Unit 6 Conservation of Energy & Heat

Size: px
Start display at page:

Download "Unit 6 Conservation of Energy & Heat"

Transcription

1 Name: Unit 6 Conservation of Energy & Heat Hr: Grading: Show all work, keeping it neat and organized. Show equations used and include all units. Vocabulary Energy: The ability to do work. There are many different types of energy. We will focus on only mechanical energy, or the energy related to position (potential energy) and motion (kinetic energy). Vocabulary Potential Energy: Energy of position, or stored energy. An object gains gravitational potential energy when it is lifted from one level to a higher level. Therefore, we generally refer to the change in gravitational potential energy or ΔGPE, which is proportional to the change in height, Δh. Δ gravitational potential energy = (mass)(acceleration due to gravity)(δ height) or ΔGPE = mgδh It is important to remember that gravitational potential energy relies only upon the vertical change in height, Δh, and not upon the path taken. Vocabulary Kinetic Energy: Energy of motion. The kinetic energy of an object varies with the square of the speed. Kinetic energy = (/2)(mass)(speed) 2 or KE = 2 mv2 The SI unit for energy is the joule. Notice that this is the same unit used for work. Conservation of Energy Vocabulary According to the law of conservation of energy, energy cannot be created or destroyed. The total amount of mechanical energy in a system remains constant if no work is done by any force other than gravity. In an isolated system where there are no mechanical energy losses due to friction KE = GPE In other words, all the kinetic and gravitational potential energy before an interaction equals all the kinetic and potential energy after the interaction. KE i + PE i = KE f + PE f or 2 mv i 2 + mgh i = 2 mv f 2 + mgh f Example : Frank, a San Francisco hot dog vendor, has fallen asleep on the job. When an earthquake strikes, his 300-kg hot dog cart rolls down Nob Hill and reaches point A at a speed of 8.00 m/s. How fast is the hot dog cart going at point B when Frank finally wakes up and starts to run after it?

2 Solution: Because mass is contained in each of these equations, it cancels out and does not need to be included in the calculation. Also, the inclination of the hill makes no difference. All that matters is the change in height. Given: v i = 8.00 m/s Unknown: v f =? g = 0.0 m/s 2 Original Equation: KE = PE h i = 50.0 m h f = 30.0 m Solve: KE i + PE i = KE f + PE f 2 v f = v i 2 + gh i gh f 2 = or 2 mv i 2 + mgh i = 2 mv f 2 + mgh f 2 (8.00m s )2 + (0.0 m s 2)(50.0 m) (0.0m s2)(30.0 m) 2 = 2.5 m/s Vocabulary Heat: The transfer of energy between two objects that differ in temperature. Vocabulary Specific heat: A measure of the amount of heat needed to raise the temperature of kg of a substance by C. The common unit for specific heat is the joule per kilogram degree Celsius (J/kg C). The transfer of heat from an object depends upon the object s mass, the specific heat, and the difference in temperature between the object and its surroundings. change in heat = (mass)(specific heat)(change in temperature) OR Q = mc T The SI unit for heat is the joule (J), which is the same unit used for mechanical energy and work. The heat lost by one object equals the heat gained by another object. Heat lost = Heat gained or (mc T) lost = (mc T) gained For each object in the system, an mc T term is needed. Water has a very high specific heat. It makes a good cooling agent because it takes a long time for water to absorb enough heat to greatly increase its temperature.

3 Example 2: Remy is cooking his favorite peasant dish and needs to get 3.0 kg of water up to 98 C before adding the noodles. If he uses a 00-W hot plate to heat the water from 23 C, how much time will he have to prepare the vegetables before he can put the noodles in the hot water? Solution: First find the quantity of heat needed to heat the water. Given: m = 3.0 kg Unknown: ΔQ =? T i = 23 C Original Equation: Q = mc T Tf = 98 C c water = 4200 J/kg C Solve: Q = mc T Q = (3.0 kg)(4200 J/kg C)(98 C 22 C) = 960,000 J Then use this heat with the power of the hot plate to determine the time required for heating. Since all the energy expended by the hot plate is turned into heat, W = Q. We ignore the heat added to the pot because water has a much higher specific heat than any metal used in the pot, and absorbs much more of the available energy. Given: Q = 960,000 J Unknown: t =? P = 00 W Original Equation: P = W/t Solve: t = W/P t = (960,000 J)/(00 W) = 870 s = 4.5 minutes Exercises (For all of the exercise problems, assume there is no friction.) ) Sara is changing the tire of her jeep on the top of a 25.0 m high hill. She accidentally lets go of the 2.0 kg tire while reaching for her tire iron, which then rolls down the hill starting from rest. a) How fast is the tire rolling at the top of the next hill, which is 6.0 m high? b) How high can the tire climb before it stops (or rolls the other direction)? Explain.

4 2) Small worms that live inside Mexican jumping beans are the cause for their apparent bouncing. a) If a 3.0 g bean jumps up from your hand, how much gravitational potential energy has it gained while reaching its maximum height of 2.0 cm? b) What is the speed of the jumping bean right before it lands back on your hand? 3) Billy sets up a slip and slide down a 2.0 m tall hill. a) If Billy dives onto the slip and slide with an initial speed of 3.5 m/s, what is his speed as he falls off the slip and slide at the bottom of the hill? b) What are two ways that Billy could reach greater maximum speeds on his slip and slide?

5 4) Astronauts on the moon were known to hop around instead of walking, as an easier means of travel under the influence of reduced gravity. If Buzz Aldrin jumped off the surface of the moon with an initial speed of.5 m/s and reached a maximum height of 0.70 m, what is the acceleration due to gravity on the moon? (Calculate this and show your work!) 5) Julie, who has a mass of 58 kg, stays out snow shoeing for too long and her body temperature is only 3.0 o C when she gets back inside. Assuming that Julie normally has a body temperature of 37 o C, how much heat did Julie lose while outside? (c human body=3470 J/kg o C)

6 6) The water from Victoria Falls plummets 08 m before reaching the river below. Every second,.088 x 0 6 kg of water falls over the edge of the waterfall. a) How much work is done on the water by gravity as it falls? b) Assuming that all of the work done on the falling water generates heat as it crashes into the river below, how much will the temperature of the 3.4 x 0 6 kg of river water rise? c) If this amount of work is done on the river every second, then why doesn t the river s temperature increase steadily throughout time?

5-2 Energy. Potential and Kinetic Energy. Energy: The ability to do work. Vocabulary

5-2 Energy. Potential and Kinetic Energy. Energy: The ability to do work. Vocabulary 5-2 Energy Potential and Kinetic Energy Vocabulary Energy: The ability to do work. There are many dierent types o energy. This chapter will ocus on only mechanical energy, or the energy related to position

More information

Energy can change from one form to another without a net loss or gain.

Energy can change from one form to another without a net loss or gain. Energy can change from one form to another without a net loss or gain. Energy may be the most familiar concept in science, yet it is one of the most difficult to define. We observe the effects of energy

More information

Mechanical Energy - Grade 10 [CAPS] *

Mechanical Energy - Grade 10 [CAPS] * OpenStax-CNX module: m37174 1 Mechanical Energy - Grade 10 [CAPS] * Free High School Science Texts Project Based on Gravity and Mechanical Energy by Rory Adams Free High School Science Texts Project Sarah

More information

Potential energy is the energy an object has due to its position or state.

Potential energy is the energy an object has due to its position or state. Potential energy The potential energy of an object is generally defined as the energy an object has because of its position relative to other objects that it interacts with. There are different kinds of

More information

Energy and Mechanical Energy

Energy and Mechanical Energy Energy and Mechanical Energy Energy Review Remember: Energy is the ability to do work or effect change. Usually measured in joules (J) One joule represents the energy needed to move an object 1 m of distance

More information

2. What would happen to his acceleration if his speed were half? Energy The ability to do work

2. What would happen to his acceleration if his speed were half? Energy The ability to do work 1. A 40 kilogram boy is traveling around a carousel with radius 0.5 meters at a constant speed of 1.7 meters per second. Calculate his centripetal acceleration. 2. What would happen to his acceleration

More information

Efficiency = power out x 100% power in

Efficiency = power out x 100% power in Work, Energy and Power Review Package 1) Work: change in energy. Measured in Joules, J. W = Fd W = ΔE Work is scalar, but can be negative. To remember this, ask yourself either: Is the object is losing

More information

Student Exploration: Energy Conversion in a System

Student Exploration: Energy Conversion in a System Name: Date: Student Exploration: Energy Conversion in a System Vocabulary: energy, gravitational potential energy, heat energy, kinetic energy, law of conservation of energy, specific heat capacity Prior

More information

Name 09-MAR-04. Work Power and Energy

Name 09-MAR-04. Work Power and Energy Page 1 of 16 Work Power and Energy Name 09-MAR-04 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? 1. 2.4 J 3. 12

More information

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? Page of 3 Work Power And Energy TEACHER ANSWER KEY March 09, 200. A spring has a spring constant of 20 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?. 2.

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

Gravitational Potential Energy (filled in)

Gravitational Potential Energy (filled in) Name: Date: 4/3 Period: Unit 5 Gravitational Potential Energy (filled in) Essential Questions: Why is energy and work useful to learn? What does work mean in physics? What does energy mean in physics?

More information

Mechanics & Properties of Matter 5: Energy and Power

Mechanics & Properties of Matter 5: Energy and Power Mechanics & Properties of Matter 5: Energy and Power Energy and Power AIM This unit re-introduces the formulae for calculating work done, potential energy, kinetic energy and power. The principle that

More information

Chapter 10: Energy and Work. Slide 10-2

Chapter 10: Energy and Work. Slide 10-2 Chapter 10: Energy and Work Slide 10-2 Forms of Energy Mechanical Energy K U g U s Thermal Energy Other forms include E th E chem E nuclear The Basic Energy Model An exchange of energy between the system

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 6 Last Lecture: Gravity Normal forces Strings, ropes and Pulleys Today: Friction Work and Kinetic Energy Potential Energy Conservation of Energy Frictional Forces

More information

Name: Physics 644 Date: / / Review: Work, Energy, Power Work. 1. What are the two important variables for work? (hint: look at the equation!

Name: Physics 644 Date: / / Review: Work, Energy, Power Work. 1. What are the two important variables for work? (hint: look at the equation! Name: Physics 644 Date: / / Review: Work, Energy, Power Work 1. What are the two important variables for work? (hint: look at the equation!) 2. Is work done in the following situations? A. Is work done

More information

Energy "is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena.

Energy is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena. Energy Energy "is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena." David Rose What is energy? Energy makes changes;

More information

KEY NNHS Introductory Physics: MCAS Review Packet #2

KEY NNHS Introductory Physics: MCAS Review Packet #2 2. Conservation of Energy and Momentum Broad Concept: The laws of conservation of energy and momentum provide alternate approaches to predict and describe the movement of objects. 1.) Which of the following

More information

Pre Comp Review Questions 7 th Grade

Pre Comp Review Questions 7 th Grade Pre Comp Review Questions 7 th Grade Section 1 Units 1. Fill in the missing SI and English Units Measurement SI Unit SI Symbol English Unit English Symbol Time second s second s. Temperature Kelvin K Fahrenheit

More information

Essentially, the amount of work accomplished can be determined two ways:

Essentially, the amount of work accomplished can be determined two ways: 1 Work and Energy Work is done on an object that can exert a resisting force and is only accomplished if that object will move. In particular, we can describe work done by a specific object (where a force

More information

Work and Energy Energy Conservation

Work and Energy Energy Conservation Work and Energy Energy Conservation MidterM 1 statistics Mean = 16.48 Average = 2.74 2 Clicker Question #5 Rocket Science!!! The major principle of rocket propulsion is: a) Conservation of energy b) Conservation

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

velocity, force and momentum are vectors, therefore direction matters!!!!!!!

velocity, force and momentum are vectors, therefore direction matters!!!!!!! 1 Momentum, p is mass times velocity: p = m v vector! unit: (p) = kg m/s Newton s second law: Force = time rate of change of momentum Net force F will produce change in momentum Δp of the object on which

More information

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam.

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam. WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system is always

More information

Chapter 4 Conservation Laws

Chapter 4 Conservation Laws Conceptual Physics/ PEP Name: Date: Chapter 4 Conservation Laws Section Review 4.1 1. List three action and reaction pairs in the picture at right, on page 82 in text. a. Force of paddle on water, and

More information

5 Energy and Machines

5 Energy and Machines 5 Energy and Machines Work and Power Vocabulary Work: The product of the component of the force exerted on an object in the direction of displacement and the magnitude of the displacement. work: (force)(displacement)

More information

KINETIC AND POTENTIAL ENERGY. Chapter 6 (cont.)

KINETIC AND POTENTIAL ENERGY. Chapter 6 (cont.) KINETIC AND POTENTIAL ENERGY Chapter 6 (cont.) The Two Types of Mechanical Energy Energy- the ability to do work- measured in joules Potential Energy- energy that arises because of an object s position

More information

CHAPTER 13.3 AND 13.4 ENERGY

CHAPTER 13.3 AND 13.4 ENERGY CHAPTER 13.3 AND 13.4 ENERGY Section 13.3 Energy Objective 1: What is the relationship between energy and work? Objective 2: Identify the energy of position. Objective 3: The factors that kinetic energy

More information

In an avalanche, a mass of loose snow, soil, or rock suddenly gives way and slides down the side of a mountain.

In an avalanche, a mass of loose snow, soil, or rock suddenly gives way and slides down the side of a mountain. ENERGY Energy Objective 1: What is the relationship between energy and work? Objective 2: Identify the energy of position. Objective 3: The factors that kinetic energy depends on Objective 4: What is non-mechanical

More information

The important variables for work are distance and force. Yes, work is done because the force and the movement are in the

The important variables for work are distance and force. Yes, work is done because the force and the movement are in the Name: Physics 670 Date: / / Review (Key): Work, Energy, Power Work 1. What are the two important variables for work? (hint: look at the equation!) The important variables for work are distance and force.

More information

Work, Power and Energy Worksheet. 2. Calculate the work done by a 47 N force pushing a kg pencil 0.25 m against a force of 23 N.

Work, Power and Energy Worksheet. 2. Calculate the work done by a 47 N force pushing a kg pencil 0.25 m against a force of 23 N. Work, Power and Energy Worksheet Work and Power 1. Calculate the work done by a 47 N force pushing a pencil 0.26 m. 2. Calculate the work done by a 47 N force pushing a 0.025 kg pencil 0.25 m against a

More information

Gravitational Potential

Gravitational Potential Gravitational Potential Energy Bởi: OpenStaxCollege Work Done Against Gravity Climbing stairs and lifting objects is work in both the scientific and everyday sense it is work done against the gravitational

More information

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy ***

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy *** Work-Energy Theorem and Energy Conservation *** The function of work is to change energy *** 2 possibilities 1.) Work is done and... or 2.) Work is done and... 1 EX: A 100 N box is 10 m above the ground

More information

UNIT 5: WORK and ENERGY RECORD ALL ANSWERS ON ANSWER SHEET.

UNIT 5: WORK and ENERGY RECORD ALL ANSWERS ON ANSWER SHEET. PHYSICAL SCIENCE UNIT 5: WORK and ENERGY RECORD ALL ANSWERS ON ANSWER SHEET. name 1. Which of the following processes requires the most work? a. A 10 kg weight rests on a table. b. A person holds a 1 kg

More information

Mechanical Energy I. Name: Date: Section C D F. Mr. Alex Rawson Physics

Mechanical Energy I. Name: Date: Section C D F. Mr. Alex Rawson Physics Name: Date: Section C D F Mechanical Energy I Mr. Alex Rawson Physics 1. One of the two Olympic weightlifting events is called the Clean and Jerk, shown below. As of Athens 2004, the record for Clean and

More information

Section 2. Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down. What Do You See? What Do You Think?

Section 2. Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down. What Do You See? What Do You Think? Thrills and Chills Section Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down Florida Next Generation Sunshine State Standards: Additional Benchmarks met in Section SC.91.N..4

More information

Sometimes (like on AP test) you will see the equation like this:

Sometimes (like on AP test) you will see the equation like this: Work, Energy & Momentum Notes Chapter 5 & 6 The two types of energy we will be working with in this unit are: (K in book KE): Energy associated with of an object. (U in book PE): Energy associated with

More information

What is Energy? Energy- is the ability to do work. Energy is the ability to cause a change. Energy can change an object s:

What is Energy? Energy- is the ability to do work. Energy is the ability to cause a change. Energy can change an object s: Energy & Work What is Energy? Energy- is the ability to do work. Energy is the ability to cause a change. Energy can change an object s: motion temperature shape color http://www.youtube.com/watch?v=-dpbvtabkju

More information

Energy Notes. Name: Hr:

Energy Notes. Name: Hr: Energy Notes Name: Hr: Guided Outline 5-1 Nature of Energy Directions: As you read through Chapter 5 in your textbook, fill in the missing information. I. Section 1: Nature of Energy A. What is Energy?

More information

Pre Comp Review Questions 8 th Grade Answers

Pre Comp Review Questions 8 th Grade Answers Pre Comp Review Questions 8 th Grade Answers Section 1 Units 1. Fill in the missing SI and English Units Measurement SI Unit SI Symbol English Unit English Symbol Time second s second s. Temperature Kelvin

More information

Conceptual Understanding

Conceptual Understanding Name Period Conceptual Understanding 1. Define work in scientific terms, and give the formula. What is it measured in? Work is a force applied over a distance to move and object. Force applied and object

More information

The Story of Energy. Forms and Functions

The Story of Energy. Forms and Functions The Story of Energy Forms and Functions What are 5 things E helps us do? Batteries store energy! This car uses a lot of energy Even this sleeping puppy is using stored energy. We get our energy from FOOD!

More information

Ch 11 ENERGY and its CONSERVATION. work causes a change in the energy of a system KE (an increase or decrease in KE) ket.

Ch 11 ENERGY and its CONSERVATION. work causes a change in the energy of a system KE (an increase or decrease in KE) ket. Ch 11 ENERGY and its CONSERVATION 11.1 The Many Forms of Energy work causes a change in the energy of a system W = KE (an increase or decrease in KE) work energy theorem object + work object work increase

More information

Name. Honors Physics AND POTENTIAL KINETIC

Name. Honors Physics AND POTENTIAL KINETIC KINETIC Name Honors Physics AND POTENTIAL Name Period Work and Energy Intro questions Read chapter 9 pages 144 146 (Section 9.1) 1. Define work in terms of physics? 2. In order to do work on an object,

More information

Physics 2414 Group Exercise 8. Conservation of Energy

Physics 2414 Group Exercise 8. Conservation of Energy Physics 244 Group Exercise 8 Name : OUID : Name 2: OUID 2: Name 3: OUID 3: Name 4: OUID 4: Section Number: Solutions Solutions Conservation of Energy A mass m moves from point i to point f under the action

More information

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved 1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

More information

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Closed book and closed notes. No work needs to be shown. 1. Three rocks are thrown with identical speeds from the top of the same building.

More information

ΣE before ± W = ΣE after

ΣE before ± W = ΣE after The Law of Conservation of Energy The Law of Conservation of Energy states: Energy is never created nor destroyed just transformed into other forms of energy. OR ΣE before = ΣE after Yet if energy is added

More information

1. Which one of the following situations is an example of an object with a non-zero kinetic energy?

1. Which one of the following situations is an example of an object with a non-zero kinetic energy? Name: Date: 1. Which one of the following situations is an example of an object with a non-zero kinetic energy? A) a drum of diesel fuel on a parked truck B) a stationary pendulum C) a satellite in geosynchronous

More information

What is Energy? Energy is the capacity to do work

What is Energy? Energy is the capacity to do work What is Energy? Energy is the capacity to do work Work the product of force exerted on an object and the distance the object moves in the direction of the force. W=Fd W = work (Joules, J) F = force (N)

More information

Gravitational Potential Energy

Gravitational Potential Energy OpenStax-CNX module: m42148 1 Gravitational Potential Energy OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Explain gravitational

More information

Question 8.1 Sign of the Energy II

Question 8.1 Sign of the Energy II Question 8. Sign of the Energy II Is it possible for the gravitational potential energy of an object to be negative? a) yes b) no Question 8. Sign of the Energy II Is it possible for the gravitational

More information

P1 Quick Revision Questions. P1 for AQA GCSE examination 2018 onwards

P1 Quick Revision Questions. P1 for AQA GCSE examination 2018 onwards P1 Quick Revision Questions Question 1... of 50 What type of energy is stored in a stretched elastic band? Answer 1... of 50 Elastic potential energy. Question 2... of 50 What type of energy is stored

More information

Bell Ringer. What are the formulas to obtain the force, acceleration, and mass? And corresponding units. F= ma M= f/a A= f/m

Bell Ringer. What are the formulas to obtain the force, acceleration, and mass? And corresponding units. F= ma M= f/a A= f/m Bell Ringer What are the formulas to obtain the force, acceleration, and mass? And corresponding units. F= ma M= f/a A= f/m F= N M= kg A= m/s^2 What did we learn about the acceleration rate and gravitational

More information

PSC1341 Chapter 3 Work, Power and Momentum

PSC1341 Chapter 3 Work, Power and Momentum PSC1341 Chapter 3 Work, Power and Momentum Chapter 3: Work, Power and Momentum A. Work B. Power C. Simple Machines D. Energy E. Kinetic energy F. Potential energy G. Law of Conservation of Energy H. Momentum

More information

Where: d is distance in m t is time in s. The unit for speed depends on the measurements used for distance and time.

Where: d is distance in m t is time in s. The unit for speed depends on the measurements used for distance and time. Motion Speed Speed describes how fast something is moving. When an object, such as a car or a ball, moves, we describe its motion by using information about how far it goes distance and how long it takes

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 Work and Energy Midterm exams will be available next Thursday. Assignment 6 Textbook (Giancoli, 6 th edition), Chapter 6: Due on Thursday, November 5 1. On page 162 of Giancoli, problem 4. 2.

More information

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY ENERGY Energy present in a variety of forms Mechanical energy Chemical energy Nuclear energy Electromagnetic energy Energy can be transformed form one form to another Energy is conserved (isolated system)

More information

s_3x03 Page 1 Physics Samples

s_3x03 Page 1 Physics Samples Physics Samples KE, PE, Springs 1. A 1.0-kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy

More information

Mechanical Energy Thermal Energy Chemical Energy Electrical Energy Electromagnetic Energy

Mechanical Energy Thermal Energy Chemical Energy Electrical Energy Electromagnetic Energy Physical Science PHYSICS UNIT 4 Study Guide. Chapter 15 - Energy Key Terms Energy Kinetic Energy Potential Gravitational Potential Elastic Potential Mechanical Energy Thermal Energy Chemical Energy Electrical

More information

M1.D [1] M2.A [1] M3.A [1] Slow moving neutrons or low (kinetic) energy neutrons

M1.D [1] M2.A [1] M3.A [1] Slow moving neutrons or low (kinetic) energy neutrons M.D [] M.A [] M3.A [] M4.(a) ANY from Slow moving neutrons or low (kinetic) energy neutrons B (They are in) thermal equilibrium with the moderator / Are in thermal equilibrium with other material (at a

More information

Foundations of Physical Science. Unit 2: Work and Energy

Foundations of Physical Science. Unit 2: Work and Energy Foundations of Physical Science Unit 2: Work and Energy Chapter 5: Work, Energy, and Power 5.1 Work 5.2 Energy Conservation 5.3 Energy Transformations Learning Goals Calculate the amount of work done by

More information

Lecture 10. Potential energy and conservation of energy

Lecture 10. Potential energy and conservation of energy Lecture 10 Potential energy and conservation of energy Today s Topics: Potential Energy and work done by conservative forces Work done by nonconservative forces Conservation of mechanical energy Potential

More information

Review. 8th grade science STAAR. Name Class. Underline your strong TEKS and circle your weak TEKS: 8.6A Unbalanced Forces

Review. 8th grade science STAAR. Name Class. Underline your strong TEKS and circle your weak TEKS: 8.6A Unbalanced Forces 8th grade science STAAR Review Name Class Underline your strong TEKS and circle your weak TEKS: 8.6A Unbalanced Forces 8.6B Speed, Velocity, & Acceleration 8.6C Newton s Laws 7.7A Work 6.8A Potential and

More information

Slide 1 / 113. Slide 2 / th Grade. Energy of Objects in Motion Classwork-Homework Slide 3 / 113. Classwork #1: Energy

Slide 1 / 113. Slide 2 / th Grade. Energy of Objects in Motion Classwork-Homework Slide 3 / 113. Classwork #1: Energy Slide 1 / 113 Slide 2 / 113 8th Grade Energy of Objects in Motion Classwork-Homework 2015-08-25 www.njctl.org Slide 3 / 113 Classwork #1: Energy 1 Define Energy. Slide 4 / 113 2 What two things are necessary

More information

Unit 2: Energy THERMAL ENERGY HEAT TRANSFER POTENTIAL VS. KINETIC ENERGY WORK POWER SIMPLE MACHINES

Unit 2: Energy THERMAL ENERGY HEAT TRANSFER POTENTIAL VS. KINETIC ENERGY WORK POWER SIMPLE MACHINES Unit 2: Energy THERMAL ENERGY HEAT TRANSFER POTENTIAL VS. KINETIC ENERGY WORK POWER SIMPLE MACHINES Bellringer Day 01 1. What is energy? 2. There are different forms of energy. Name two. What is Energy?

More information

Physics 104 Conservation of Energy (CE) Lab

Physics 104 Conservation of Energy (CE) Lab Physics 104 Conservation of Energy (CE) Lab In this activity you will investigate the conservation of mechanical energy as the gravitational potential energy of a falling weight is converted into kinetic

More information

Scaler Quantity (definition and examples) Average speed. (definition and examples)

Scaler Quantity (definition and examples) Average speed. (definition and examples) Newton s First Law Newton s Second Law Newton s Third Law Vector Quantity Scaler Quantity (definition and examples) Average speed (definition and examples) Instantaneous speed Acceleration An object at

More information

Work changes Energy. Do Work Son!

Work changes Energy. Do Work Son! 1 Work changes Energy Do Work Son! 2 Do Work Son! 3 Work Energy Relationship 2 types of energy kinetic : energy of an object in motion potential: stored energy due to position or stored in a spring Work

More information

Name. Date. Period. Engage

Name. Date. Period. Engage AP Physics 1 Lesson 7.a Work, Gravitational Potential, and Kinetic Energy Outcomes 1. Define work. 2. Define energy. 3. Determine the work done by a constant force. 4. Determine the work done by a force

More information

Directed Reading A. Section: Gravity: A Force of Attraction. force of. THE EFFECTS OF GRAVITY ON MATTER. of.

Directed Reading A. Section: Gravity: A Force of Attraction. force of. THE EFFECTS OF GRAVITY ON MATTER. of. Skills Worksheet Directed Reading A Section: Gravity: A Force of Attraction 1. The force of attraction between two objects that is due to their masses is the force of. 2. Why do astronauts on the moon

More information

GPE and KE. How can we calculate energy?

GPE and KE. How can we calculate energy? GPE and KE How can we calculate energy? Starter: Multiple-choice quiz GPE LO: State the GPE depends on mass and height above ground Calculate changes in GPE When you lift an object up, energy is transferred

More information

Work. The quantity of work done is equal to the amount of force the distance moved in the direction in which the force acts.

Work. The quantity of work done is equal to the amount of force the distance moved in the direction in which the force acts. Work The quantity of work done is equal to the amount of force the distance moved in the direction in which the force acts. Work falls into two categories: Work falls into two categories: work done against

More information

- Conservation of Energy Notes Teacher Key -

- Conservation of Energy Notes Teacher Key - NAME: DATE: PERIOD: PHYSICS - Conservation of Energy Notes Teacher Key - - Is Energy Conserved? - Determine the max height that a 5kg cannonball will reach if fired vertically with an initial velocity

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

ENERGY. Unit 12: IPC

ENERGY. Unit 12: IPC ENERGY Unit 12: IPC WHAT IS ENERGY? Energy- is the ability to do work. Energy is the ability to cause a change. Energy can change an object s: motion shape temperature color THERMAL internal motion of

More information

Funsheet [ENERGY TRANSFORMATIONS] Gu 2017

Funsheet [ENERGY TRANSFORMATIONS] Gu 2017 Funsheet 6.1 6.2 [ENERGY TRANSFORMATIONS] Gu 2017 State a 2 step energy transformation in each of the following situations. Include a bar chart. 1. A helicopter rises from the ground at constant speed.

More information

Kinetic and Potential Energy Old Exam Qs

Kinetic and Potential Energy Old Exam Qs Kinetic and Potential Energy Old Exam Qs Q. A firework rocket is fired vertically into the air and explodes at its highest point. What are the changes to the total kinetic energy of the rocket and the

More information

Work Energy & Power. September 2000 Number Work If a force acts on a body and causes it to move, then the force is doing work.

Work Energy & Power. September 2000 Number Work If a force acts on a body and causes it to move, then the force is doing work. PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance

More information

over a distance. W = F*d The units are [N]*[m] [ ] = [Joules] = [J] F * d = W

over a distance. W = F*d The units are [N]*[m] [ ] = [Joules] = [J] F * d = W Work and Energy WORK Work measures the effects of a force acting over a distance. W = F*d The units are [N]*[m] [ ] = [Joules] = [J] F * d = W WORK W = F*d WORK Q: You can lift a maximum of 1000 Newtons.

More information

Physics Courseware Physics I Energy Conservation

Physics Courseware Physics I Energy Conservation d Work work = Fd cos F Kinetic energy linear motion K. E. = mv Gravitational potential energy P. E. = mgh Physics Courseware Physics I Energy Conservation Problem.- A block is released from position A

More information

NCERT solution for Work and energy

NCERT solution for Work and energy 1 NCERT solution for Work and energy Question 1 A force of 7 N acts on an object. The displacement is, say 8 m, in the direction of the force (See below figure). Let us take it that the force acts on the

More information

How does the total energy of the cart change as it goes down the inclined plane?

How does the total energy of the cart change as it goes down the inclined plane? Experiment 6 Conservation of Energy and the Work-Energy Theorem In this experiment you will explore the principle of conservation of mechanical energy. You will see that gravitational energy can be converted

More information

Energy: Forms and Changes

Energy: Forms and Changes Energy: Forms and Changes The Energy Story Nature of Energy Energy is all around you! l You can hear energy as sound. l You can see energy as light. l And you can feel it as wind. Nature of Energy You

More information

Energy Review Sheet. 4. A cart with 1000 J of energy crashes into a spring with a spring constant of 100 N/m. How far does the spring compress?

Energy Review Sheet. 4. A cart with 1000 J of energy crashes into a spring with a spring constant of 100 N/m. How far does the spring compress? Name: Date: Block: Energy Review Sheet Elastic (Spring) Potential Energy (Es) 1. What is the formula for finding elastic potential energy? 2. Sketch the graph of force vs. displacement for a stiff (large

More information

CBSE Class 9 Work Energy and Power Quick Study Chapter Note

CBSE Class 9 Work Energy and Power Quick Study Chapter Note CBSE Class 9 Work Energy and Power Quick Study Chapter Note Work: In our daily life anything that makes us tired is known as work. For example, reading, writing, painting, walking, etc. In physics work

More information

WORK, POWER & ENERGY

WORK, POWER & ENERGY WORK, POWER & ENERGY Work An applied force acting over a displacement. The force being applied must be parallel to the displacement for work to be occurring. Work Force displacement Units: Newton meter

More information

Unit 5: Energy (Part 2)

Unit 5: Energy (Part 2) SUPERCHARGED SCIENCE Unit 5: Energy (Part 2) www.sciencelearningspace.com Appropriate for Grades: Lesson 1 (K-12), Lesson 2 (K-12) Duration: 6-15 hours, depending on how many activities you do! We covered

More information

Chapter 4. Energy. Work Power Kinetic Energy Potential Energy Conservation of Energy. W = Fs Work = (force)(distance)

Chapter 4. Energy. Work Power Kinetic Energy Potential Energy Conservation of Energy. W = Fs Work = (force)(distance) Chapter 4 Energy In This Chapter: Work Kinetic Energy Potential Energy Conservation of Energy Work Work is a measure of the amount of change (in a general sense) that a force produces when it acts on a

More information

Science 10. Unit 4:Physics. Block: Name: Book 1: Kinetic & Potential Energy

Science 10. Unit 4:Physics. Block: Name: Book 1: Kinetic & Potential Energy Science 10 Unit 4:Physics Book 1: Kinetic & Potential Energy Name: Block: 1 Brainstorm: Lesson 4.1 Intro to Energy + Kinetic Energy What is WORK? What is ENERGY? "in physics, we say that if you have done

More information

Chapter 1 about science 1. Differentiate between hypothesis and theory.

Chapter 1 about science 1. Differentiate between hypothesis and theory. Physics A Exam Review Name Hr PHYSICS SCIENTIFIC METHOD FACT HYPOTHESIS LAW THEORY PHYSICAL SCIENCE UNITS VECTOR MAGNITUDE FORCE MECHANICAL EQUILIBRIUM NET FORCE SCALAR RESULTANT TENSION SUPPORT FORCE

More information

CHAPTER 5. Chapter 5, Energy

CHAPTER 5. Chapter 5, Energy CHAPTER 5 2. A very light cart holding a 300-N box is moved at constant velocity across a 15-m level surface. What is the net work done in the process? a. zero b. 1/20 J c. 20 J d. 2 000 J 4. An rock is

More information

Student Exploration: Roller Coaster Physics

Student Exploration: Roller Coaster Physics Name: Date: Student Exploration: Roller Coaster Physics Vocabulary: friction, gravitational potential energy, kinetic energy, momentum, velocity Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

More information

Chapter 2 Physics in Action Sample Problem 1 A weightlifter uses a force of 325 N to lift a set of weights 2.00 m off the ground. How much work did th

Chapter 2 Physics in Action Sample Problem 1 A weightlifter uses a force of 325 N to lift a set of weights 2.00 m off the ground. How much work did th Chapter Physics in Action Sample Problem 1 A weightlifter uses a force of 35 N to lift a set of weights.00 m off the ground. How much work did the weightlifter do? Strategy: You can use the following equation

More information

l Every object in a state of uniform motion tends to remain in that state of motion unless an

l Every object in a state of uniform motion tends to remain in that state of motion unless an Motion and Machine Unit Notes DO NOT LOSE! Name: Energy Ability to do work To cause something to change move or directions Energy cannot be created or destroyed, but transferred from one form to another.

More information

Units. Example Problem 1. Time (s) Distance (m)

Units. Example Problem 1. Time (s) Distance (m) Time (s) Distance (m) Units Speed: average speed and Instantaneous speed (m/s) Velocity (m/s) +direction Acceleration (m/s 2 ) Force (N) or lbs Inertia (Kg) Density (g/ml) Example Problem 1 Which of the

More information

WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy

WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy WORK & ENERGY Work: Transfer of energy through motion Energy: Ability to cause Change Kinetic Energy: Energy

More information

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30.

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is 34 m 30. m 17 m 24 m 2) The graph below represents the motion of a body that is moving with 6) Which

More information

8th Grade. Energy of Objects in Motion. Energy and its Forms. Slide 1 / 122 Slide 2 / 122. Slide 3 / 122. Slide 4 / 122.

8th Grade. Energy of Objects in Motion. Energy and its Forms. Slide 1 / 122 Slide 2 / 122. Slide 3 / 122. Slide 4 / 122. Slide / 22 Slide 2 / 22 8th Grade Energy of Objects of Motion 205-0-28 www.njctl.org Slide 3 / 22 Energy of Objects in Motion Slide 4 / 22 Review from Last Unit Energy and its Forms Mechanical Energy Energy

More information