Solid State Communications Vol.2, PP , Pergamon Press, Inc. Printed in the United States. LATTICE VIBRATIONS OF TUNGSTEN*

Size: px
Start display at page:

Download "Solid State Communications Vol.2, PP , Pergamon Press, Inc. Printed in the United States. LATTICE VIBRATIONS OF TUNGSTEN*"

Transcription

1 Solid State Communications Vol.2, PP , Pergamon Press, Inc. Printed in the United States. LATTICE VIBRATIONS OF TUNGSTEN* S. H. Chen and B. N. Brockhouse Department of Physics, McMaster University, Hamilton, Ontario, Canada. (Received 29 January 1964) The frequency wave number dispersion relations of the lattice vibrations in the symmetric directions of body-centered cubic tungsten at room temperature have been measured by means of inelastic neutron scattering. The measurements were made with the Chalk River triple-axis crystal spectrometer using the constant Q method. ~ The results in the three major directions [001], [110] and [lit] are reported here together with a Born - Von Kárm~ngeneral force model analysis from which is inferred the range and magnitude of the forces between the atoms in this metal. The connection between the results and the unusual elastic behavior of tungsten is discussed. BECAUSE of the relatively high thermal the neutron groups for these phonons were neutron absorption cross-section (19.2 b.) poorly formed. The frequencies for L[crd and low coherent scattering cross-section with ~ = 0. 6, 0. 7, 0.8 are also more than (2. 74 b.) of tungsten, four individual usually uncertain. The following general cylindrical single crystals (about 0. 6 cm in features of the curves should be noted: diameter and 6. 3 cm in length) were used as 1. The two transverse branches in a composite specimen. The crystals were the [001] and [111] directions are dengenerate purchased from the Materials Research Corp. by symmetry. and were cut from a 25 cm length crystal 2. Zone boundary points in both [001] having the [110] direction roughly along the and [111] directions are equivalent and at cylindrical axis. In the experiment the four these points all branches are degenerate by pieces of crystal were mounted vertically in symmetry. an aluminum frame. The alignments of the 3. The longitudinal branch in the [001] crystals in the frame were individually direction has a maximum at about ~ = adjusted. The relative alignment of the This implies a large second neighbour force crystals is believed to have been within 1/4. constant~. The frame was so arranged that either (110) 4. l he two transverse branches in or (001) planes of the crystals could be in the [110] direction are almost degenerate for (horizontal) plane of the spectrometers. The small ~ and they cross at about ~ [110] T 1 branch was measured in the (001) The small dip in the T2 branch near c= ~ plane; the other branches in the (110) plane. implies the existence of very long range forces. The results are shown in Fig. 1 (p. 74) where the frequencies (in units of 1012 c/s) The qualitative features of the measured are plotted against the component of the dispersion curves can be understood however reduced wave vector ~ defined by ~ = in terms of relatively short range general (2~/a)~for example, along the [110] forces. A preliminary analysis of the curves direction ~ = (~0). The frequencies of using ~ Born - Von K~rmangeneral force some modes at special points in reciprocal model was carried out for forces of varying space are given in Table 1 (p. 74). The range, out as far as 8th neighbors. The frequencies for the LftrO ] branch near the results for the 3rd neighbor force model zone boundard are especially uncertain because (seven force constants are plotted as broken * Experimental work carried out at the Chalk River Laboratories of Atomic Energy of Canada Ltd. 73

2 74 LATTICE VIBRATIONS OF TUNGSTEN Vol. 2, No [~oj [oos] Z.~B. I, / ~ ~,1. /._( -~ ~ L ~ 5.0 ês L /.- _., _., ~ H ~ ~4.,i T, 0~5 (~ ~0) (000) (IH)-(00I) (~~) (000) Dispersion curves for the lattice vibrations in the three major symmetric directions in tungsten at room temperature TABLE 1 Frequencies of Phonons at Room Temperature at Some Specific Points in Reciprocal Space Coordinate (in unit of 2iVa) and mode (a = A) Frequency (1012 c/s) (0 0 1) All modes degenerate ± 0. 1 (1/2 1/2 1/2) LandT degenerate 5.50 ±0.05 (1/2 1/2 0)L Maximum point ±0. 15* (1/2 1/2 0)T ± 0.05 (1/2 1/2 0)T2 4.15±0.05 ( )L 6.30 ±0.07 ( )T ±0.03 ( )T ±0.05 *This value may possibly be in serious error because of poorly formed neutron groups.

3 Vol. 2, No. 3 LATTICE VIBRATIONS OF TUNGSTEN 75 TABLE 2 Stretching and Bending Force Constants in Units of 1O 4 dynes/cm 1)3 Stretching force constant Bending force constant s C 1(s) = CB(s) = p~/d i = = ~2= ~ ~2 = n~+.y3 =0.81 B lines in Fig. 1. The values of force constants perpendicular shear elastic waves (for an thus obtained (in units of ~ dynes/cm and in the notation of reference 2) are as follows: direction of propagation) have the same velocity. This fact has the special consequence ~ ± 0 02 that the slopes of [1l0]T1 and [i10]t2 are the 2..JO same in the long wave length limit (~= 0). = 1. 92±0.03 This is clearly seen also in our experimental results. In fact, we have tested the consistency = 4 73±0 05 of our results in the long wave length limit 0.2 with the elastic constants by imposing or not = ±0.03 imposing the condition that the slopes of the dispersion curves must auproach the correct = 0 32 ± 0 01 sound velocities given by the elastic constants; Ct3 the two sets of force constants so obtained B3 = ± agreed within the experimental errors. By = 0 49 ± 0 02 the method of long waves, 5 it can be shown that the elastic constants are related to the It is seen that the qualitative features of the force constants by the relations (up to 3rd curves are reproduced in this model. Taking fl ig r. C into account additional neighbors up to 6th a 11 = 2ci.~ (15 force constants) does not improve the agreement significantly. If atoms up to 8th ac = 2a + 2~ + 4ct + 4~ neighbors are included, the agreement becomes 44 1 ~2 3 3 better, although the hump in the [il0]t2 branch near the zone boundary still cannot be a(c11-c12)/2 = 201-2B12+B2-~-6a3-~-2B3~4y3 reproduced. Thus it must be concluded that the detailed nature of the forces is quite Thus, the condition of isotropy imposes the complicated in tungsten in that, besides the strong short range forces, there exists a weak condition upon these force constants that the combination 2B1-a2+82-2Ct3+2B3+4y3 = 0. but long range force system analogous to, but This condition is approximately satisfied by weaker than, thqj found for niobium by our values of force constants (the combination = Nakagawa etal. A few qualitative conclusions 0.08). For forces extending only to 2nd can be based on the 3rd neighbor force model: neighbor, it can be shown easily the [llo}t1 1. According to the recent measure- and [l10]t2 should be degenerate all the way ment of adiabatic elastic constants of tungsten to the zone boundary; this is not the case and by Featherston and Neighbours, 4 the condition consequently the forces must extend beyond of isotropy, i.e., C44-1/2 (Cli - C12), is 2nd neighbors. satisfied to within 1% in the temperature range 2. In order to discuss the nature of the from 0 Kto 3000K. Physically, C44 and interaction between the atoms let us adopt the 1/2 (C11 - C12) are two shear moduli and their central force model, i.e., assun~that the equality implies that the two mutually interation is binary and that it can be derived

4 76 LATTICE VIBRATIONS OF TUNGSTEN Vol. 2, No. 3 from an effective potential depending only on between an atom and its first neighbor is the distances between atoms. The condition attractive and the forces between it and its of validity of this model is the Cauchy relation second and third neighbors are probably C 12 = C~, which is satisfied to within 22% repulsive, in agreement 8, and with by conclusions Featherston & according constants4, toor theequivalently reported values the Born-Huang of elastic Neighbours4, reached by Isenberg from consideration of the elastic equilibrium condition5 2 that the combination constants B = 0, which is satisfied approximately (experimentally the combination= We have also calculated the frequency ). In such 5 toalinear modelcombinations the force constants of first and can be second related derivatives of the effective potential distribution obtained fromfunction the 8thusing neighbor the 23 best force fit. const Theants frequency distribution curve shows two function ~, where s denotes different pronounced peaks, at 4. 6 x 1012 and at neighbors. If we take linear combinations of 6. 3 x 1012 c/sec. The Debye temperature force constants in such a way that they are 8p (T) calculated from this frequency proportional to ~ and ~ respectively, we get distribution function is 3800K at absolute zero; the result in Table 2, where d 5 is the it gradually decreases through values equilibrium distance to the neighbors s. The Kat T = 20 Kand 318 Kat 8D = 312 K, 50 Kto proportional combinationstof4~ and force constants ~ can be which interpreted6 are an foressentially temperatures constant from value, 100 Kto 300 K. as bond-stretching ( C 1(s~)and bond-bending (CB(s) ) force constants respectively. This research was supported by a grant Assuming the same functional form for the from the National Research Council of Canada. potentials of all neighbors s, it is clear from We are grateful to Dr. A. D. B. Woods, the relative signs of C1 (s) and CB(S) in Table 2 Dr. 0. Dol ling and Mr. E. A. Glaser for that it is quite impossible to construct a cooperation and advice in carrying out the sensible potential function between atoms, whereas do so. However, for sodium, if the it was functional found possible form of 7 the to experiments, his least square to Dr. fit programs Y. Nakagawa and for use his of helpful discussions, and to other members ~ is different for different neighbors, then the of the staff of Atomic Energy of Canada Ltd. signs of C 1(s) and CB(S) suggest that the force for their cooperation. References 1. BROCKHOUSE B. N., Inelastic Scattering of Neutrons by Solids and Liquids p~113 International Atomic Energy Agency, Vienna (1961) 2. WOODS A. D. B., BROCKHOUSE B. N., MARCH R. H. and STEWART A. T., Phys. Rev. 128, 1112 (1962) 3. NAKAGAWA Y. and WOODS A. D. B., paper submitted to Copenhagen Conference on Lattice Dynamics (1963); Phys. Rev. Letters 11, 271 (1963) 4. FEATHERSTON F. H. and NEIGHBOURS J. R., Phys. Rev. 130, 1324 (1963) We are grateful to Dr. Neighbours for sending us results prior to publication. 5. BORN M. and HUANG K., Dynamical Theory of Crystal Lattices. Oxford University Press, London (1954) 6. LEHMAN G.W., WOLFRAM T. and DE WAMES R. E., Phys. Rev. 128, 1593 (1962) 7. WOODS A. D. B., Inelastic Scattering of Neutrons by Solids and Liquids p. 3, Vol 2. International Atomic Energy Agency, Vienna (1963) 8. ISENBERG I., Phys. Rev. 83, 637 (1951).

5 Vol. 2, No. 3 LATTICE VIBRATIONS OF TUNGSTEN 77 On a mesuré les courbes de dispersion des fréquences des oscillations thermiques se propageant suivant les axes de symétrie du tungstè avec la spectroscopie neutronique. Les resultats (analyses selon la théorie Born-Von Karmán) se montrent que les forces interatomiques s étendent au d~lales 8-e voisins. Cependant, les voisins l-r et 2-e les contributions principales aux forces; celles-ci sont, respectifment, attrayantes et repoussantes.

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between:

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between: Physics with Neutrons I, WS 2015/2016 Lecture 11, 11.1.2016 MLZ is a cooperation between: Organization Exam (after winter term) Registration: via TUM-Online between 16.11.2015 15.1.2015 Email: sebastian.muehlbauer@frm2.tum.de

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

Structure and Dynamics : An Atomic View of Materials

Structure and Dynamics : An Atomic View of Materials Structure and Dynamics : An Atomic View of Materials MARTIN T. DOVE Department ofearth Sciences University of Cambridge OXFORD UNIVERSITY PRESS Contents 1 Introduction 1 1.1 Observations 1 1.1.1 Microscopic

More information

Excitations. 15 th Oxford School of Neutron Scattering. Elizabeth Blackburn University of Birmingham. Blackburn et al., Pramana 71, 673 (2008)

Excitations. 15 th Oxford School of Neutron Scattering. Elizabeth Blackburn University of Birmingham. Blackburn et al., Pramana 71, 673 (2008) Excitations Elizabeth Blackburn University of Birmingham Cowley and Woods., Can. J. Phys. 49, 177 (1971) Blackburn et al., Pramana 71, 673 (2008) 15 th Oxford School of Neutron Scattering Excitations Elizabeth

More information

Introduction to Triple Axis Neutron Spectroscopy

Introduction to Triple Axis Neutron Spectroscopy Introduction to Triple Axis Neutron Spectroscopy Bruce D Gaulin McMaster University The triple axis spectrometer Constant-Q and constant E Practical concerns Resolution and Spurions Neutron interactions

More information

Band gaps in a phononic crystal constituted by cylindrical dots on a homogeneous plate

Band gaps in a phononic crystal constituted by cylindrical dots on a homogeneous plate Band gaps in a phononic crystal constituted by cylindrical dots on a homogeneous plate B. Djafari-Rouhani, Y. Pennec, H. Larabi, J. Vasseur and A.-C. Hladky IEN, UR CNRS 852, avenue Poincaré, BP 669, 59652

More information

Classical Theory of Harmonic Crystals

Classical Theory of Harmonic Crystals Classical Theory of Harmonic Crystals HARMONIC APPROXIMATION The Hamiltonian of the crystal is expressed in terms of the kinetic energies of atoms and the potential energy. In calculating the potential

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

Methoden moderner Röntgenphysik I + II: Struktur und Dynamik kondensierter Materie

Methoden moderner Röntgenphysik I + II: Struktur und Dynamik kondensierter Materie I + II: Struktur und Dynamik kondensierter Materie Vorlesung zum Haupt/Masterstudiengang Physik SS 2009 G. Grübel, M. Martins, E. Weckert, W. Wurth 1 Trends in Spectroscopy 23.4. 28.4. 30.4. 5.4. Wolfgang

More information

The Oxford Solid State Basics

The Oxford Solid State Basics The Oxford Solid State Basics Steven H. Simon University of Oxford OXFORD UNIVERSITY PRESS Contents 1 About Condensed Matter Physics 1 1.1 What Is Condensed Matter Physics 1 1.2 Why Do We Study Condensed

More information

Dispersion relation for transverse waves in a linear chain of particles

Dispersion relation for transverse waves in a linear chain of particles Dispersion relation for transverse waves in a linear chain of particles V. I. Repchenkov* It is difficult to overestimate the importance that have for the development of science the simplest physical and

More information

PHY 140A: Solid State Physics. Solution to Midterm #2

PHY 140A: Solid State Physics. Solution to Midterm #2 PHY 140A: Solid State Physics Solution to Midterm #2 TA: Xun Jia 1 December 4, 2006 1 Email: jiaxun@physics.ucla.edu Problem #1 (20pt)(20 points) Use the equation dp dt + p = ee for the electron momentum,

More information

Phonons I - Crystal Vibrations (Kittel Ch. 4)

Phonons I - Crystal Vibrations (Kittel Ch. 4) Phonons I - Crystal Vibrations (Kittel Ch. 4) Displacements of Atoms Positions of atoms in their perfect lattice positions are given by: R 0 (n 1, n 2, n 3 ) = n 10 x + n 20 y + n 30 z For simplicity here

More information

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W Lattice Vibrations Chris J. Pickard 500 400 300 ω (cm -1 ) 200 100 L K W X 0 W L Γ X W K The Breakdown of the Static Lattice Model The free electron model was refined by introducing a crystalline external

More information

The electronic structure of materials 1

The electronic structure of materials 1 Quantum mechanics 2 - Lecture 9 December 18, 2013 1 An overview 2 Literature Contents 1 An overview 2 Literature Electronic ground state Ground state cohesive energy equilibrium crystal structure phase

More information

* Theoretische Physik II, Universitat Dortmund, Dortmund, Germany

* Theoretische Physik II, Universitat Dortmund, Dortmund, Germany JOURNAL DE PHYSIQUE IV Colloque C8, suppl6ment au Journal de Physique III, Volume 5, dkembre 1995 Structural Phase Transformation and Phonon Softening in Iron-Based Alloys H.C. Herper, E. Hoffmann, P.

More information

4. Thermal properties of solids. Time to study: 4 hours. Lecture Oscillations of the crystal lattice

4. Thermal properties of solids. Time to study: 4 hours. Lecture Oscillations of the crystal lattice 4. Thermal properties of solids Time to study: 4 hours Objective After studying this chapter you will get acquainted with a description of oscillations of atoms learn how to express heat capacity for different

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS 2753 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2011 Wednesday, 22 June, 9.30 am 12.30

More information

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 3.091 Introduction to Solid State Chemistry Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 1. INTRODUCTION Crystals are held together by interatomic or intermolecular bonds. The bonds can be covalent,

More information

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Prof. Germar Hoffmann 1. Crystal Structures 2. Reciprocal Lattice 3. Crystal Binding and Elastic Constants

More information

School on Pulsed Neutrons: Characterization of Materials October Neurton Sources & Scattering Techniques (1-2)

School on Pulsed Neutrons: Characterization of Materials October Neurton Sources & Scattering Techniques (1-2) 1866-6 School on Pulsed Neutrons: Characterization of Materials 15-26 October 2007 Neurton Sources & Scattering Techniques (1-2) Guenter Bauer Forschungzentrum Julich GmbH Julich Germany The Abdus Salam

More information

Structure of Surfaces

Structure of Surfaces Structure of Surfaces C Stepped surface Interference of two waves Bragg s law Path difference = AB+BC =2dsin ( =glancing angle) If, n =2dsin, constructive interference Ex) in a cubic lattice of unit cell

More information

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY Regents' Professor enzeritus Arizona State University 1995 ELSEVIER Amsterdam Lausanne New York Oxford Shannon Tokyo CONTENTS Preface to the first

More information

Molecular Symmetry. Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals

Molecular Symmetry. Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals Molecular Symmetry Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals - A molecule has a symmetry element if it is unchanged by a particular symmetry operation

More information

Lecture 11 - Phonons II - Thermal Prop. Continued

Lecture 11 - Phonons II - Thermal Prop. Continued Phonons II - hermal Properties - Continued (Kittel Ch. 5) Low High Outline Anharmonicity Crucial for hermal expansion other changes with pressure temperature Gruneisen Constant hermal Heat ransport Phonon

More information

CUBIC ANHARMONIC CORRECTION TO SELF-CONSISTENT PHONONS IN b.c.c. H.R. Glyde and R.A. Cowley

CUBIC ANHARMONIC CORRECTION TO SELF-CONSISTENT PHONONS IN b.c.c. H.R. Glyde and R.A. Cowley Solid State Communications, Vol.8, pp.923 927, 1970. Pergamon Press. Printed in Great Britain CUBIC ANHARMONIC CORRECTION TO SELF-CONSISTENT PHONONS IN b.c.c. 3He H.R. Glyde and R.A. Cowley Atomic Energy

More information

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 1.510 Introduction to Seismology Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 1.510 Introduction to

More information

Advanced Photon-In Photon-Out Hard X-ray Spectroscopy

Advanced Photon-In Photon-Out Hard X-ray Spectroscopy FLS 2010, ICFA Beam Dynamics Workshop, SLAC, Menlo Park, CA, March 2, 2010 ħω ħω e - Advanced Photon-In Photon-Out Hard X-ray Spectroscopy Uwe Bergmann Linac Coherent Light Source SLAC National Accelerator

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

Part 5 ACOUSTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA

Part 5 ACOUSTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA Part 5 ACOUSTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA Review of Fundamentals displacement-strain relation stress-strain relation balance of momentum (deformation) (constitutive equation) (Newton's Law)

More information

BIBECHANA A Multidisciplinary Journal of Science, Technology and Mathematics

BIBECHANA A Multidisciplinary Journal of Science, Technology and Mathematics S.R.B. Thapa / BIBECHANA 9 (2013) 13-17 : BMHSS, p.13 (Online Publication: Nov., 2012) BIBECHANA A Multidisciplinary Journal of Science, Technology and Mathematics ISSN 2091-0762 (online) Journal homepage:

More information

A lattice dynamical investigation of zircon (ZrSiOJ has been carried out to obtain a

A lattice dynamical investigation of zircon (ZrSiOJ has been carried out to obtain a r. -.*. Version Date: 7/14/97 Inelastic Neutron Scattering From Zircon, J. C. Nipko and C.-K.Loong Argonne National Laboratory, Argonne, IL 60439, U.S.A. Abstract A lattice dynamical investigation of zircon

More information

WAVE PROPAGATION IN PLATES WITH PERIODIC ARRAY OF IMPERFECT ACOUSTIC BLACK HOLES

WAVE PROPAGATION IN PLATES WITH PERIODIC ARRAY OF IMPERFECT ACOUSTIC BLACK HOLES WAVE PROPAGATION IN PLATES WITH PERIODIC ARRAY OF IMPERFECT ACOUSTIC BLACK HOLES Bing Han 1, Hongli Ji 2 and Jinhao Qiu 3 1 Yudao Street 29, Nanjing 210016, China, State Key Laboratory of Mechanics and

More information

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester SOLID STATE PHYSICS Second Edition J. R. Hook H. E. Hall Department of Physics, University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Contents Flow diagram Inside front

More information

Weight and contact forces: Young's modulus, Hooke's law and material properties

Weight and contact forces: Young's modulus, Hooke's law and material properties Weight and contact forces: Young's modulus, Hooke's law and material properties Many objects deform according to Hooke's law; many materials behave elastically and have a Young's modulus. In this section,

More information

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron-

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron- MECHANISM requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron- A serious limitation of BCS theory is that it

More information

PHONON DISPERSION CURVES OF LIQUID METALS

PHONON DISPERSION CURVES OF LIQUID METALS Journal of Non-Oxide Glasses Vol., No, 010, p. 91-96 PHONON DISPERSION CURVES O LIQUID METALS ADITYA M. VORA * Humanities and Social Science Department, S. T. B. S. College of Diploma Engineering, Opp.

More information

Ionic Bonds. H He: ... Li Be B C :N :O :F: :Ne:

Ionic Bonds. H He: ... Li Be B C :N :O :F: :Ne: Ionic Bonds Valence electrons - the electrons in the highest occupied energy level - always electrons in the s and p orbitals - maximum of 8 valence electrons - elements in the same group have the same

More information

Raman Spectra of Amorphous Silicon

Raman Spectra of Amorphous Silicon Chapter 6 Raman Spectra of Amorphous Silicon In 1985, Beeman, Tsu and Thorpe established an almost linear relation between the Raman transverse-optic (TO) peak width Ɣ and the spread in mean bond angle

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 5.62 Physical Chemistry II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.62 Spring 2008 Lecture

More information

VIRTUAL LATTICE TECHNIQUE AND THE INTERATOMIC POTENTIALS OF ZINC-BLEND-TYPE BINARY COMPOUNDS

VIRTUAL LATTICE TECHNIQUE AND THE INTERATOMIC POTENTIALS OF ZINC-BLEND-TYPE BINARY COMPOUNDS Modern Physics Letters B, Vol. 16, Nos. 5 & 6 (2002) 187 194 c World Scientific Publishing Company VIRTUAL LATTICE TECHNIQUE AND THE INTERATOMIC POTENTIALS OF ZINC-BLEND-TYPE BINARY COMPOUNDS LIU YING,

More information

MATERIAL ELASTIC ANISOTROPIC command

MATERIAL ELASTIC ANISOTROPIC command MATERIAL ELASTIC ANISOTROPIC command.. Synopsis The MATERIAL ELASTIC ANISOTROPIC command is used to specify the parameters associated with an anisotropic linear elastic material idealization. Syntax The

More information

Phonons (Classical theory)

Phonons (Classical theory) Phonons (Classical theory) (Read Kittel ch. 4) Classical theory. Consider propagation of elastic waves in cubic crystal, along [00], [0], or [] directions. Entire plane vibrates in phase in these directions

More information

2018. Nonlinear free vibration analysis of nanobeams under magnetic field based on nonlocal elasticity theory

2018. Nonlinear free vibration analysis of nanobeams under magnetic field based on nonlocal elasticity theory 2018. Nonlinear free vibration analysis of nanobeams under magnetic field based on nonlocal elasticity theory Tai-Ping Chang National Kaohsiung First University of Science and Technology, Kaohsiung, Taiwan

More information

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2009 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2009 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 Spring 2009 POP QUIZ

More information

NUMERICAL CALCULATION OF THE ELECTRON MOBILITY IN GaAs SEMICONDUCTOR UNDER WEAK ELECTRIC FIELD APPLICATION

NUMERICAL CALCULATION OF THE ELECTRON MOBILITY IN GaAs SEMICONDUCTOR UNDER WEAK ELECTRIC FIELD APPLICATION International Journal of Science, Environment and Technology, Vol. 1, No 2, 80-87, 2012 NUMERICAL CALCULATION OF THE ELECTRON MOBILITY IN GaAs SEMICONDUCTOR UNDER WEAK ELECTRIC FIELD APPLICATION H. Arabshahi,

More information

Extremely slow edge waves in mechanical graphene with rotating grains

Extremely slow edge waves in mechanical graphene with rotating grains Phononic Crystals and Acoustic Metamaterials: Paper ICA2016-104 Extremely slow edge waves in mechanical graphene with rotating grains Li-Yang Zheng (a), Vincent Tournat (b), Georgios Theocharis (c),vitalyi

More information

Elasticity: Term Paper. Danielle Harper. University of Central Florida

Elasticity: Term Paper. Danielle Harper. University of Central Florida Elasticity: Term Paper Danielle Harper University of Central Florida I. Abstract This research was conducted in order to experimentally test certain components of the theory of elasticity. The theory was

More information

Physics with Neutrons II, SS Lecture 1, MLZ is a cooperation between:

Physics with Neutrons II, SS Lecture 1, MLZ is a cooperation between: Physics with Neutrons II, SS 2016 Lecture 1, 11.4.2016 MLZ is a cooperation between: Organization Lecture: Monday 12:00 13:30, PH227 Sebastian Mühlbauer (MLZ/FRM II) Sebastian.muehlbauer@frm2.tum.de Tel:089/289

More information

Introduction to physical acoustics

Introduction to physical acoustics Loughborough University Institutional Repository Introduction to physical acoustics This item was submitted to Loughborough University's Institutional Repository by the/an author. Citation: KRASIL'NIKOV,

More information

Raman and infrared studies of cupric oxide

Raman and infrared studies of cupric oxide Bull. Mater. Sci., Vol. 14, No. 3, June 1991, pp. 539-543. ~) Printed in India. Raman and infrared studies of cupric oxide SOUMYENDU GUHA*, DALE PEEBLES and J TERENCE WIETING u.s. Naval Research Laboratory,

More information

LECTURE 5 - Wave Equation Hrvoje Tkalčić " 2 # & 2 #

LECTURE 5 - Wave Equation Hrvoje Tkalčić  2 # & 2 # LECTURE 5 - Wave Equation Hrvoje Tkalčić " 2 # "t = ( $ + 2µ ) & 2 # 2 % " 2 (& ' u r ) = µ "t 2 % & 2 (& ' u r ) *** N.B. The material presented in these lectures is from the principal textbooks, other

More information

Review for Unit Test #2: Chemical Bonding

Review for Unit Test #2: Chemical Bonding Practice Multiple hoice Questions: Review for Unit Test #2: hemical Bonding 1. Atoms form chemical bonds to: a) attain a more stable electron configuration c) increase their energy b) neutralize their

More information

NDE of wood-based composites with longitudinal stress waves

NDE of wood-based composites with longitudinal stress waves NDE of wood-based composites with longitudinal stress waves Robert J. Ross Roy F. Pellerin Abstract The research presented in this paper reveals that stress wave nondestructive testing techniques can be

More information

Physics 211B : Problem Set #0

Physics 211B : Problem Set #0 Physics 211B : Problem Set #0 These problems provide a cross section of the sort of exercises I would have assigned had I taught 211A. Please take a look at all the problems, and turn in problems 1, 4,

More information

STANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius

STANDARD SAMPLE. Reduced section  Diameter. Diameter. 2 Gauge length. Radius MATERIAL PROPERTIES TENSILE MEASUREMENT F l l 0 A 0 F STANDARD SAMPLE Reduced section 2 " 1 4 0.505" Diameter 3 4 " Diameter 2" Gauge length 3 8 " Radius TYPICAL APPARATUS Load cell Extensometer Specimen

More information

RELATIONSHIP BETWEEN RADIAL COMPRESSIVE MODULUS OF ELASTICITY AND SHEAR MODULUS OF WOOD Jen Y. Liu Research Engineer

RELATIONSHIP BETWEEN RADIAL COMPRESSIVE MODULUS OF ELASTICITY AND SHEAR MODULUS OF WOOD Jen Y. Liu Research Engineer RELATIONSHIP BETWEEN RADIAL COMPRESSIVE MODULUS OF ELASTICITY AND SHEAR MODULUS OF WOOD Jen Y. Liu Research Engineer and Robert J. Ross Supervisory Research Engineer USDA Forest Service Forest Products

More information

The Dielectric Function of a Metal ( Jellium )

The Dielectric Function of a Metal ( Jellium ) The Dielectric Function of a Metal ( Jellium ) Total reflection Plasma frequency p (10 15 Hz range) Why are Metals Shiny? An electric field cannot exist inside a metal, because metal electrons follow the

More information

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006)

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) 1) INTRODUCTION The vibrational motion of a molecule is quantized and the resulting energy level spacings give rise to transitions in

More information

Vibrational Spectroscopy of Molecules on Surfaces

Vibrational Spectroscopy of Molecules on Surfaces Vibrational Spectroscopy of Molecules on Surfaces Edited by John T. Yates, Jr. University of Pittsburgh Pittsburgh, Pennsylvania and Theodore E. Madey National Bureau of Standards Gaithersburg, Maryland

More information

Physics 541: Condensed Matter Physics

Physics 541: Condensed Matter Physics Physics 541: Condensed Matter Physics In-class Midterm Exam Wednesday, October 26, 2011 / 14:00 15:20 / CCIS 4-285 Student s Name: Instructions There are 23 questions. You should attempt all of them. Mark

More information

4/14/11. Chapter 12 Static equilibrium and Elasticity Lecture 2. Condition for static equilibrium. Stability An object is in equilibrium:

4/14/11. Chapter 12 Static equilibrium and Elasticity Lecture 2. Condition for static equilibrium. Stability An object is in equilibrium: About Midterm Exam 3 When and where Thurs April 21 th, 5:45-7:00 pm Rooms: Same as Exam I and II, See course webpage. Your TA will give a brief review during the discussion session. Coverage: Chapts 9

More information

(Total 1 mark) IB Questionbank Physics 1

(Total 1 mark) IB Questionbank Physics 1 1. A transverse wave travels from left to right. The diagram below shows how, at a particular instant of time, the displacement of particles in the medium varies with position. Which arrow represents the

More information

STM spectroscopy (STS)

STM spectroscopy (STS) STM spectroscopy (STS) di dv 4 e ( E ev, r) ( E ) M S F T F Basic concepts of STS. With the feedback circuit open the variation of the tunneling current due to the application of a small oscillating voltage

More information

Recoil ion and electronic angular asymmetry parameters for photo double ionization of helium at 99 ev

Recoil ion and electronic angular asymmetry parameters for photo double ionization of helium at 99 ev J. Phys. B: At. Mol. Opt. Phys. 3 (997) L649 L655. Printed in the UK PII: S953-475(97)85842-7 LETTER TO THE EDITOR Recoil ion and electronic angular asymmetry parameters for photo double ionization of

More information

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1?

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1? Physics 243A--Surface Physics of Materials: Spectroscopy Final Examination December 16, 2014 (3 problems, 100 points total, open book, open notes and handouts) Name: [1] (50 points), including Figures

More information

Elastic and Inelastic Scattering in Electron Diffraction and Imaging

Elastic and Inelastic Scattering in Electron Diffraction and Imaging Elastic and Inelastic Scattering in Electron Diffraction and Imaging Contents Introduction Symbols and definitions Part A Diffraction and imaging of elastically scattered electrons Chapter 1. Basic kinematical

More information

Introduction to Molecular Vibrations and Infrared Spectroscopy

Introduction to Molecular Vibrations and Infrared Spectroscopy hemistry 362 Spring 2017 Dr. Jean M. Standard February 15, 2017 Introduction to Molecular Vibrations and Infrared Spectroscopy Vibrational Modes For a molecule with N atoms, the number of vibrational modes

More information

Experiment AM3b: Raman scattering in transparent solids and liquids

Experiment AM3b: Raman scattering in transparent solids and liquids Physics 6180: Graduate Physics Laboratory Experiment AM3b: Raman scattering in transparent solids and liquids Objectives: To learn the essentials of inelastic light scattering, particularly Raman scattering

More information

Modified krebs model and its application to fcc cobalt

Modified krebs model and its application to fcc cobalt Modified krebs model and its application to fcc cobalt R.P.S. Rathore To cite this version: R.P.S. Rathore. Modified krebs model and its application to fcc cobalt. Journal de Physique, 1978, 39 (8), pp.905908.

More information

Chapter 5 Phonons II Thermal Properties

Chapter 5 Phonons II Thermal Properties Chapter 5 Phonons II Thermal Properties Phonon Heat Capacity < n k,p > is the thermal equilibrium occupancy of phonon wavevector K and polarization p, Total energy at k B T, U = Σ Σ < n k,p > ħ k, p Plank

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 5: Specific Heat of Lattice Waves Outline Review Lecture 4 3-D Elastic Continuum 3-D Lattice Waves Lattice Density of Modes Specific Heat of Lattice Specific

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supporting Information Single Layer Lead Iodide: Computational Exploration of Structural, Electronic

More information

introduction of thermal transport

introduction of thermal transport Subgroup meeting 2010.12.07 introduction of thermal transport members: 王虹之. 盧孟珮 introduction of thermal transport Phonon effect Electron effect Lattice vibration phonon Debye model of lattice vibration

More information

Lecture 11: Periodic systems and Phonons

Lecture 11: Periodic systems and Phonons Lecture 11: Periodic systems and Phonons Aims: Mainly: Vibrations in a periodic solid Complete the discussion of the electron-gas Astrophysical electrons Degeneracy pressure White dwarf stars Compressibility/bulk

More information

CRACK DETECTION IN SHAFTS USING MECHANICAL IMPEDANCE MEASUREMENTS

CRACK DETECTION IN SHAFTS USING MECHANICAL IMPEDANCE MEASUREMENTS 4th International CANDU In-service Inspection Workshop and NDT in Canada 2012 Conference, 2012 June 18-21, Toronto, Ontario CRACK DETECTION IN SHAFTS USING MECHANICAL IMPEDANCE MEASUREMENTS IMPEDANCE MEASUREMENTS

More information

In-class exercises. Day 1

In-class exercises. Day 1 Physics 4488/6562: Statistical Mechanics http://www.physics.cornell.edu/sethna/teaching/562/ Material for Week 8 Exercises due Mon March 19 Last correction at March 5, 2018, 8:48 am c 2017, James Sethna,

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MI OpenCourseWare http://ocw.mit.edu 5.6 Physical Chemistry II Spring 008 For information about citing these materials or our erms of Use, visit: http://ocw.mit.edu/terms. 5.6 Spring 008 Lecture Summary

More information

Doctor of Philosophy

Doctor of Philosophy FEMTOSECOND TIME-DOMAIN SPECTROSCOPY AND NONLINEAR OPTICAL PROPERTIES OF IRON-PNICTIDE SUPERCONDUCTORS AND NANOSYSTEMS A Thesis Submitted for the degree of Doctor of Philosophy IN THE FACULTY OF SCIENCE

More information

Acoustic pressure characteristic analysis in cavity of 2-D phononic crystal

Acoustic pressure characteristic analysis in cavity of 2-D phononic crystal Journal of Engineering Technology and Education, Vol. 9, No. June 1, pp. 115-11 Acoustic pressure characteristic analysis in cavity of -D phononic crystal Jia-Yi Yeh 1, Jiun-Yeu Chen 1 Department of Information

More information

EFFECT OF PRESSURE ON ELASTIC PROPERTIES OF CHITOSAN Serdang, Selangor, Malaysia Serdang, Selangor, Malaysia

EFFECT OF PRESSURE ON ELASTIC PROPERTIES OF CHITOSAN Serdang, Selangor, Malaysia Serdang, Selangor, Malaysia EFFECT OF PRESSURE ON ELASTIC PROPERTIES OF CHITOSAN Nurul Hazwani M. H. 1, Halimah M. K. 1*, Kaida K. 1, Daud W. M. 1 and Zaki M. 2 1 Physics Department, Faculty of Science, Universiti Putra Malaysia

More information

MODELING OF ACOUSTIC PROCESSES IN SOLIDS BASED ON PARTICLE INTERACTION

MODELING OF ACOUSTIC PROCESSES IN SOLIDS BASED ON PARTICLE INTERACTION MATEC Web of Conferences 55, 44 (8) IME&T 7 https://doi.org/.5/matecconf/85544 MODELING OF ACOUSTIC PROCESSES IN SOLIDS BASED ON PARTICLE INTERACTION Angela Kuzovova,, Timur Muksunov Tomsk State University,

More information

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles October, 011 PROGRESS IN PHYSICS olume 4 Ultracold Fermi Bose Gases Spinless Bose Charged Sound Particles ahan N. Minasyan alentin N. Samoylov Scientific Center of Applied Research, JINR, Dubna, 141980,

More information

THE SPECIFIC HEATS OF THE ALKALI HALIDES AND THEIR SPECTROSCOPIC BEHAVIOUR

THE SPECIFIC HEATS OF THE ALKALI HALIDES AND THEIR SPECTROSCOPIC BEHAVIOUR THE SPECIFIC HEATS OF THE ALKALI HALIDES AND THEIR SPECTROSCOPIC BEHAVIOUR Part V. The Evaluation of the Frequencies BY SIR C. V. RAMAN (Memoit No. 131 ef the Raman Reseatch lnstitute, Bangalotc-6) Recei~ed

More information

Supplementary Figure 1: ADF images and profiles for several types of atomic chains encapsulated in DWNTs. (a d) ADF images of NaI, CsF, CsCl, and CsI

Supplementary Figure 1: ADF images and profiles for several types of atomic chains encapsulated in DWNTs. (a d) ADF images of NaI, CsF, CsCl, and CsI Supplementary Figure 1: ADF images and profiles for several types of atomic chains encapsulated in DWNTs. (a d) ADF images of NaI, CsF, CsCl, and CsI atomic chains encapsulated in DWNTs, respectively.

More information

X-ray diffuse scattering in the icosahedral quasicrystal Al-Pd-Mn

X-ray diffuse scattering in the icosahedral quasicrystal Al-Pd-Mn X-ray diffuse scattering in the icosahedral quasicrystal Al-Pd-Mn Y. Zhang, 1 S. N. Ehrlich, 2 R. Colella, 1, * M. Kopecky, 3 and M. Widom 4 1 Department of Physics, Purdue University, West Lafayette,

More information

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment Harald Ibach Hans Lüth SOLID-STATE PHYSICS An Introduction to Theory and Experiment With 230 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents

More information

Personalised Learning Checklists AQA Physics Paper 2

Personalised Learning Checklists AQA Physics Paper 2 6.5.1 Forces and their interactions 6.5.2 Work done and energy transfer AQA TRILOGY Physics (8464) from 2016 Topics T6.5. Forces Topic Student Checklist R A G Identify and describe scalar quantities and

More information

UNIT I SOLID STATE PHYSICS

UNIT I SOLID STATE PHYSICS UNIT I SOLID STATE PHYSICS CHAPTER 1 CRYSTAL STRUCTURE 1.1 INTRODUCTION When two atoms are brought together, two kinds of forces: attraction and repulsion come into play. The force of attraction increases

More information

~ PERGAMON. ...iai.,!.l...;9~!~~ ) EDITORS. Arun Bansil. Yasuhiko Fujii. Robert N. Shelton. Davis SPECIAL ISSUE GUEST EDITORS

~ PERGAMON. ...iai.,!.l...;9~!~~ ) EDITORS. Arun Bansil. Yasuhiko Fujii. Robert N. Shelton. Davis SPECIAL ISSUE GUEST EDITORS VOLUME 59 Nos.10-12 ISSN 0022-3697 1998 OCTOBER-DECEMBER EDITORS Arun Bansil Boston Yasuhiko Fujii Tokyo Robert N. Shelton Davis...iaI.,!.l...;9~!~~ ) SPECIAL ISSUE Spectroscopies in Novel Superconductors

More information

Phonon II Thermal Properties

Phonon II Thermal Properties Phonon II Thermal Properties Physics, UCF OUTLINES Phonon heat capacity Planck distribution Normal mode enumeration Density of states in one dimension Density of states in three dimension Debye Model for

More information

Geometry of Crystal Lattice

Geometry of Crystal Lattice 0 Geometry of Crystal Lattice 0.1 Translational Symmetry The crystalline state of substances is different from other states (gaseous, liquid, amorphous) in that the atoms are in an ordered and symmetrical

More information

Study of Phase Transitions by Means of Raman Scattering

Study of Phase Transitions by Means of Raman Scattering Study of Phase Transitions by Means of Raman Scattering M. Mahbubur Rahman Department of Physics & Physical Oceanography Memorial University, Canada Outlines Introduction Advantages of Raman spectroscopy?

More information

Comments on the characteristics of incommensurate modulation in quartz: discussion about a neutron scattering experiment

Comments on the characteristics of incommensurate modulation in quartz: discussion about a neutron scattering experiment 65 Acta Cryst. (1999). A55, 65±69 Comments on the characteristics of incommensurate modulation in quartz: discussion about a neutron scattering experiment T. A. Aslanyan,² T. Shigenari* and K. Abe Department

More information

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2014 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 POP QUIZ Phonon dispersion relation:

More information

We shall operate the maser with ±14 kv applied. References

We shall operate the maser with ±14 kv applied. References IV. MICROWAVE SPECTROSCOPY Prof. M. W. P. Strandberg J. G. Ingersoll R. D. Mattuck Prof. R. L. Kyhl B. Josephson, Jr. J. J.. McNicholl Dr. C. F. Davis, Jr. J. D. Kierstead R. E. Norris, Jr. S. A. Collins,

More information

Topic 5-1: Introduction to Phonons Kittel pages: 91, 92

Topic 5-1: Introduction to Phonons Kittel pages: 91, 92 Topic 5-1: Introduction to Phonons Kittel pages: 91, 92 Summary: In this video we introduce the concept that atoms are not rigid, fixed points within the lattice. Instead we treat them as quantum harmonic

More information

Olivier Bourgeois Institut Néel

Olivier Bourgeois Institut Néel Olivier Bourgeois Institut Néel Outline Introduction: necessary concepts: phonons in low dimension, characteristic length Part 1: Transport and heat storage via phonons Specific heat and kinetic equation

More information

Avoided Crossing of Rattler Modes in Thermoelectric Materials

Avoided Crossing of Rattler Modes in Thermoelectric Materials 1 Supplementary Material for Avoided Crossing of Rattler Modes in Thermoelectric Materials M. Christensen, 1 A. B. Abrahamsen, N. Christensen,,3,4 F. Juranyi, 3 N. H. Andersen, K. Lefmann, J. Andreasson,

More information

3.012 PS Issued: Fall 2003 Graded problems due:

3.012 PS Issued: Fall 2003 Graded problems due: 3.012 PS 4 3.012 Issued: 10.07.03 Fall 2003 Graded problems due: 10.15.03 Graded problems: 1. Planes and directions. Consider a 2-dimensional lattice defined by translations T 1 and T 2. a. Is the direction

More information