolution of the state in continuous-time can be described by a white noise acceleration model see e.g. Bar-Shalom and Li (998. The discretized state equation for each [ r u ] T coordinate is written as Δt = F + v F = where Δt = t -t - and v - Ν( Σ v 3 3 Σ v = γ. Δt Δt Δt Δt with We simulate a second traectory with a constant time step of Δt = second and γ = 3 m /s 3. The state's initial distribution P is Gaussian and nown. Three base stations are used and at each time step one base station produces a range measurement. The range measurement of the form b y = r r + z z ~ Ν( σ where r b is the nown position of a base station. In the simulation of the observation process the probability of a base station producing a measurement is inversely proportional to the squared distance to the target. For each filter four separate simulations were run each using a different variance σ for the noise in the measurement model: 4 5. m. The true posterior μ in the RMSE analysis see equation is approimated using the same reference PF that was used for creating the bins. 4. Results We first consider an analysis of the RMSE of the estimates. The RMSE values are divided by the SIR RMSE values and plotted in Figure. These relative RMSE values show how the MC variation of estimates for the different filters compare to SIR: values lower than one indicate improved performance compared to SIR (less MC variation while values above one indicate worse performance (more MC variation. With the largest noise variance (σ = 4 m all the filters seem to have similar MC variance. With σ =5 m the SIR and SIR4 filters clearly have less MC variation while for cases with smaller measurement noise variance (σ = and. m the SIR3 and SIR4 filters have less MC variance. Also the SIR behaves erratically at the smaller measurement noise variance. Due to weights summing to zero in the PF algorithm on the σ =. m case SIR is averaged over only 998 realizations and SIR is averaged over only 365 realizations for that case Fig. Relative RMSE w.r.t. SIR for nonlinear- Gaussian scenario. From top-to-bottom σ = 4 5. m. In Figure 3 the test score is plotted over the whole simulation. It is interesting to note that the test scores rarely resemble the χ theoretical distribution. However there appears to be different behavior for the different filters. Note that all the results are rather similar with large σ and the differences become more apparent as σ decreases. Also note that for σ = 4 and 5 m there is near time SIR SIR SIR3 SIR4

4 identical results for the SIR and SIR3 filters and for the SIR and SIR4 filter. For σ =. m the SIR score s are quite large and are outside of the plotted region. The intention of these plots was not to display the actual score s but instead to show the relative performance of the different filters. For cases with larger measurement noise variances (σ = 4 and 5 m the two filters using alternative weights in the importance distribution (SIR and SIR4 have smaller s. For cases with smaller measurement noise variances (σ = and. m the two filters using alternative components in the importance distribution (SIR3 and SIR4 show smaller s while the SIR results behave erratically. It might be reasonable then to conclude that the filters having test scores closer to the theoretical distribution χ B i.e. having smaller test score s are woring better Fig. 3 Mean of two-sample χ test statistic for nonlinear-gaussian scenario. From top-to-bottom σ = 4 5. m. In summary similar conclusions about the relative performance of the different PFs can be found using alternative criteria i.e. the distribution analysis and the RMSE analysis of the estimates. The empirical comparison of different PFs using χ techniques seems to be feasible even in scenarios where the state-space partitioning relies on a PF. 5 Conclusions In this wor we applied a multivariate binning technique from Roederer et al. ( to the time SIR SIR SIR3 SIR4 comparison of PFs. This was described for a linear and Gaussian filtering scenario where we have an analytical form of the marginal posterior and also for a nonlinear and Gaussian filtering scenario where we estimated the optimal solution with a PF. The conclusions resulting from the proposed test were similar to the conclusions from an RMSE analysis of the estimates. We have not offered a detailed discussion of the practical implementation aspects of such a test. It should be mentioned that our implementation of the test i.e. the construction of the bins and the actual binning of the samples used data structures similar to Kd-trees see e.g. de Berg et al. ( and was computationally feasible for the cases that we considered. The literature on the χ -test is vast and admittedly our treatment of the test has been brief. In this section we point out some questionable aspects of our use of this test for comparing PFs. First we should question the use of the χ -test itself. We are testing whether the two samples are from the same distribution although it was already noted in Pitt and Shephard (999 that the methods will not produce IID samples from the true posterior due to the finite miture approimation. In spite of this we have still considered the test scores as a way to empirically quantify the difference between distributions. Second we should question how the χ -test was actually performed. The number of bins and the construction of the bins in χ -tests is not always straightforward and is therefore debatable. The resampling that is carried out before binning the PF samples is also questionable; due to the etra resampling our test is then comparing an approimation of the PF approimation which complicates the analysis. Finally our use of a large sample PF to approimate the optimal posterior as well as our choice of importance distribution for this PF is not properly ustified; other methods such as reection sampling or MCMC might result in a better approimation of the posterior. The intention of the distribution comparison was to devise better ways of comparing PFs and possibly other Bayesian filters. The binning procedure that was described is of course limited to sample-based methods. Other possible methods could include integrating the posterior distribution over a finite number of regions and then using some distance e.g. Kullbac Leibler divergence or total variation distance on the resulting finite state-space to quantify the distance between the distributions. However the choice of distance is then quite arbitrary and there is little reason to prefer one distance over another. This seems to be an interesting area for future wor.

5 References Baggerly K.A. (. Probability Binning and testing agreement between multivariate immunofluorescence histograms: Etending the chi-square test. Cytometry Vol. 45 pp De Berg M. M. van Kreveld M. Overmars and O. Schwartzopf (. Computational Geometry: Algorithms and Applications. Springer nd Ed. Heine K. (5. Unified framewor for sampling/importance resampling algorithms. In Proceedings of Fusion 5. Pitt M.K. and N. Shephard (999. Filtering via simulation: Auiliary particle filter. In Journal of the American Statistical Association Vol. 94 No. 446 pp Petrovich D. (6. Sequential Monte Carlo for Personal Positioning. M.Sc. Thesis submitted to: Tampere University of Technology. Roederer M. W. Moore A. Treister R. Hardy and L.A. Herzenberg (. Probability binning comparison: a metric for quantitating multivariate differences. Cytometry Vol. 45 pp Appendi In this section we briefly describe the four different importance distributions used for the PFs tested in this wor. The system equations are typically given as = f ( + v y = h ( + z where and y are the values of the signal and observation stochastic process respectively at time. Furthermore v - denotes the state of the signal noise process at time - and z denotes the state of the observation noise process at time. We follow the auiliary formulation of Pitt and Shephard (999. Assuming that we have N particles approimately distributed according to P the algorithm is as follows: For = For i=:n assign st i -state weights β and normalize For i=:m sample inde i from discrete distribution of st -stage weights i For i=:m sample state conditioned on inde i and all received measurements y : For i=:m evaluate nd -stage weights and normalize Resample N particles The general form of the unnormalized second-stage importance weight can be written as w( q( w y y : : y β q where is the auiliary variable ( β is the th firststage weight and q is the th importance density. Note that for notational convenience we have dropped the conditioning on the measurements for the first-stage weight and importance density. The four different importance distributions result from different choices of β and q. SIR results from using β = w and q =. SIR is an eample from Pitt and Shephard (999 that uses β w y ξ and q = p where is the of the ( ξ distribution of. Note that in the literature this eample is often referred to as the auiliary particle filter. SIR3 again uses β = w but now uses an EKF for each importance distribution i.e. q = ν ( ; μ C where ν is a density of μ a Gaussian distribution and the and th covariance C are given by the posterior of the EKF. SIR4 uses the same importance distribution as SIR3 but has different first-stage weights given by β = w c where c = ν ( y ; m Ξ m = h ( f ( ˆ ( ˆ T Ξ = H Σ H + Σ Ĥ v z where is the Jacobian matri of h evaluated at f ( Σ v is the covariance matri of the signal noise v- Σ z is the covariance of the observation noise z.

The Unscented Particle Filter

The Unscented Particle Filter The Unscented Particle Filter Rudolph van der Merwe (OGI) Nando de Freitas (UC Bereley) Arnaud Doucet (Cambridge University) Eric Wan (OGI) Outline Optimal Estimation & Filtering Optimal Recursive Bayesian

More information

A STATE ESTIMATOR FOR NONLINEAR STOCHASTIC SYSTEMS BASED ON DIRAC MIXTURE APPROXIMATIONS

A STATE ESTIMATOR FOR NONLINEAR STOCHASTIC SYSTEMS BASED ON DIRAC MIXTURE APPROXIMATIONS A STATE ESTIMATOR FOR NONINEAR STOCHASTIC SYSTEMS BASED ON DIRAC MIXTURE APPROXIMATIONS Oliver C. Schrempf, Uwe D. Hanebec Intelligent Sensor-Actuator-Systems aboratory, Universität Karlsruhe (TH), Germany

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA Contents in latter part Linear Dynamical Systems What is different from HMM? Kalman filter Its strength and limitation Particle Filter

More information

Particle Methods as Message Passing

Particle Methods as Message Passing Particle Methods as Message Passing Justin Dauwels RIKEN Brain Science Institute Hirosawa,2-1,Wako-shi,Saitama,Japan Email: justin@dauwels.com Sascha Korl Phonak AG CH-8712 Staefa, Switzerland Email: sascha.korl@phonak.ch

More information

Bayesian Quadrature: Model-based Approximate Integration. David Duvenaud University of Cambridge

Bayesian Quadrature: Model-based Approximate Integration. David Duvenaud University of Cambridge Bayesian Quadrature: Model-based Approimate Integration David Duvenaud University of Cambridge The Quadrature Problem ˆ We want to estimate an integral Z = f ()p()d ˆ Most computational problems in inference

More information

A Note on Auxiliary Particle Filters

A Note on Auxiliary Particle Filters A Note on Auxiliary Particle Filters Adam M. Johansen a,, Arnaud Doucet b a Department of Mathematics, University of Bristol, UK b Departments of Statistics & Computer Science, University of British Columbia,

More information

RECURSIVE OUTLIER-ROBUST FILTERING AND SMOOTHING FOR NONLINEAR SYSTEMS USING THE MULTIVARIATE STUDENT-T DISTRIBUTION

RECURSIVE OUTLIER-ROBUST FILTERING AND SMOOTHING FOR NONLINEAR SYSTEMS USING THE MULTIVARIATE STUDENT-T DISTRIBUTION 1 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 3 6, 1, SANTANDER, SPAIN RECURSIVE OUTLIER-ROBUST FILTERING AND SMOOTHING FOR NONLINEAR SYSTEMS USING THE MULTIVARIATE STUDENT-T

More information

Lecture 3. G. Cowan. Lecture 3 page 1. Lectures on Statistical Data Analysis

Lecture 3. G. Cowan. Lecture 3 page 1. Lectures on Statistical Data Analysis Lecture 3 1 Probability (90 min.) Definition, Bayes theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests (90 min.) general concepts, test statistics,

More information

Self Adaptive Particle Filter

Self Adaptive Particle Filter Self Adaptive Particle Filter Alvaro Soto Pontificia Universidad Catolica de Chile Department of Computer Science Vicuna Mackenna 4860 (143), Santiago 22, Chile asoto@ing.puc.cl Abstract The particle filter

More information

Sequential Monte Carlo Methods for Bayesian Computation

Sequential Monte Carlo Methods for Bayesian Computation Sequential Monte Carlo Methods for Bayesian Computation A. Doucet Kyoto Sept. 2012 A. Doucet (MLSS Sept. 2012) Sept. 2012 1 / 136 Motivating Example 1: Generic Bayesian Model Let X be a vector parameter

More information

Mobile Robot Localization

Mobile Robot Localization Mobile Robot Localization 1 The Problem of Robot Localization Given a map of the environment, how can a robot determine its pose (planar coordinates + orientation)? Two sources of uncertainty: - observations

More information

Bayesian Approach 2. CSC412 Probabilistic Learning & Reasoning

Bayesian Approach 2. CSC412 Probabilistic Learning & Reasoning CSC412 Probabilistic Learning & Reasoning Lecture 12: Bayesian Parameter Estimation February 27, 2006 Sam Roweis Bayesian Approach 2 The Bayesian programme (after Rev. Thomas Bayes) treats all unnown quantities

More information

L09. PARTICLE FILTERING. NA568 Mobile Robotics: Methods & Algorithms

L09. PARTICLE FILTERING. NA568 Mobile Robotics: Methods & Algorithms L09. PARTICLE FILTERING NA568 Mobile Robotics: Methods & Algorithms Particle Filters Different approach to state estimation Instead of parametric description of state (and uncertainty), use a set of state

More information

Online tests of Kalman filter consistency

Online tests of Kalman filter consistency Tampere University of Technology Online tests of Kalman filter consistency Citation Piché, R. (216). Online tests of Kalman filter consistency. International Journal of Adaptive Control and Signal Processing,

More information

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω ECO 513 Spring 2015 TAKEHOME FINAL EXAM (1) Suppose the univariate stochastic process y is ARMA(2,2) of the following form: y t = 1.6974y t 1.9604y t 2 + ε t 1.6628ε t 1 +.9216ε t 2, (1) where ε is i.i.d.

More information

Bayesian Estimation of Input Output Tables for Russia

Bayesian Estimation of Input Output Tables for Russia Bayesian Estimation of Input Output Tables for Russia Oleg Lugovoy (EDF, RANE) Andrey Polbin (RANE) Vladimir Potashnikov (RANE) WIOD Conference April 24, 2012 Groningen Outline Motivation Objectives Bayesian

More information

Estimation of Operational Risk Capital Charge under Parameter Uncertainty

Estimation of Operational Risk Capital Charge under Parameter Uncertainty Estimation of Operational Risk Capital Charge under Parameter Uncertainty Pavel V. Shevchenko Principal Research Scientist, CSIRO Mathematical and Information Sciences, Sydney, Locked Bag 17, North Ryde,

More information

Sequential Monte Carlo methods for filtering of unobservable components of multidimensional diffusion Markov processes

Sequential Monte Carlo methods for filtering of unobservable components of multidimensional diffusion Markov processes Sequential Monte Carlo methods for filtering of unobservable components of multidimensional diffusion Markov processes Ellida M. Khazen * 13395 Coppermine Rd. Apartment 410 Herndon VA 20171 USA Abstract

More information

2D Image Processing (Extended) Kalman and particle filter

2D Image Processing (Extended) Kalman and particle filter 2D Image Processing (Extended) Kalman and particle filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz

More information

MMSE-Based Filtering for Linear and Nonlinear Systems in the Presence of Non-Gaussian System and Measurement Noise

MMSE-Based Filtering for Linear and Nonlinear Systems in the Presence of Non-Gaussian System and Measurement Noise MMSE-Based Filtering for Linear and Nonlinear Systems in the Presence of Non-Gaussian System and Measurement Noise I. Bilik 1 and J. Tabrikian 2 1 Dept. of Electrical and Computer Engineering, University

More information

EVALUATING SYMMETRIC INFORMATION GAP BETWEEN DYNAMICAL SYSTEMS USING PARTICLE FILTER

EVALUATING SYMMETRIC INFORMATION GAP BETWEEN DYNAMICAL SYSTEMS USING PARTICLE FILTER EVALUATING SYMMETRIC INFORMATION GAP BETWEEN DYNAMICAL SYSTEMS USING PARTICLE FILTER Zhen Zhen 1, Jun Young Lee 2, and Abdus Saboor 3 1 Mingde College, Guizhou University, China zhenz2000@21cn.com 2 Department

More information

Particle Filters. Outline

Particle Filters. Outline Particle Filters M. Sami Fadali Professor of EE University of Nevada Outline Monte Carlo integration. Particle filter. Importance sampling. Degeneracy Resampling Example. 1 2 Monte Carlo Integration Numerical

More information

Robert Collins CSE586, PSU Intro to Sampling Methods

Robert Collins CSE586, PSU Intro to Sampling Methods Intro to Sampling Methods CSE586 Computer Vision II Penn State Univ Topics to be Covered Monte Carlo Integration Sampling and Expected Values Inverse Transform Sampling (CDF) Ancestral Sampling Rejection

More information

Robert Collins CSE586, PSU Intro to Sampling Methods

Robert Collins CSE586, PSU Intro to Sampling Methods Intro to Sampling Methods CSE586 Computer Vision II Penn State Univ Topics to be Covered Monte Carlo Integration Sampling and Expected Values Inverse Transform Sampling (CDF) Ancestral Sampling Rejection

More information

Large-scale Ordinal Collaborative Filtering

Large-scale Ordinal Collaborative Filtering Large-scale Ordinal Collaborative Filtering Ulrich Paquet, Blaise Thomson, and Ole Winther Microsoft Research Cambridge, University of Cambridge, Technical University of Denmark ulripa@microsoft.com,brmt2@cam.ac.uk,owi@imm.dtu.dk

More information

Local Positioning with Parallelepiped Moving Grid

Local Positioning with Parallelepiped Moving Grid Local Positioning with Parallelepiped Moving Grid, WPNC06 16.3.2006, niilo.sirola@tut.fi p. 1/?? TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y M a t h e m a t i c s Local Positioning with Parallelepiped

More information

Nonlinear State Estimation! Particle, Sigma-Points Filters!

Nonlinear State Estimation! Particle, Sigma-Points Filters! Nonlinear State Estimation! Particle, Sigma-Points Filters! Robert Stengel! Optimal Control and Estimation, MAE 546! Princeton University, 2017!! Particle filter!! Sigma-Points Unscented Kalman ) filter!!

More information

ON MODEL SELECTION FOR STATE ESTIMATION FOR NONLINEAR SYSTEMS. Robert Bos,1 Xavier Bombois Paul M. J. Van den Hof

ON MODEL SELECTION FOR STATE ESTIMATION FOR NONLINEAR SYSTEMS. Robert Bos,1 Xavier Bombois Paul M. J. Van den Hof ON MODEL SELECTION FOR STATE ESTIMATION FOR NONLINEAR SYSTEMS Robert Bos,1 Xavier Bombois Paul M. J. Van den Hof Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD

More information

Cramér-Rao Bounds for Estimation of Linear System Noise Covariances

Cramér-Rao Bounds for Estimation of Linear System Noise Covariances Journal of Mechanical Engineering and Automation (): 6- DOI: 593/jjmea Cramér-Rao Bounds for Estimation of Linear System oise Covariances Peter Matiso * Vladimír Havlena Czech echnical University in Prague

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

Rao-Blackwellized Particle Filter for Multiple Target Tracking

Rao-Blackwellized Particle Filter for Multiple Target Tracking Rao-Blackwellized Particle Filter for Multiple Target Tracking Simo Särkkä, Aki Vehtari, Jouko Lampinen Helsinki University of Technology, Finland Abstract In this article we propose a new Rao-Blackwellized

More information

Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model. David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC

Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model. David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC Background Data Assimilation Iterative process Forecast Analysis Background

More information

Multiple target tracking based on sets of trajectories

Multiple target tracking based on sets of trajectories Multiple target tracing based on sets of traectories Ángel F. García-Fernández, Lennart vensson, Mar R. Morelande arxiv:6.863v3 [cs.cv] Feb 9 Abstract We propose a solution of the multiple target tracing

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

Statistical Data Analysis Stat 3: p-values, parameter estimation

Statistical Data Analysis Stat 3: p-values, parameter estimation Statistical Data Analysis Stat 3: p-values, parameter estimation London Postgraduate Lectures on Particle Physics; University of London MSci course PH4515 Glen Cowan Physics Department Royal Holloway,

More information

Comparision of Probabilistic Navigation methods for a Swimming Robot

Comparision of Probabilistic Navigation methods for a Swimming Robot Comparision of Probabilistic Navigation methods for a Swimming Robot Anwar Ahmad Quraishi Semester Project, Autumn 2013 Supervisor: Yannic Morel BioRobotics Laboratory Headed by Prof. Aue Jan Ijspeert

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods By Oleg Makhnin 1 Introduction a b c M = d e f g h i 0 f(x)dx 1.1 Motivation 1.1.1 Just here Supresses numbering 1.1.2 After this 1.2 Literature 2 Method 2.1 New math As

More information

A Systematic Approach for Kalman-type Filtering with non-gaussian Noises

A Systematic Approach for Kalman-type Filtering with non-gaussian Noises Tampere University of Technology A Systematic Approach for Kalman-type Filtering with non-gaussian Noises Citation Raitoharju, M., Piche, R., & Nurminen, H. (26). A Systematic Approach for Kalman-type

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Curve Fitting Re-visited, Bishop1.2.5

Curve Fitting Re-visited, Bishop1.2.5 Curve Fitting Re-visited, Bishop1.2.5 Maximum Likelihood Bishop 1.2.5 Model Likelihood differentiation p(t x, w, β) = Maximum Likelihood N N ( t n y(x n, w), β 1). (1.61) n=1 As we did in the case of the

More information

On the Optimal Scaling of the Modified Metropolis-Hastings algorithm

On the Optimal Scaling of the Modified Metropolis-Hastings algorithm On the Optimal Scaling of the Modified Metropolis-Hastings algorithm K. M. Zuev & J. L. Beck Division of Engineering and Applied Science California Institute of Technology, MC 4-44, Pasadena, CA 925, USA

More information

NON-LINEAR NOISE ADAPTIVE KALMAN FILTERING VIA VARIATIONAL BAYES

NON-LINEAR NOISE ADAPTIVE KALMAN FILTERING VIA VARIATIONAL BAYES 2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING NON-LINEAR NOISE ADAPTIVE KALMAN FILTERING VIA VARIATIONAL BAYES Simo Särä Aalto University, 02150 Espoo, Finland Jouni Hartiainen

More information

Posterior Cramer-Rao Lower Bound for Mobile Tracking in Mixed Line-of-Sight/Non Line-of-Sight Conditions

Posterior Cramer-Rao Lower Bound for Mobile Tracking in Mixed Line-of-Sight/Non Line-of-Sight Conditions Posterior Cramer-Rao Lower Bound for Mobile Tracking in Mixed Line-of-Sight/Non Line-of-Sight Conditions Chen Liang 1,2, Wu Lenan 2, Robert Piché 1 1 Tampere University of Technology, Finland 2 Southeast

More information

Bayesian Methods / G.D. Hager S. Leonard

Bayesian Methods / G.D. Hager S. Leonard Bayesian Methods Recall Robot Localization Given Sensor readings z 1, z 2,, z t = z 1:t Known control inputs u 0, u 1, u t = u 0:t Known model t+1 t, u t ) with initial 1 u 0 ) Known map z t t ) Compute

More information

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu Anwesan Pal:

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

Approximate Bayesian Computation

Approximate Bayesian Computation Approximate Bayesian Computation Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki and Aalto University 1st December 2015 Content Two parts: 1. The basics of approximate

More information

Basic Sampling Methods

Basic Sampling Methods Basic Sampling Methods Sargur Srihari srihari@cedar.buffalo.edu 1 1. Motivation Topics Intractability in ML How sampling can help 2. Ancestral Sampling Using BNs 3. Transforming a Uniform Distribution

More information

Evaluating the Consistency of Estimation

Evaluating the Consistency of Estimation Tampere University of Technology Evaluating the Consistency of Estimation Citation Ivanov, P., Ali-Löytty, S., & Piche, R. (201). Evaluating the Consistency of Estimation. In Proceedings of 201 International

More information

Gaussian Mixtures Proposal Density in Particle Filter for Track-Before-Detect

Gaussian Mixtures Proposal Density in Particle Filter for Track-Before-Detect 12th International Conference on Information Fusion Seattle, WA, USA, July 6-9, 29 Gaussian Mixtures Proposal Density in Particle Filter for Trac-Before-Detect Ondřej Straa, Miroslav Šimandl and Jindřich

More information

NUMERICAL COMPUTATION OF THE CAPACITY OF CONTINUOUS MEMORYLESS CHANNELS

NUMERICAL COMPUTATION OF THE CAPACITY OF CONTINUOUS MEMORYLESS CHANNELS NUMERICAL COMPUTATION OF THE CAPACITY OF CONTINUOUS MEMORYLESS CHANNELS Justin Dauwels Dept. of Information Technology and Electrical Engineering ETH, CH-8092 Zürich, Switzerland dauwels@isi.ee.ethz.ch

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Kernel adaptive Sequential Monte Carlo

Kernel adaptive Sequential Monte Carlo Kernel adaptive Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) December 7, 2015 1 / 36 Section 1 Outline

More information

Learning Objectives for Stat 225

Learning Objectives for Stat 225 Learning Objectives for Stat 225 08/20/12 Introduction to Probability: Get some general ideas about probability, and learn how to use sample space to compute the probability of a specific event. Set Theory:

More information

Lecture 7: Optimal Smoothing

Lecture 7: Optimal Smoothing Department of Biomedical Engineering and Computational Science Aalto University March 17, 2011 Contents 1 What is Optimal Smoothing? 2 Bayesian Optimal Smoothing Equations 3 Rauch-Tung-Striebel Smoother

More information

Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations

Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations PREPRINT 1 Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations Simo Särä, Member, IEEE and Aapo Nummenmaa Abstract This article considers the application of variational Bayesian

More information

Par$cle Filters Part I: Theory. Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading

Par$cle Filters Part I: Theory. Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading Par$cle Filters Part I: Theory Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading Reading July 2013 Why Data Assimila$on Predic$on Model improvement: - Parameter es$ma$on

More information

Langevin Monte Carlo Filtering for Target Tracking

Langevin Monte Carlo Filtering for Target Tracking Langevin Monte Carlo Filtering for Target Tracing Fernando J Iglesias García, Mélanie Bocquel, Hans Driessen Thales Nederland BV - Sensors Development System Engineering, Hengelo, Nederland Email: {FernandojoseIglesiasgarcia,

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics Table of Preface page xi PART I INTRODUCTION 1 1 The meaning of probability 3 1.1 Classical definition of probability 3 1.2 Statistical definition of probability 9 1.3 Bayesian understanding of probability

More information

M.S. Project Report. Efficient Failure Rate Prediction for SRAM Cells via Gibbs Sampling. Yamei Feng 12/15/2011

M.S. Project Report. Efficient Failure Rate Prediction for SRAM Cells via Gibbs Sampling. Yamei Feng 12/15/2011 .S. Project Report Efficient Failure Rate Prediction for SRA Cells via Gibbs Sampling Yamei Feng /5/ Committee embers: Prof. Xin Li Prof. Ken ai Table of Contents CHAPTER INTRODUCTION...3 CHAPTER BACKGROUND...5

More information

Tutorial on Approximate Bayesian Computation

Tutorial on Approximate Bayesian Computation Tutorial on Approximate Bayesian Computation Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology 16 May 2016

More information

Why do we care? Examples. Bayes Rule. What room am I in? Handling uncertainty over time: predicting, estimating, recognizing, learning

Why do we care? Examples. Bayes Rule. What room am I in? Handling uncertainty over time: predicting, estimating, recognizing, learning Handling uncertainty over time: predicting, estimating, recognizing, learning Chris Atkeson 004 Why do we care? Speech recognition makes use of dependence of words and phonemes across time. Knowing where

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Announcements Machine Learning Lecture 3 Eam dates We re in the process of fiing the first eam date Probability Density Estimation II 9.0.207 Eercises The first eercise sheet is available on L2P now First

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Probabilistic Fundamentals in Robotics Gaussian Filters Course Outline Basic mathematical framework Probabilistic models of mobile robots Mobile

More information

Kernel Sequential Monte Carlo

Kernel Sequential Monte Carlo Kernel Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) * equal contribution April 25, 2016 1 / 37 Section

More information

Sequential Monte Carlo methods for Multi-target Filtering with Random Finite Sets

Sequential Monte Carlo methods for Multi-target Filtering with Random Finite Sets IEEE TRANSACTIONS ON AEROSPACE AND EECTRONIC SSTEMS, VO., NO., JUNE 5 Sequential Monte Carlo methods for Multi-target Filtering with Random Finite Sets Ba-Ngu Vo, Sumeetpal Singh, and Arnaud Doucet Abstract

More information

Bayesian Networks in Educational Assessment

Bayesian Networks in Educational Assessment Bayesian Networks in Educational Assessment Estimating Parameters with MCMC Bayesian Inference: Expanding Our Context Roy Levy Arizona State University Roy.Levy@asu.edu 2017 Roy Levy MCMC 1 MCMC 2 Posterior

More information

Variational Methods in Bayesian Deconvolution

Variational Methods in Bayesian Deconvolution PHYSTAT, SLAC, Stanford, California, September 8-, Variational Methods in Bayesian Deconvolution K. Zarb Adami Cavendish Laboratory, University of Cambridge, UK This paper gives an introduction to the

More information

Random Finite Set Methods. for Multitarget Tracking

Random Finite Set Methods. for Multitarget Tracking Random Finite Set Methods for Multitarget Tracing RANDOM FINITE SET METHODS FOR MULTITARGET TRACKING BY DARCY DUNNE a thesis submitted to the department of electrical & computer engineering and the school

More information

in a Rao-Blackwellised Unscented Kalman Filter

in a Rao-Blackwellised Unscented Kalman Filter A Rao-Blacwellised Unscented Kalman Filter Mar Briers QinetiQ Ltd. Malvern Technology Centre Malvern, UK. m.briers@signal.qinetiq.com Simon R. Masell QinetiQ Ltd. Malvern Technology Centre Malvern, UK.

More information

AUTOMOTIVE ENVIRONMENT SENSORS

AUTOMOTIVE ENVIRONMENT SENSORS AUTOMOTIVE ENVIRONMENT SENSORS Lecture 5. Localization BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Related concepts Concepts related to vehicles moving

More information

Statistics. Lent Term 2015 Prof. Mark Thomson. 2: The Gaussian Limit

Statistics. Lent Term 2015 Prof. Mark Thomson. 2: The Gaussian Limit Statistics Lent Term 2015 Prof. Mark Thomson Lecture 2 : The Gaussian Limit Prof. M.A. Thomson Lent Term 2015 29 Lecture Lecture Lecture Lecture 1: Back to basics Introduction, Probability distribution

More information

Efficient Monitoring for Planetary Rovers

Efficient Monitoring for Planetary Rovers International Symposium on Artificial Intelligence and Robotics in Space (isairas), May, 2003 Efficient Monitoring for Planetary Rovers Vandi Verma vandi@ri.cmu.edu Geoff Gordon ggordon@cs.cmu.edu Carnegie

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

Chapter 9: Bayesian Methods. CS 336/436 Gregory D. Hager

Chapter 9: Bayesian Methods. CS 336/436 Gregory D. Hager Chapter 9: Bayesian Methods CS 336/436 Gregory D. Hager A Simple Eample Why Not Just Use a Kalman Filter? Recall Robot Localization Given Sensor readings y 1, y 2, y = y 1: Known control inputs u 0, u

More information

Sensor Tasking and Control

Sensor Tasking and Control Sensor Tasking and Control Sensing Networking Leonidas Guibas Stanford University Computation CS428 Sensor systems are about sensing, after all... System State Continuous and Discrete Variables The quantities

More information

Why do we care? Measurements. Handling uncertainty over time: predicting, estimating, recognizing, learning. Dealing with time

Why do we care? Measurements. Handling uncertainty over time: predicting, estimating, recognizing, learning. Dealing with time Handling uncertainty over time: predicting, estimating, recognizing, learning Chris Atkeson 2004 Why do we care? Speech recognition makes use of dependence of words and phonemes across time. Knowing where

More information

Introduction. log p θ (y k y 1:k 1 ), k=1

Introduction. log p θ (y k y 1:k 1 ), k=1 ESAIM: PROCEEDINGS, September 2007, Vol.19, 115-120 Christophe Andrieu & Dan Crisan, Editors DOI: 10.1051/proc:071915 PARTICLE FILTER-BASED APPROXIMATE MAXIMUM LIKELIHOOD INFERENCE ASYMPTOTICS IN STATE-SPACE

More information

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008 Gaussian processes Chuong B Do (updated by Honglak Lee) November 22, 2008 Many of the classical machine learning algorithms that we talked about during the first half of this course fit the following pattern:

More information

Rejection sampling - Acceptance probability. Review: How to sample from a multivariate normal in R. Review: Rejection sampling. Weighted resampling

Rejection sampling - Acceptance probability. Review: How to sample from a multivariate normal in R. Review: Rejection sampling. Weighted resampling Rejection sampling - Acceptance probability Review: How to sample from a multivariate normal in R Goal: Simulate from N d (µ,σ)? Note: For c to be small, g() must be similar to f(). The art of rejection

More information

State-Space Methods for Inferring Spike Trains from Calcium Imaging

State-Space Methods for Inferring Spike Trains from Calcium Imaging State-Space Methods for Inferring Spike Trains from Calcium Imaging Joshua Vogelstein Johns Hopkins April 23, 2009 Joshua Vogelstein (Johns Hopkins) State-Space Calcium Imaging April 23, 2009 1 / 78 Outline

More information

TSRT14: Sensor Fusion Lecture 8

TSRT14: Sensor Fusion Lecture 8 TSRT14: Sensor Fusion Lecture 8 Particle filter theory Marginalized particle filter Gustaf Hendeby gustaf.hendeby@liu.se TSRT14 Lecture 8 Gustaf Hendeby Spring 2018 1 / 25 Le 8: particle filter theory,

More information

A Statistical Input Pruning Method for Artificial Neural Networks Used in Environmental Modelling

A Statistical Input Pruning Method for Artificial Neural Networks Used in Environmental Modelling A Statistical Input Pruning Method for Artificial Neural Networks Used in Environmental Modelling G. B. Kingston, H. R. Maier and M. F. Lambert Centre for Applied Modelling in Water Engineering, School

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Sequential Monte Carlo Methods

Sequential Monte Carlo Methods University of Pennsylvania Bradley Visitor Lectures October 23, 2017 Introduction Unfortunately, standard MCMC can be inaccurate, especially in medium and large-scale DSGE models: disentangling importance

More information

Acceptance probability of IP-MCMC-PF: revisited

Acceptance probability of IP-MCMC-PF: revisited Acceptance probability of IP-MCMC-PF: revisited Fernando J. Iglesias García, Mélanie Bocquel, Pranab K. Mandal, and Hans Driessen. Sensors Development System Engineering, Thales Nederland B.V. Hengelo,

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 7 Sequential Monte Carlo methods III 7 April 2017 Computer Intensive Methods (1) Plan of today s lecture

More information

Extension of the Sparse Grid Quadrature Filter

Extension of the Sparse Grid Quadrature Filter Extension of the Sparse Grid Quadrature Filter Yang Cheng Mississippi State University Mississippi State, MS 39762 Email: cheng@ae.msstate.edu Yang Tian Harbin Institute of Technology Harbin, Heilongjiang

More information

Hypothesis testing:power, test statistic CMS:

Hypothesis testing:power, test statistic CMS: Hypothesis testing:power, test statistic The more sensitive the test, the better it can discriminate between the null and the alternative hypothesis, quantitatively, maximal power In order to achieve this

More information

Learning Static Parameters in Stochastic Processes

Learning Static Parameters in Stochastic Processes Learning Static Parameters in Stochastic Processes Bharath Ramsundar December 14, 2012 1 Introduction Consider a Markovian stochastic process X T evolving (perhaps nonlinearly) over time variable T. We

More information

Bayesian Model Comparison:

Bayesian Model Comparison: Bayesian Model Comparison: Modeling Petrobrás log-returns Hedibert Freitas Lopes February 2014 Log price: y t = log p t Time span: 12/29/2000-12/31/2013 (n = 3268 days) LOG PRICE 1 2 3 4 0 500 1000 1500

More information

Particle Filters. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Particle Filters. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Particle Filters Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Motivation For continuous spaces: often no analytical formulas for Bayes filter updates

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

RAO-BLACKWELLISED PARTICLE FILTERS: EXAMPLES OF APPLICATIONS

RAO-BLACKWELLISED PARTICLE FILTERS: EXAMPLES OF APPLICATIONS RAO-BLACKWELLISED PARTICLE FILTERS: EXAMPLES OF APPLICATIONS Frédéric Mustière e-mail: mustiere@site.uottawa.ca Miodrag Bolić e-mail: mbolic@site.uottawa.ca Martin Bouchard e-mail: bouchard@site.uottawa.ca

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

A Note on the Particle Filter with Posterior Gaussian Resampling

A Note on the Particle Filter with Posterior Gaussian Resampling Tellus (6), 8A, 46 46 Copyright C Blackwell Munksgaard, 6 Printed in Singapore. All rights reserved TELLUS A Note on the Particle Filter with Posterior Gaussian Resampling By X. XIONG 1,I.M.NAVON 1,2 and

More information

Parameter identification using the skewed Kalman Filter

Parameter identification using the skewed Kalman Filter Parameter identification using the sewed Kalman Filter Katrin Runtemund, Gerhard Müller, U München Motivation and the investigated identification problem Problem: damped SDOF system excited by a sewed

More information

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D.

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Ruppert A. EMPIRICAL ESTIMATE OF THE KERNEL MIXTURE Here we

More information

Numerical Fitting-based Likelihood Calculation to Speed up the Particle Filter

Numerical Fitting-based Likelihood Calculation to Speed up the Particle Filter Numerical Fitting-based Likelihood Calculation to Speed up the Particle Filter Tiancheng Li, Shudong Sun, Juan M. Corchado, Tariq P. Sattar and Shubin Si T. Li is with the with the research group of Bioinformatics,

More information