ANSWERS TO NICOLAAS KOS FOR HIS PAPER Cold Beam Vacuum System for the LHC IR Upgrade Phase-1

Size: px
Start display at page:

Download "ANSWERS TO NICOLAAS KOS FOR HIS PAPER Cold Beam Vacuum System for the LHC IR Upgrade Phase-1"

Transcription

1 ANSWERS TO NICOLAAS KOS FOR HIS PAPER Cold Beam Vacuum System for the LHC IR Upgrade Phase-1 Maximum acceptable width for the pumping slots for a new beam screen wall thickness of 1.5 mm (SS only, and then on top of it a Cu layer of mm as now)? Heat load on the beam screen from image currents? Impedance requirements for the cold to warm transitions at both ends? Elias Métral, 20/01/2010 1/24

2 OBSELETE BEAM SCREEN DESIGN In particular for the supports Cooling tube Support Pumping holes Beam screen (in SS with a Cu layer) Copper layer Cold bore Elias Métral, 20/01/2010 2/24

3 LHC design as it is built and installed CURRENT BEAM SCREEN (1/14) In dipoles, also called baffles, to avoid direct e - path along magnetic field lines to the cold bore (which would then add to the heat load) Saw teeth in the arcs on Cu (a series of 30-μm high steps spaced by 500 μm in the long. direction, to reduce the forward reflectivity) Weld Elias Métral, 20/01/2010 3/24

4 CURRENT BEAM SCREEN (2/14) Elias Métral, 20/01/2010 4/24

5 CURRENT BEAM SCREEN low B? In the past, I used 1.8E-10 Ωm at low B and 5.5E-10 Ωm at high B (due to magnetoresitance effect) Bunch charge (for nominal) Q = e = 18.4 nc Rms bunch length σ z = 7.5 cm Bunch spacing S b = 7.5 m Cold bore inner radius d = 2.5 cm Covered surface from the holes In the arcs: f = 4.0% In the LSS: f = from 1.8% to 2.6% (depends on screen Φ) Elias Métral, 20/01/2010 5/24

6 CURRENT BEAM SCREEN (4/14) The power loss goes with the square of the bunch charge => It is ~ 2 times more for the ultimate bunch (1.7E11 p/b) compared to the nominal one (1.15E11 p/b) Power loss Theoretical computation with a previous design Meas. of LHC dipole beam screen samples without magnetic field + extrapolation Elias Métral, 20/01/2010 6/24

7 CURRENT BEAM SCREEN (5/14) Results shown by A. Mostacci (La Sapienza, University of Rome) during Francesco Ruggiero Memorial Symposium (CERN, 3 October 2007) for the power loss due to the pumping holes: access?contribid=54&sessionid=14&resid=1&materialid=slides&confid=20082 Elias Métral, 20/01/2010 7/24

8 CURRENT BEAM SCREEN (6/14) Using A. Mostacci s Mathematica Notebook (wwwslap.cern.ch/collective/ mostacci/slots/note/slots.nb), and updating the numerical values (only small changes), these curves were produced (constant power in mw/m vs. the beam screen thickness T and the width of the slots W) b arcs = 36.8 / 2 = 18.4 mm Elias Métral, 20/01/2010 8/24

9 CURRENT BEAM SCREEN (7/14) b LSS = 37.6 / 2 = 18.8 mm and f = 2.6 % (most critical case) Elias Métral, 20/01/2010 9/24

10 CURRENT BEAM SCREEN (8/14) The current parameters of the beam screen are Length of the slots: L = 6,7,8,9 and 10 mm => Laverage = 8 mm Width of the slots: In the arcs: W = 1.5 mm In the LSS: W = 1.0 mm Beam screen thickness: In the arcs: T = 1 mm SS mm Cu = mm In the LSS: T = 0.6 mm SS mm Cu = mm => Power loss from the holes in the arcs: P arcs 1.1 mw/m Power loss from the holes in the LSS: P LSS 0.1 mw/m In the most critical case Elias Métral, 20/01/ /24

11 CURRENT BEAM SCREEN (9/14) Power loss from the image currents in the beam screen (neglecting the holes) at 7 TeV, assuming a Gaussian bunch and the classical formula for the longitudinal resistive-wall impedance (with beam pipe radius b) => It was checked by N. Mounet that the same numerical result is obtained with our more precise multi-layer impedance formula G,RW P,1layer loss/ m = 1 2 π R Γ 3 4 M b N b e 2 π 2 c ρ Z 0 2 σ t 3 / 2 85 mw/m Γ 3 = Euler gamma function M = number of bunches = 2808 ρ 20K Cu = Ωm LHC circumference = 2 π R = m b = beam screen half height = 36.8 / 2 = 18.4 mm N b = p/b σ t = 0.25 ns Elias Métral, 20/01/ /24

12 CURRENT BEAM SCREEN (10/14) Concerning the power loss from the image currents due to the weld Long discussions in the past on the impact of the welding => Whether or not the image current would avoid the high impedance welding. The conclusion was that the image current DOES NOT avoid the high impedance region (except at VERY low frequencies), and thus for the losses the straight forward way of calculation can be used (see before: it assumes a constant H Φ on the wall, i.e. it is the first order solution) Elias Métral, 20/01/ /24

13 ρ 20K Cu = Ωm CURRENT BEAM SCREEN (11/14) A. Mostacci found in his thesis ( /files/thesis pdf), page 108, that the factor ¼ of the previous slide should be ~ 0.9 (in the initial geometry used in the previous slide, square, the weld was in the corner, i.e. protected from the bunch field, which explains the smaller factor) => I will use a factor 1 (conservative approach) below N. Kos confirmed that we have only 1 weld now of width 2 mm (i.e. over 2 mm there is no Cu but SS) Δ l Weld 2 π b = 2 2 π 18.4 = 1 π ρ 20K SS = Weld Ωm => P loss/ m Weld P loss/ m G,RW,1layer 57 % P loss/ m 48 mw/m Even though the weld corresponds to only ~ 1/60 of the surface, the power loss due to the weld is not negligible Elias Métral, 20/01/ /24

14 CURRENT BEAM SCREEN (12/14) Anomalous skin effect: Attributes the anomalous increase of surface resistance of metals at high frequencies and low temperatures to the long mean free path of the conduction e - => When the skin depth becomes much smaller than the mean free path, the classical theory breaks down => Increases slightly the power loss (see next slide) For the theoretical part, see Anomalous Skin Effect and Resistive Wall Heating, W. Chou and F. Ruggiero, LHC Project Note 2 (SL/AP): cdsweb.cern.ch/record/691905/files/project-note-2.pdf For the measurement part, see Surface Resistance Measurements of LHC Dipole Beam Screen Samples, F. Caspers et al., EPAC2000: accelconf.web.cern.ch/accelconf/e00/papers/mop7b11.pdf Reminder: The numerical value used for the Cu resistivity already takes into account the magneto-resistance effect Elias Métral, 20/01/ /24

15 CURRENT BEAM SCREEN (13/14) Comparison with A. Mostacci s results in his thesis ( cdsweb.cern.ch/record/516355/files/thesis pdf), Table 3.7, page 111 He considered b = bx = 22 mm and I considered b = by = 18.4 mm Elias Métral, 20/01/ /24

16 CURRENT BEAM SCREEN (14/14) Comparison between what I re- estimated and what is in the LHC Design Report, Vol. 1, Chap. 5 ( Vol_1_Chapter_5.pdf) => For 1 single beam ~ 85 mw/m (with the same formula as F. Ruggiero in his paper CERN SL/95-09 (AP)). Mostacci found ~ 80 mw/m (with simulations). The value quoted comes from meas. ~ 1 mw/m for the most critical pumping holes in the arc beam screen (very close to Mostacci s result) ~ 48 mw/m. Mostacci found 27 mw/m Elias Métral, 20/01/ /24

17 UPGRADED TRIPLET BEAM SCREEN (1/7) As part of the LHC IR Upgrade Phase-1, the existing Q1, Q2, Q3 and D1 magnets in the Atlas (IR1) and CMS (IR5) interaction regions will be replaced D1 beam vacuum will change from a room temperature system to a cold system Elias Métral, 20/01/ /24

18 UPGRADED TRIPLET BEAM SCREEN (2/7) Elias Métral, 20/01/ /24

19 UPGRADED TRIPLET BEAM SCREEN (3/7) Cold bore inner radius (provisional estimate) d = 55.3 mm Elias Métral, 20/01/ /24

20 UPGRADED TRIPLET BEAM SCREEN (4/7) Concerning the power loss from the pumping slots Covered surface from the holes f = 5.1 % b = 94.5 / 2 = mm For W = 1.5 mm (and T = mm) the power loss is ~ 0.1 mw/m If we allow ~ 10 mw/m (per beam), one can increase W to ~ 2.5 mm Elias Métral, 20/01/ /24

21 UPGRADED TRIPLET BEAM SCREEN (5/7) Concerning the power loss from the image currents in the beam screen (neglecting the holes) G,RW P,1layer loss/ m 1 b => If b goes from 36.8 / 2 = 18.4 mm to 94.5 / 2 = mm, then the power loss should decrease by a factor / 18.4 ~ 2.6 Elias Métral, 20/01/ /24

22 UPGRADED TRIPLET BEAM SCREEN (6/7) Concerning the power loss from the image currents from the weld Weld P loss/ m Δ l G,RW,1layer b P loss/ m Weld Width of the weld => P Weld loss/ m Δ l Weld b 2 => If one considers a width of the weld of 3 mm (instead of 2 mm at present), and if b goes from 36.8 / 2 = 18.4 mm to 94.5 / 2 = mm, then the power loss should decrease by a factor (2/3) (47.25 / 18.4) 2 ~ 4.4 Elias Métral, 20/01/ /24

23 UPGRADED TRIPLET BEAM SCREEN (7/7) IN SUMMARY, for 1 beam at nominal intensity => Comparison between the proposed upgraded triplet beam screen (what I computed in blue) and the present arc beam screen (table from the Design Report and what I recomputed in maroon) ~ 85 mw/m ~ 33 mw/m ~ 1 mw/m ~ 3.5 mw/m for T = mm and W = 2.2 mm ~ 48 mw/m ~ 11 mw/m FOR THE 2 BEAMS AT ULTIMATE INTENSITY => The above results should be multiplied by 4: factor 2 to go from 1 beam to 2 beams, and factor 2 to go from nominal to ultimate intensity Elias Métral, 20/01/ /24

24 GENERAL RULE FOR THE TRANSITIONS Try to use a maximum tapering angle of ~ 15 deg (the smaller the better!) Elias Métral, 20/01/ /24

BEAM SCREEN ISSUES (with 20 T dipole magnets instead of 8.3 T)

BEAM SCREEN ISSUES (with 20 T dipole magnets instead of 8.3 T) BEAM SCREEN ISSUES (with 20 T dipole magnets instead of 8.3 T) Introduction and current LHC beam screen Magneto-Resistance (MR) What was done in the past (approx. of the approx. Kohler s rule) Exact and

More information

HL LHC: impedance considerations for the new triplet layout in IR1 & 5

HL LHC: impedance considerations for the new triplet layout in IR1 & 5 HL LHC: impedance considerations for the new triplet layout in IR1 & 5 N. Mounet, A. Mostacci, B. Salvant, C. Zannini and E. Métral Acknowledgements: G. Arduini, C. Boccard, G. Bregliozzi, L. Esposito,

More information

Beam heat load due to geometrical and resistive wall impedance in COLDDIAG

Beam heat load due to geometrical and resistive wall impedance in COLDDIAG Beam heat load due to geometrical and resistive wall impedance in COLDDIAG Sara Casalbuoni, Mauro Migliorati, Andrea Mostacci, Luigi Palumbo, Bruno Spataro 2012 JINST 7 P11008, http://iopscience.iop.org/17480221/7/11/p11008

More information

(4) vacuum pressure & gas desorption in the IRs ( A.

(4) vacuum pressure & gas desorption in the IRs ( A. Electron Cloud Effects in the LHC Frank Zimmermann,, SL/AP (1) heat load on the beam screen inside the s.c. magnets (4 20 K) (2) heat load on the cold bore (1.9 K) (3) beam instability at injection (4)

More information

Beam induced heat loads on the beam-screens of the twin-bore magnets in the IRs of the HL-LHC

Beam induced heat loads on the beam-screens of the twin-bore magnets in the IRs of the HL-LHC CERN-ACC-2016-0112 Giovanni.Iadarola@cern.ch Beam induced heat loads on the beam-screens of the twin-bore magnets in the IRs of the HL-LHC G. Iadarola, E. Metral, G. Rumolo CERN, Geneva, Switzerland Abstract

More information

Impact of the forces due to CLIQ discharges on the MQXF Beam Screen. Marco Morrone, Cedric Garion TE-VSC-DLM

Impact of the forces due to CLIQ discharges on the MQXF Beam Screen. Marco Morrone, Cedric Garion TE-VSC-DLM Impact of the forces due to CLIQ discharges on the MQXF Beam Screen Marco Morrone, Cedric Garion TE-VSC-DLM The High Luminosity - LHC project HL-LHC Beam screen design - Beam screen dimensions - Conceptual

More information

Electron Cloud Studies made at CERN in the SPS

Electron Cloud Studies made at CERN in the SPS Electron Cloud Studies made at CERN in the SPS J.M. Jimenez On behalf of the Electron Cloud Study Team, a Collaboration between AT and AB Departments Main Topics Introduction LHC Injectors SPS Running

More information

Beam-induced heat loads on the beam screens of the inner triplets for the HL-LHC

Beam-induced heat loads on the beam screens of the inner triplets for the HL-LHC CERN-ACC-2018-0009 Galina.Skripka@cern.ch Beam-induced heat loads on the beam screens of the inner triplets for the HL-LHC G. Skripka and G. Iadarola CERN, Geneva, Switzerland Keywords: LHC, HL-LHC, heat

More information

Elias Métral, LHC Collimation Working Group Meeting, 15/03/ /31

Elias Métral, LHC Collimation Working Group Meeting, 15/03/ /31 Answers to Jeff and Liling concerning the simulations of trapped modes of the SLAC Phase 2 collimator, and news on impedance for the Phase 1 and 2 at CERN Reminder on the trapped modes simulations performed

More information

Preliminary design of the new HL-LHC beam screen for the low-β triplets

Preliminary design of the new HL-LHC beam screen for the low-β triplets Preliminary design of the new HL-LHC beam screen for the low-β triplets Marco Morrone TE-VSC-DLM 15/10/2015 Contents o CERN The Hi Lumi upgrade o Functional requirements -Functional study -Current vs new

More information

Very Large Hadron Collider - phase 2 Optimization of the beam screen cooling & Impact of the photon stop on the cryogenic system

Very Large Hadron Collider - phase 2 Optimization of the beam screen cooling & Impact of the photon stop on the cryogenic system Very Large Hadron Collider - phase 2 Optimization of the beam screen cooling & Impact of the photon stop on the cryogenic system VLHC workshop on the beam tube vacuum Saturday June 23, 21 - Christine Darve

More information

TRANSVERSE IMPEDANCE OF LHC COLLIMATORS

TRANSVERSE IMPEDANCE OF LHC COLLIMATORS Contributed talk WEOAC03 (12 + 3 min, 14 slides) TRANSVERSE IMPEDANCE OF LHC COLLIMATORS Elias Métral Work in collaboration with G. Arduini,, R. Assmann,, A. Boccardi,, T. Bohl, F. Caspers,, M. Gasior,,

More information

Electron Cloud Studies

Electron Cloud Studies Electron Cloud Studies Tom Kroyer, Edgar Mahner,, Fritz Caspers, CERN LHC MAC, 7. December 2007 Agenda Introduction to electron cloud effects Overview over possible remedies surface coatings rough surfaces

More information

SPS IMPEDANCE BUDGET

SPS IMPEDANCE BUDGET SPS IMPEDANCE BUDGET G. Arduini,, H. Medina, E. Métral, B. Salvant and B. Spataro ZBASE Items considered until now Kickers BPMs Pumping ports Theoretical predictions and comparison with measurements of

More information

DEBRIEFING AND FOLLOW-UP OF THE LPL REVIEW

DEBRIEFING AND FOLLOW-UP OF THE LPL REVIEW DEBRIEFING AND FOLLOW-UP OF THE LPL REVIEW => LPL (LHC Performance Limitations during run I) review on 25-26/09/13: https://indico.cern.ch/conferencedisplay.py? confid=267783 Debriefing More detail of

More information

Overview of LHC Accelerator

Overview of LHC Accelerator Overview of LHC Accelerator Mike Syphers UT-Austin 1/31/2007 Large Hadron Collider ( LHC ) Outline of Presentation Brief history... Luminosity Magnets Accelerator Layout Major Accelerator Issues U.S. Participation

More information

1.1 Electron-Cloud Effects in the LHC

1.1 Electron-Cloud Effects in the LHC 11 1.1 Electron-Cloud Effects in the LHC F. Zimmermann, E. Benedetto 1 mail to: frank.zimmermann@cern.ch CERN, AB Department, ABP Group 1211 Geneva 23, Switzerland 1.1.1 Introduction The LHC is the first

More information

LHC Injection Kicker Magnets - An Overview of heating and beam screen changes in LHC-MKI8d

LHC Injection Kicker Magnets - An Overview of heating and beam screen changes in LHC-MKI8d LHC Injection Kicker Magnets - An Overview of heating and beam screen changes in LHC-MKI8d H. Day, M. Barnes, B. Salvant, F. Caspers, E. Metral October 9, 2012 Contents Introduction Contents Background

More information

Gianluigi Arduini CERN - Beams Dept. - Accelerator & Beam Physics Group

Gianluigi Arduini CERN - Beams Dept. - Accelerator & Beam Physics Group Gianluigi Arduini CERN - Beams Dept. - Accelerator & Beam Physics Group Acknowledgements: O. Brüning, S. Fartoukh, M. Giovannozzi, G. Iadarola, M. Lamont, E. Métral, N. Mounet, G. Papotti, T. Pieloni,

More information

HL-LHC OPERATIONAL SCENARIOS

HL-LHC OPERATIONAL SCENARIOS CERN-ACC-NOTE-2015-0009 2015-05-19 Elias.Metral@cern.ch HL-LHC OPERATIONAL SCENARIOS G. Arduini, N. Biancacci, O. Brüning, R. De Maria, M. Giovannozzi, W. Höfle, K. Li, E. Métral, J.E. Muller, Y. Papaphilippou,

More information

Calculation of Wakefields and Higher Order Modes for the New Design of the Vacuum Chamber of the ALICE Experiment for the HL-LHC

Calculation of Wakefields and Higher Order Modes for the New Design of the Vacuum Chamber of the ALICE Experiment for the HL-LHC CERN-ACC-NOTE-2017-0033 23rd May 2017 rainer.wanzenberg@desy.de Calculation of Wakefields and Higher Order Modes for the New Design of the Vacuum Chamber of the ALICE Experiment for the HL-LHC R. Wanzenberg

More information

UPDATE OF THE SPS KICKERS

UPDATE OF THE SPS KICKERS UPDATE OF THE SPS KICKERS B. Salvant and E. Métral APC action (0//06): The Committee but it stressed the importance of evaluating the effect of the resonance peaks observed at low frequency on the longitudinal

More information

Longitudinal Dynamics

Longitudinal Dynamics Longitudinal Dynamics F = e (E + v x B) CAS Bruges 16-25 June 2009 Beam Dynamics D. Brandt 1 Acceleration The accelerator has to provide kinetic energy to the charged particles, i.e. increase the momentum

More information

Large Hadron Collider at CERN

Large Hadron Collider at CERN Large Hadron Collider at CERN Steve Playfer 27km circumference depth 70-140m University of Edinburgh 15th Novemebr 2008 17.03.2010 Status of the LHC - Steve Playfer 1 17.03.2010 Status of the LHC - Steve

More information

A PHOTON-STOP FOR THE VLHC-2 ENGINEERING DESIGN PART 1

A PHOTON-STOP FOR THE VLHC-2 ENGINEERING DESIGN PART 1 TD-01-023 04/01 A PHOTON-STOP FOR THE VLHC-2 ENGINEERING DESIGN PART 1 P. Bauer, K. Ewald, C. Darve, P. Limon, J.M. Rey, I. Terechkine, L. Imbasciati Fermilab, Technical Division Keywords: VLHC, photon-stop,

More information

Experimental Results of a LHC Type Cryogenic Vacuum System Subjected to an Electron Cloud

Experimental Results of a LHC Type Cryogenic Vacuum System Subjected to an Electron Cloud Experimental Results of a LHC Type Cryogenic Vacuum System Subjected to an Electron Cloud V. Baglin, B. Jenninger CERN AT-VAC, Geneva 1. Introduction LHC & Electron Cloud LHC cryogenic vacuum system 2.

More information

General wall impedance theory for 2D axisymmetric and flat multilayer structures

General wall impedance theory for 2D axisymmetric and flat multilayer structures General wall impedance theory for 2D axisymmetric and flat multilayer structures N. Mounet and E. Métral Acknowledgements: N. Biancacci, F. Caspers, A. Koschik, G. Rumolo, B. Salvant, B. Zotter. N. Mounet

More information

Theory English (Official)

Theory English (Official) Q3-1 Large Hadron Collider (10 points) Please read the general instructions in the separate envelope before you start this problem. In this task, the physics of the particle accelerator LHC (Large Hadron

More information

Accelerator Vacuum Technology Challenges for Next-Generation Synchrotron-Light Sources

Accelerator Vacuum Technology Challenges for Next-Generation Synchrotron-Light Sources Accelerator Vacuum Technology Challenges for Next-Generation P. He (IHEP) 14-19 May 2017, IPAC 2017, Copenhagen, Denmark 14-19 May 2017, IPAC 2017, Copenhagen, Denmark Content 1. Introduction: Goals and

More information

Electron cloud observation in the LHC

Electron cloud observation in the LHC Electron cloud observation in the LHC Giovanni Rumolo IPAC 11, San Sebastian (Spain), 8 September 2011 On behalf of the large team of experimenters and simulators G. Arduini, V. Baglin, H. Bartosik, N.

More information

A SIMULATION STUDY OF THE ELECTRON CLOUD IN THE EXPERIMENTAL REGIONS OF LHC

A SIMULATION STUDY OF THE ELECTRON CLOUD IN THE EXPERIMENTAL REGIONS OF LHC A SIMULATION STUDY OF THE ELECTRON CLOUD IN THE EXPERIMENTAL REGIONS OF LHC A. Rossi, G. Rumolo and F. Ziermann, CERN, Geneva, Switzerland Abstract The LHC experimental regions (ATLAS, ALICE, CMS and LHC

More information

ACHIEVABLE SPACE-CHARGE TUNE SHIFT WITH LONG LIFETIME IN THE CERN PS & SPS

ACHIEVABLE SPACE-CHARGE TUNE SHIFT WITH LONG LIFETIME IN THE CERN PS & SPS Contributed talk (15 + 5 min, 30 slides) ACHIEVABLE SPACE-CHARGE TUNE SHIFT WITH LONG LIFETIME IN THE CERN PS & SPS Elias Métral Elias Métral, HB2008 workshop, Nashville, Tennessee, USA, August 25-29,

More information

Higgs Factory Magnet Protection and Machine-Detector Interface

Higgs Factory Magnet Protection and Machine-Detector Interface Higgs Factory Magnet Protection and Machine-Detector Interface Nikolai Mokhov Fermilab MAP Spring Workshop May 27-31, 2014 Outline MDI Efforts Building Higgs Factory Collider, Detector and MDI Unified

More information

Results on a-c tubes subjected to synchrotron irradiation

Results on a-c tubes subjected to synchrotron irradiation Results on a-c tubes subjected to synchrotron irradiation V. Baglin, P. Chiggiato, P. Costa-Pinto, B. Henrist (CERN, Geneva) V. Anashin, D. Dorokhov. A. Semenov, A. Krasnov, D. Shwartz, A. Senchenko (,

More information

Electron-Cloud Theory & Simulations

Electron-Cloud Theory & Simulations (1) e cloud build up Electron-Cloud Theory & Simulations Frank Zimmermann,, SL/AP distribution, line & volume density, dose ( scrubbing), energy spectrum, LHC heat load, various fields (dipole, solenoids,

More information

Study of Distributed Ion-Pumps in CESR 1

Study of Distributed Ion-Pumps in CESR 1 Study of Distributed Ion-Pumps in CESR 1 Yulin Li, Roberto Kersevan, Nariman Mistry Laboratory of Nuclear Studies, Cornell University Ithaca, NY 153-001 Abstract It is desirable to reduce anode voltage

More information

Surface Resistance Measurements and Estimate of the Beam-Induced Resistive Wall Heating of the LHC Dipole Beam Screen

Surface Resistance Measurements and Estimate of the Beam-Induced Resistive Wall Heating of the LHC Dipole Beam Screen EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 37 Surface Resistance Measurements and Estimate of the Beam-Induced

More information

Impedance & Instabilities

Impedance & Instabilities Impedance & Instabilities The concept of wakefields and impedance Wakefield effects and their relation to important beam parameters Beam-pipe geometry and materials and their impact on impedance An introduction

More information

The LHC: the energy, cooling, and operation. Susmita Jyotishmati

The LHC: the energy, cooling, and operation. Susmita Jyotishmati The LHC: the energy, cooling, and operation Susmita Jyotishmati LHC design parameters Nominal LHC parameters Beam injection energy (TeV) 0.45 Beam energy (TeV) 7.0 Number of particles per bunch 1.15

More information

LHC Commissioning in 2008

LHC Commissioning in 2008 LHC Commissioning in 2008 Mike Lamont AB/OP Schedule slides c/o Lyn Evans (MAC 14/6/07) Status: Installation & equipment commissioning LHC commissioning - CMS June 07 2 Procurement problems of remaining

More information

Commissioning of the LHC collimation system S. Redaelli, R. Assmann, C. Bracco, M. Jonker and G. Robert-Demolaize CERN, AB department

Commissioning of the LHC collimation system S. Redaelli, R. Assmann, C. Bracco, M. Jonker and G. Robert-Demolaize CERN, AB department 39 th ICFA Advance Beam dynamics Workshop High Intensity High Brightness Hadron Beams - HB 2006 Tsukuba, May 29 th - June 2 nd, 2006 Commissioning of the LHC collimation system S. Redaelli, R. Assmann,

More information

QGP Physics from Fixed Target to LHC

QGP Physics from Fixed Target to LHC QGP Physics from Fixed Target to LHC 2. Kinematic Variables Prof. Dr. Klaus Reygers, Prof. Dr. Johanna Stachel Physikalisches Institut, Universität Heidelberg SS 2015 1 May 5, 2015: First collisions at

More information

LHC status & 2009/2010 operations. Mike Lamont

LHC status & 2009/2010 operations. Mike Lamont LHC status & 2009/2010 operations Mike Lamont Contents 7-9-09 LHC status - CMS week 2 Consolidation brief recall Splices Operational energies Potential performance Present status Plans for 2009-2010 Consolidation

More information

Supercritical Helium Cooling of the LHC Beam Screens

Supercritical Helium Cooling of the LHC Beam Screens EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report Supercritical Helium Cooling of the LHC Beam Screens Emmanuel Hatchadourian,,

More information

LHC operation in 2015 and prospects for the future

LHC operation in 2015 and prospects for the future LHC operation in 2015 and prospects for the future Moriond Workshop La Thuile March 2016 Jörg Wenninger CERN Beams Department Operation group / LHC For the LHC commissioning and operation teams 1 Moriond

More information

Estimates of local heating due to trapped modes in vacuum chamber

Estimates of local heating due to trapped modes in vacuum chamber Estimates of local heating due to trapped modes in vacuum chamber Gennady Stupakov SLAC National Accelerator Laboratory, Menlo Park, CA 94025 CERN, April 29, 2016 2 Motivation The motivation for this analysis

More information

LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side

LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side Frank Zimmermann LHCb Upgrade Workshop Edinburgh, 11 January 2007 Frank Zimmermann, LHCb Upgrade Workshop time scale of LHC upgrade

More information

SPPC Study and R&D Planning. Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST

SPPC Study and R&D Planning. Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST SPPC Study and R&D Planning Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST Main topics Pre-conceptual design study Studies on key technical issues R&D

More information

Measurements of temperature on LHC thermal models

Measurements of temperature on LHC thermal models Measurements of temperature on LHC thermal models Christine Darve 1, Juan Casas 2, Moyses Kuchnir 1 1 : Fermi National Accelerator Laboratory, Batavia, IL, USA 2 : CERN, European Laboratory for Particle

More information

photoemission, secondary emission, magnetic

photoemission, secondary emission, magnetic Electron-Cloud Simulations: Build Up and Related Effects Frank Zimmermann, G. Rumolo,, SL/AP (1) Simulation model photoemission, secondary emission, magnetic fields, beam fields, image charges, space charge

More information

2.6 Electron transport lines

2.6 Electron transport lines 2.6 Electron transport lines 2.6 Electron transport lines Overview The electron transport lines consist of all of the electron beamline segments that are neither part of the Linacs nor part of the injector.

More information

CURRENT LEADS FOR THE LHC MAGNET SYSTEM

CURRENT LEADS FOR THE LHC MAGNET SYSTEM EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 526 CURRENT LEADS FOR THE LHC MAGNET SYSTEM A. Ballarino Abstract The

More information

Simulations of single bunch collective effects using HEADTAIL

Simulations of single bunch collective effects using HEADTAIL Simulations of single bunch collective effects using HEADTAIL G. Rumolo, in collaboration with E. Benedetto, O. Boine-Frankenheim, G. Franchetti, E. Métral, F. Zimmermann ICAP, Chamonix, 02.10.2006 Giovanni

More information

The Booster has three magnet systems for extraction: Kicker Ke, comprising two identical magnets and power supplies Septum Se

The Booster has three magnet systems for extraction: Kicker Ke, comprising two identical magnets and power supplies Septum Se 3.2.7 Booster Injection and Extraction 3.2.7.1 Overview The Booster has two magnet systems for injection: Septum Si Kicker Ki The Booster has three magnet systems for extraction: Kicker Ke, comprising

More information

Beam losses versus BLM locations at the LHC

Beam losses versus BLM locations at the LHC Geneva, 12 April 25 LHC Machine Protection Review Beam losses versus BLM locations at the LHC R. Assmann, S. Redaelli, G. Robert-Demolaize AB - ABP Acknowledgements: B. Dehning Motivation - Are the proposed

More information

THE LARGE HADRON COLLIDER VACUUM SYSTEM

THE LARGE HADRON COLLIDER VACUUM SYSTEM THE LARGE HADRON COLLIDER VACUUM SYSTEM B. Angerth, F. Bertinelli, J.-C. Brunet, R. Calder, F. Caspers, P. Cruikshank, J-M. Dalin, O. Gröbner, N. Kos, A. Mathewson, A. Poncet, C. Reymermier, F. Ruggiero,

More information

Merlin scattering models for the HL-LHC collimation system

Merlin scattering models for the HL-LHC collimation system Merlin scattering models for the HL-LHC collimation system S. Tygier 12, R.B. Appleby 12, R.J.Barlow 3, H. Rafique 12, and S.Rowan 3 1 University of Manchester 2 Cockcroft Institute 3 University of Huddesfield

More information

FLUKA studies on the radiation in the Point 5 Q6-Q7 area: Roman Pots, TCL6 and RR

FLUKA studies on the radiation in the Point 5 Q6-Q7 area: Roman Pots, TCL6 and RR FLUKA studies on the radiation in the Point 5 Q6-Q7 area: Roman Pots, TCL6 and RR M. Brugger, F. Cerutti, L.S. Esposito, EN-STI-EET, CERN on behalf of the FLUKA team!! Acknowledgement for the valuable

More information

Electron cloud experiments, and cures in RHIC

Electron cloud experiments, and cures in RHIC Electron cloud experiments, and cures in RHIC Wolfram Fischer M. Blaskiewicz, H.-C. Hseuh, H. Huang, U. Iriso, V. Ptitsyn, T. Roser, P. Thieberger, D. Trbojevic, J. Wei, S.Y. Zhang PAC 07 Albuquerque,

More information

LHC Luminosity and Energy Upgrade

LHC Luminosity and Energy Upgrade LHC Luminosity and Energy Upgrade Walter Scandale CERN Accelerator Technology department EPAC 06 27 June 2006 We acknowledge the support of the European Community-Research Infrastructure Activity under

More information

MEW Thursday Meeting

MEW Thursday Meeting MEW Thursday Meeting H. Day, F. Caspers, A. Grudiev, E. Metral, B. Salvant, T. Mastoridis, P. Baudrenghien November 22, 2011 Goal: Estimate the beam induced heating on the collimator, particularly with

More information

Electron cloud simulations: beam instabilities and wakefields

Electron cloud simulations: beam instabilities and wakefields PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME, 11 () Electron cloud simulations: beam instabilities and wakefields G. Rumolo and F. Zimmermann CERN, CH 111 Geneva 3, Switzerland (Received

More information

PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23,

PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23, PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23, 2007 As each working day, since the beginning of the

More information

BEAM TESTS OF THE LHC TRANSVERSE FEEDBACK SYSTEM

BEAM TESTS OF THE LHC TRANSVERSE FEEDBACK SYSTEM JINR BEAM TESTS OF THE LHC TRANSVERSE FEEDBACK SYSTEM W.Höfle, G.Kotzian, E.Montesinos, M.Schokker, D.Valuch (CERN) V.M. Zhabitsky (JINR) XXII Russian Particle Accelerator Conference 27.9-1.1. 21, Protvino

More information

Frequency and time domain analysis of trapped modes in the CERN Proton Synchrotron

Frequency and time domain analysis of trapped modes in the CERN Proton Synchrotron Frequency and time domain analysis of trapped modes in the CERN Proton Synchrotron Serena Persichelli CERN Impedance and collective effects BE-ABP-ICE Abstract The term trapped mode refers to a resonance

More information

LHC Status and CERN s future plans. Lyn Evans

LHC Status and CERN s future plans. Lyn Evans LHC Status and CERN s future plans Lyn Evans Machine layout L. Evans EDMS document no. 859415 2 Cryodipole overview 1250 1000 Equivalent dipoles 750 500 250 0 01-Jan-01 01-Jan-02 01-Jan-03 01-Jan-04 01-Jan-05

More information

Single-Bunch Effects from SPX Deflecting Cavities

Single-Bunch Effects from SPX Deflecting Cavities Single-Bunch Effects from SPX Deflecting Cavities Yong-Chul Chae and Louis Emery Accelerator Operation Group Accelerator System Division Measurements March 13, 2013 Introduction The single bunch current

More information

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA Superconducting Magnets for Future Electron-Ion Collider Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA Mini-workshop on Accelerator, IAS, HKUST, Hong Kong, January 18-19, 2018 1 Outline

More information

Optimization of the SIS100 Lattice and a Dedicated Collimation System for Ionisation Losses

Optimization of the SIS100 Lattice and a Dedicated Collimation System for Ionisation Losses Optimization of the SIS100 Lattice and a Dedicated Collimation System for Ionisation Losses P. Spiller, K. Blasche, B. Franczak, J. Stadlmann, and C. Omet GSI Darmstadt, D-64291 Darmstadt, Germany Abstract:

More information

Task 2.4 on LHC Collective Effects Studies

Task 2.4 on LHC Collective Effects Studies Task 2.4 on LHC Collective Effects Studies Requested info: Detailed workflow, including milestones, expected deliverables and delivery dates => See also https://espace.cern.ch/hilumi/wp2/task4/ SitePages/Home.aspx

More information

Simulation of transverse multi-bunch instabilities of proton beams in LHC

Simulation of transverse multi-bunch instabilities of proton beams in LHC Simulation of transverse multi-bunch instabilities of proton beams in LHC Alexander Koschik Technische Universität Graz, Austria & CERN Geneva, Switzerland TU Graz supervisor: CERN supervisors: B. Schnizer

More information

Accelerators. Lecture V. Oliver Brüning. school/lecture5

Accelerators. Lecture V. Oliver Brüning.  school/lecture5 Accelerators Lecture V Oliver Brüning AB/ABP http://bruening.home.cern.ch/bruening/summer school/lecture5 V) LEP, LHC + more LEP LHC Other HEP Projects Future Projects What else? LEP Precision Experiment:

More information

Interface with Experimental Detector in the High Luminosity Run

Interface with Experimental Detector in the High Luminosity Run Chapter 5 Interface with Experimental Detector in the High Luminosity Run H. Burkhardt CERN, BE Department, Genève 23, CH-1211, Switzerland This chapter describes the upgrade of the interaction regions

More information

A Luminosity Leveling Method for LHC Luminosity Upgrade using an Early Separation Scheme

A Luminosity Leveling Method for LHC Luminosity Upgrade using an Early Separation Scheme LHC Project Note 03 May 007 guido.sterbini@cern.ch A Luminosity Leveling Method for LHC Luminosity Upgrade using an Early Separation Scheme G. Sterbini and J.-P. Koutchouk, CERN Keywords: LHC Luminosity

More information

Beam Optics & Dynamics Studies for LHC

Beam Optics & Dynamics Studies for LHC Beam Optics & Dynamics Studies for LHC Alexander Koschik ETH Zurich, Integrated Systems Laboratory (Swiss Federal Institute of Technology Zurich) SLAC, Aug. 2010 0 Background Information Master s degree

More information

High gradient, high average power structure development at UCLA and Univ. Rome in X-X. band

High gradient, high average power structure development at UCLA and Univ. Rome in X-X. band High gradient, high average power structure development at UCLA and Univ. Rome in X-X and S-S band May 23-25, 25, 2007 US High Gradient Research Collaboration Workshop Atsushi Fukasawa, James Rosenzweig,

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

Studies of trapped modes in the new extraction septum of the CERN Proton Synchrotron

Studies of trapped modes in the new extraction septum of the CERN Proton Synchrotron Studies of trapped modes in the new extraction septum of the CERN Proton Synchrotron Serena Persichelli CERN Impedance and collective effects (BE-ABP-ICE) LIU LHC Injectors Upgrade project Università di

More information

How Electronics Started! And JLab Hits the Wall!

How Electronics Started! And JLab Hits the Wall! How Electronics Started! And JLab Hits the Wall! In electronics, a vacuum diode or tube is a device used to amplify, switch, otherwise modify, or create an electrical signal by controlling the movement

More information

Practical Lattice Design

Practical Lattice Design Practical Lattice Design Dario Pellegrini (CERN) dario.pellegrini@cern.ch USPAS January, 15-19, 2018 1/17 D. Pellegrini - Practical Lattice Design Lecture 5. Low Beta Insertions 2/17 D. Pellegrini - Practical

More information

Electron Cloud Simulations: Beam Instabilities and Wake Fields

Electron Cloud Simulations: Beam Instabilities and Wake Fields Electron Cloud Simulations: Beam Instabilities and Wake Fields G. Rumolo and F. Zimmermann SL/AP, CERN, Geneva, Switzerland Abstract HEADTAIL is a simulation programme developed at CERN which is aimed

More information

SPACE CHARGE EXPERIMENTS AND BENCHMARKING IN THE PS

SPACE CHARGE EXPERIMENTS AND BENCHMARKING IN THE PS SPACE CHARGE EXPERIMENTS AND BENCHMARKING IN THE PS E. Métral Crossing the integer or half-integer resonance Montague resonance Static & Dynamic Benchmarking of the simulation codes Space charge driven

More information

Experience from the LEP Vacuum System

Experience from the LEP Vacuum System Experience from the LEP Vacuum System O. Gröbner CERN, LHC-VAC Workshop on an e + e - Ring at VLHC ITT, 9-11 March 2001 3/4/01 O. Gröbner, CERN-LHC/VAC References 1) LEP Design Report, Vol.II, CERN-LEP/84-01,

More information

PUBLICATION. Consolidated EIR design baseline: Milestone M3.6

PUBLICATION. Consolidated EIR design baseline: Milestone M3.6 CERN-ACC-2018-0039 Future Circular Collider PUBLICATION Consolidated EIR design baseline: Milestone M3.6 Tomas Garcia, Rogelio (CERN) et al. 01 November 2018 The European Circular Energy-Frontier Collider

More information

WHAT CAN THE SSC AND THE VLHC STUDIES TELL US FOR THE HE-LHC?

WHAT CAN THE SSC AND THE VLHC STUDIES TELL US FOR THE HE-LHC? WHAT CAN THE SSC AND THE VLHC STUDIES TELL US FOR THE HE-LHC? U. Wienands Λ Stanford Linear Accelerator Center; Menlo Park, CA 94025, USA ABSTRACT In the SSC and the VLHC machine designs a number of accelerator

More information

Transverse beam stability and Landau damping in hadron colliders

Transverse beam stability and Landau damping in hadron colliders Work supported by the Swiss State Secretariat for Educa6on, Research and Innova6on SERI Transverse beam stability and Landau damping in hadron colliders C. Tambasco J. Barranco, X. Buffat, T. Pieloni Acknowledgements:

More information

Tools of Particle Physics I Accelerators

Tools of Particle Physics I Accelerators Tools of Particle Physics I Accelerators W.S. Graves July, 2011 MIT W.S. Graves July, 2011 1.Introduction to Accelerator Physics 2.Three Big Machines Large Hadron Collider (LHC) International Linear Collider

More information

Status of the LHC Machine

Status of the LHC Machine Status of the LHC Machine J. Wenninger CERN Beams Department Operation Group Acknowledgements to R. Schmidt for some slides and many discussions. 1 Outline Introduction Commissioning 2008 Incident of September

More information

Resistive wall wake with ac conductivity and the anomalous skin effect

Resistive wall wake with ac conductivity and the anomalous skin effect Resistive wall wake with ac conductivity and the anomalous skin effect Karl Bane and Gennady Stupakov August 6, 2004 Introduction resistive wall wake is a limiting effect in the LCLS undulator, with the

More information

RF System Calibration Using Beam Orbits at LEP

RF System Calibration Using Beam Orbits at LEP EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN SL DIVISION CERN-SL-22-28 OP LEP Energy Working Group 2/1 RF System Calibration Using Beam Orbits at LEP J. Wenninger Abstract The target for beam energy

More information

New LSS optics for the LHC (status)

New LSS optics for the LHC (status) New LSS optics for the LHC (status) 23-03-2012 R.B. Appleby The University of Manchester/Cockcroft Institute, UK Many thanks to Riccardo, Bernhard, Stephane Motivation The optics limitations of the nominal

More information

High performance computing simulations. for multi-particle effects in the synchrotons

High performance computing simulations. for multi-particle effects in the synchrotons High performance computing simulations for multi-particle effects in the synchrotons Content What is the HSC section doing? Physics basics PyHEADTAIL software Simulations of the PS Simulations of instabilities

More information

UPGRADE ISSUES FOR THE CERN ACCELERATOR COMPLEX

UPGRADE ISSUES FOR THE CERN ACCELERATOR COMPLEX EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 1110 UPGRADE ISSUES FOR THE CERN ACCELERATOR COMPLEX R. Garoby CERN,

More information

RING-RING DESIGN. Miriam Fitterer, CERN - KIT for the LHeC study group

RING-RING DESIGN. Miriam Fitterer, CERN - KIT for the LHeC study group RING-RING DESIGN Miriam Fitterer, CERN - KIT for the LHeC study group LHeC Design Options LHeC Design Options Linac-Ring LHeC Design Options Linac-Ring Ring-Ring Point 4 P Z4 5 P M4 5 P X4 6 Point 5 P

More information

Alignment in Circular Colliders and Specific Requirements for LHC

Alignment in Circular Colliders and Specific Requirements for LHC Alignment in Circular Colliders and Specific Requirements for LHC J-B. Jeanneret CERN AB/ABP IWAA 2004, CERN October 2004 Outline Closed orbit and tolerances Magnetic issues at LHC Aperture issues Survey

More information

Novel, Hybrid RF Injector as a High-average. Dinh Nguyen. Lloyd Young

Novel, Hybrid RF Injector as a High-average. Dinh Nguyen. Lloyd Young Novel, Hybrid RF Injector as a High-average average-current Electron Source Dinh Nguyen Los Alamos National Laboratory Lloyd Young TechSource Energy Recovery Linac Workshop Thomas Jefferson National Accelerator

More information

He II Heat transfer through a Corrugated Tube - Test Report

He II Heat transfer through a Corrugated Tube - Test Report He II Heat transfer through a Corrugated Tube - Test Report Authors: Ch. Darve, Y. Huang, T. Nicol, T. Peterson Keywords: LHC inner triplet, heat exchanger, He II heat transfer, Kapitza resistance. Abstract

More information

Design of an RF Photo-Gun (PHIN)

Design of an RF Photo-Gun (PHIN) Design of an RF Photo-Gun (PHIN) R. Roux 1, G. Bienvenu 1, C. Prevost 1, B. Mercier 1 1) CNRS-IN2P3-LAL, Orsay, France Abstract In this note we show the results of the RF simulations performed with a 2-D

More information

Polycrystalline CdTe Detectors: A Luminosity Monitor for the LHC

Polycrystalline CdTe Detectors: A Luminosity Monitor for the LHC EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN AB DIVISION CERN-AB-2003-003 BDI Polycrystalline CdTe Detectors: A Luminosity Monitor for the LHC E. Gschwendtner; M. Placidi; H. Schmickler Abstract The

More information

LHC Collimation and Loss Locations

LHC Collimation and Loss Locations BLM Audit p. 1/22 LHC Collimation and Loss Locations BLM Audit Th. Weiler, R. Assmann, C. Bracco, V. Previtali, S Redaelli Accelerator and Beam Department, CERN BLM Audit p. 2/22 Outline Introduction /

More information