Femtomagnétisme Marie Barthelemy

Size: px
Start display at page:

Download "Femtomagnétisme Marie Barthelemy"

Transcription

1 Femtomagnétisme Marie Barthelemy Département d Optique ultrarapide et Nanophotonique Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR754 Ecole femto 217

2 Modify and study the dynamics of magnetization with light pulses how small? how fast? which physical mechanisms? 1 Térabits/inch 2 and 1 GHz 1 THz Nanoscale Magneto-Optics Nano-dots (MBE and e-lithography) Nanoparticles Molecular magnets Doped Alloys thin films Ultrafast Magnetism Dynamics of phase transitions Coherent Spin-photon interaction Precession and Magneto-optical switching

3 Outline 1. Ultrafast magnetization dynamics and related physical mechanisms 2. How to control magnetization? 3. What happens on very short time scales? 4. Probing magnetization dynamics with a chemical selectivity

4 Magnetization dynamics timescales Phys. Rev. Lett. 76, 425 (1996) Ni 1 fs Thermalization Transient re-magnetization SO, Exch, Coulomb Ultrafast Demagnetization ps 1ps - ns µs time Precession of magnetization around Heff Domains (wall propag, nucleation)

5 Interaction with a short laser pulse: T approach r(e) Non thermal Distribution E F hn Electronic excitation : non thermal distribution Plasma oscillations t < 2 fs r(e) Fermi-Dirac hot : Te ~ 1 K E F Electrons thermalisation : e-e scattering (Coulomb interaction) t= t ee ~ 2 fs r(e) T e =T l E F Energy transfert from electrons to lattice: electron-phonon interaction t= t ep ~ ps Heat diffusion 1ps- ns

6 Metallic system: Electron/lattice dynamics using 2 bath model Temperature (K) fs laser = heat pulse Hypothesis: electrons thermalized instantaneously dt e(t, r) Ce(T e) G dt dt l(t, r) Cl Gel e dt T e el T (t, r) T (t, r) l coupling T (t, r) T (t, r) T (t, r) l G el e P(t, r) l l T l e T (t, r) e Laser pulse Telectrons Optical excitation 6 TLattice Time (ps)

7 Magnetic system : spin temperature - 3 bathes model Spin bath (at temperature T S T e ) te C T T c Pierre Weiss T C dt e(t, r) Ce(T e) G dt dt l(t, r) Cl Gel e dt dts (t, r) CS(TS ) dt G Se G SO Coupling? T (t, r) T (t, r) Magnons propag. e S el T (t, r) T (t, r) T (t, r) T (t, r) T (t, r) Sl l T (t, r) T (t, r) l l e S P(t, r) l l e T (t, r) e Optical excitation

8 Ultrafast ferro paramagnetic phase transition Kerr Signal (a.u.) r E S (t) t r E P ( t t ) Time resolved Ellipsometry sample with magnetization M H r Kerr Q, h reflection Faraday Q, h transmission 1. Rotation q and ellipticity h are measured for each pump-probe delay t DM(t)/Ms 2. Reflection/Transmission CoPt 15 nm nickel film 3 thin film (M ) Excitation : 1 fs pulses CoPt 3 5 fs No pump T e : Electron temperature T S : Spin temperature H (koe) Phys. Rev. Lett. 76, 425 (1996) Paramagnetic in 5 fs For high density of energy (typically ~mjcm -2 ) demagnetization is complete and faster than the lattice heating

9 Field x 1-5 ( A/m ) Optically induced precession A modification of H eff can be induced by an ultrashort pulse triggering a dynamics of precession from ps to ns time scale. H eff M dm dt dm dt DPol/Pol x H 2 1 M Delay (ps) Precession in Co (16nm) / Al 2 O 3 vs H magnitude 2.5 Landau Lifshitz Gilbert dm dt = γμ M H eff α M dm M s dt Field x 1-5 ( A/m ) H eff H anis H

10 Shape anisotropy ie demagnetizing field contribution Vomir et al. Nano Letters 16, 5291 (216) B μh M However: divb H d H H d : demagnetizing field with Nd demagnetizing field tensor related to shape Film x z M s y N d Ms cos Mssin H d N d M NANOSTRUCTURATION

11 Magneto crystalline anisotropy Cubic (Ni cfc K 1 = Jm -3, Fe cc or cfc) E anis i : K K cos directors relative to edges Low anisotropy: soft materials Hexagonal compact (Ex:Co: K 1 = Jm -3 ) E anis K 1 sin ² a K2 q sin ² q Minimum of energy Magnetization along C axis (easy axis) High anisotropy: hard materials a c q a Related to crystalline structure via SO coupling K i can depend on temperature

12 Precession dynamics in 3 dimensions 16 nm Co/Al 2 3 D Pol (1-2 ) -4-4 Polar D Long (1-2 ) Longitudinal D Trans (1-2 ) Transverse Delay (ps) Delay (ns) Vomir et al. PRL 94, (25)

13 How to control magnetization?

14 Spin Photonics : manipulating the spins with the laser pulses CoPt 3 /Al 2 O 3 What about the time or the smallest dimension? Ideally, as small as few nanometers -> Terabits/inch 2 as fast as few femtoseconds -> TeraHertz

15 Time Resolved Magneto-Optical Microscope DMM PM F 5kHz amplified Ti:Sa Pulse duration ~12 fs F PM Analyzer l/2 Polarization bridge R = 5x1-4 R (4 nm) Scanning piezo Pinhole (2 mm). Magnet (±.4T) y x Pump (8 nm) H Sample Focal plane Objective lens: N.A =.65 (x 4) Dichroic Beam splitter t MO image of a CoPt Polarizer 3 dot (D = 5 nm) Probe (4 nm). -.5 t e(spin)-l = 5.2 ps Resolutions spatial:3nm temporal:12fs t Diff =63 ps A. Laraoui, M. Albrecht, J.-Y. Bigot. Opt. lett. 32, (27) 1 2 Delay (ps)..5 Delay (ns) 1.

16 DM/M Magneto-Optical Pump-Probe Imaging (MOPPI) Reading the written dots with the pump-probe signal for low ( 1 mj.cm -2, Oe) intensities of the pump and a fixed delay between pump and probe fs 2 ps 1 ps 5 Delay (ps) 1 CoPt 3 /Al 2 O 3 Advantages of the MOPPI technique compared to a static approach: - Differential imaging : better signal to noise ratio and stability - Time resolved imaging : read the spatial information at different temporal delays

17 M / Ms M reversal on CoPt 3 / Al 2 O 3 film M / Ms M / Ms M / Ms Reversal of M for I P = 8 mj.cm -2 at H = + 5 Oe. Local demagnetization for I P = 8 mj.cm -2 at H = Oe Re-switch towards initial state for I P = 8 mj.cm -2 and H = - 5 Oe. 1 Initial saturation 1 Laser demag H: switch Reversal remag 1 1 DM/M H DM/M DM/M H DM/M H (koe) H H (koe) H (koe) H (koe)

18 Reading magnetic optically induced domains on a CoPt 3 film Magneto-Optic Imaging for different delays on a CoPt 3 /Al 2 O 3 I read = 1 mj.cm -2 for H = 3 fs 2 ps 1 ps Example of a diffraction grating patterned on a CoPt3 thin film

19 Polarization dependent switching vs thermal demagnetization N=3 Switching of magnetization related to polarization of the pump field! GOAL: small absorption, single pulse AOS athermal process involved => coherence between laser field and magnetic sample ~1-1fs!! BUT minimum duration of AOS is about 1ps in GdFeCo AO helicity-dependent switching in TM multilayers: Single pulse AOS in transparent garnets with linearly polarized IR pulses N=8 N=5 N=3 [Co(.4 nm)/pt(.7 nm)] N multilayer C-H. Lambert et al. Science 345, 1337 (214) Stupakievicz et al. Nature 71,542 (217)

20 Athermal modification of effective magnetic field in garnets Photoinduced anisotropy with linearly polarized laser pulse in garnet Hansteen et al. Phys Rev B (26) Inverse Faraday effect with circularly polarized pulses in DyFeO3 Kimel et al.nature Vol 435 (25) a Hi ( ) ijkl E j ( ) Ek ( ) Ml () M.Deb et al Appl. Phys. Lett. 17, (215) H IFE ijk E 16 i ( ) E j * ( )

21 Magnetization dynamics at very short time scales: What happens before thermalization?

22 Interaction with a short laser pulse: T approach r(e) Non thermal Distribution E F hn Electronic excitation : non thermal distribution Plasma oscillations t < 2 fs r(e) Fermi-Dirac hot : Te ~ 1 K E F Electrons thermalisation : e-e scattering (Coulomb interaction) t= t ee ~ 2 fs r(e) T e =T l E F Energy transfert from electrons to lattice: electron-phonon interaction t= t ep ~ ps Heat diffusion 1ps- ns

23 What happens before and during thermalization? Nature Physics 5, 461 (29) Short pulses: Low thermal effects 8nm 48 fs, 5 khz Detectors S 1 S 2 low repetition rate+ static magnetic field H : back to the fundamental state l/2 H T Single pulse experiment Kerr single pulse configuration (48 fs) -Rotation and ellipticity measured as a function of absorbed laser energy E abs ~I

24 Coherent Magnetization Dynamics : single pulse excitation (48 fs) Nature Physics 5, 461 (29) Loss of magnetic momentum during the pulse duration (48 fs) : spin momentum must be modified by a coherent process!!

25 Faraday / Kerr pump probe configuration (48 fs) 8nm 48 fs, 5 khz Detectors S 1 S 2 Ellipsometry Beam splitter I l/2 H T Rotation q K (t), q F (t) Ellipticity h K, h F M (t) Transmission T (t) Reflectivity R (t) (t) e diag. (t) (t) Delay line (t) t

26 Pump probe Kerr experiment : coherent optical and magneto-optical response Bigot et al. Nature Physics 5, 461 (29) Ni 7.5 nm CoPt 3 15 nm. a) c). z y H Dqq q pp = 9 q pp = x pump probe Kerr rotations (mrad) b) optic magnetic d) Pump - probe delay t (fs) Distinction between the pump polarization and the external field orientation : magnetic [(S qpp=,+h - S qpp=,-h ) - (S qpp=9,+h - S qpp=9,-h )]/2 Interaction with ultrashort pulse gives rise to a electronic [ (S qpp=,+h + S qpp=,-h ) - (S qpp=9,+h + S qpp=9,-h )]/2 coherent interaction between spins and photons

27 DR/R r t tot 1 ih H H dipolar, r tot Pump probe signal: r (3) ab 3rd order in E t 1 < t 2 <t 3 ( t, t ) 1 4h 2 3 (3) (3) Macroscopic P ( t ) NTr polarization r ( t ) 2 S( t ) Detected PTOT ( t, signal t) dt dt 1 dt 2 dt 3 [ H int e( t t 1 ] E( t t E( t t 1 1 t ) E( t ) e( t ) E 1 * ( t 1 1 t 2 t t ) E t ) E 2 2 ) e( t 3 * * ( t ( t 2 2 t 2 t t 3 3 ) ) t ) 1,,8,6,4,2, (3) (2) (1) -, Delay (fs) (1) Pump probe signal: populations dynamics (T 1 ) (2) Coherent peak : electron dephasing time in the metal (T 2 ) (3) Pump perturbed free induction decay (T 2 )

28 Spin photon interaction in a 8 levels system Hydrogen: 2s 1/2,3p 3/2 Relativistic Dirac 2 nd order DL in 1/m L z, S z Spin orbit analogous linked to local potential induced by the laser Zeeman Photo induced anisotropy High field basis Spin orbit interaction with ionic potential H.Vonesh and J.-Y Bigot Phys. Rev. B 85, 1847 (212)

29 8-level system: MO pump probe configuration Faraday rotation 3 rd order in E field r t tot 1 ih H TOT, r tot P (3) ( t ) Tr( r (3) ( t ). ) 2 nd order in E field: Population generation At resonance PPFD Coh Pop Total (2) L ( t ) Tr( r (2) ( t ). L) Out of resonance H.Vonesh and J.-Y Bigot Phys. Rev. B 85, 1847 (212)

30 Four wave mixing experiment r 2k k 1 3 * ( t, t ) dt1dt2dt3[ Hint] E1( t t1) E1( t1 t2) E2 ( t 2 2 t3 4h (3) 12 t 1 2 ) S( t ) e t T 2 coherences 2 nd order = diffraction grating 3rd order: diffraction of the E field (self diffraction)

31 2 beams degenerate MO-FWM in Bi doped garnet 9 fs@8nm 8MHz r E S (t) t r E P ( t t ) H r 2kp-ks Faraday Sample: 7µm (GdTmPrBi) 3 (FeGa) 5 O 12 film low absorption at 8nm high SO coupling 2ks-kp Faraday: coherences+populations MO-FWM: coherences only Simulation of optical time shift: 2-level system with dipolar interaction and inhomogeneous broadenning time shift dependence on pulse duration and spectral phase in the error bar T 2 /2

32 Magneto-Optical dephasing time Closer to MO resonance (53nm) M.Barthelemy et al. Optica 4, 2334 (217) Coherent magnetism T2 MO ~3 fs Study of decoherence dynamics of magnetic states vs sample T (decoherence due to phonons?) M.Sanches Piaia et al. in preparation

33 Probing magnetization dynamics with a chemical selectivity: Goal: study of transferts mechanisms between chemical elements

34 Distinguishing elemental momenta dynamics in Transition Metals alloys 3d(1) IR pump 3d(2) XMCD from femto slicing at synchrotron (BESSY, SOLEIL) IR/VIS s L E F 4-7 ev XMCD HHG 3p(1) 3p(2) Table top Magneto Optical measurement probed with HHG 5-7 ev E 2p(1) 2p(2)

35 XMCD : selection rules at L2 and L3 edges of Co 3d L 3 : 2p 3/2 L2 : 2p1/2.75

36 Time resolved XMCD measurements at L2 and L3 edges of Co (femto-slicing) Boeglin et al. Nature 465, (21) 7eV, 1fs,1.5kHz 79nm, 6fs, 1.5kHz t Sz =28 2 fs t Lz =22 2 fs 15nm Co.5 Pd.5 film on Si 3 N 4 1. Spin orbit coupling is involved in demagnetization process R. W. Schoenlein, et al. Science 287, 2237 (2) 2. Magneto crystalline anisotropy varies with time

37 Examples of XMCD results: L IR pump s L-edge probe Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins Systematic study of demagnetization in TM/TM and TM/RE alloys I.Radu et al. Nature 472, (211) I. Radu, et al., SPIN 5, 1554 (215)

38 Magnetization dynamics probed with High order Harmonics 3.5 mm cell target Al foil 2 nm 4mJ 25 fs 8nm 1kHz Driving pulses M edges of transition metals (Ni, Fe, Co): 5-7 ev H17 H37 ( ev) H17 H47 ( ev)

39 Spectro temporal T-MOKE with IR 25 fs pump/ XUV probe 3.5 mm cell target 8 25 fs W/cm² 4mJ 25 fs 8nm 1kHz Driving pulses Al foil 2 nm T-MOKE configuration t 2q TG q=35 q=43 ~ 3 counts/s DM ( t, H M q ) I H I ( t, H H ( H q q ) ) I I H H ( t, H ( H q ) q ) Ni 8 Fe 2

40 Demagnetization of Ni vs Ni 8 Fe 2 at M-edge counts x Pure Ni Ni 8 Fe 2 H+ H- counts x H+ H Energy (ev) T c, Ni = 63 K Energy (ev) T c, NiFe = 85 K 8 T c, Ni < T c, NiFe J NiNi (1-21 J) J FeFe J NiFe Py Ni Ni and Fe are strongly ferromagnetically coupled GOAL: evaluate the importance of exchange interaction in demagnetiztation dynamics

41 25fs 1.55 pump / 66eV probe T-MOKE in 1nm Ni and Py DMM DM/M DM/M DM/M 1nm Ni/Al 2 O 3 1nm Ni 8 Fe 2 /Al 2 O 3 counts x H+ H- counts x H+ H Energy (ev) Energy (ev) 8 t M (fs) mJ/cm² 3.2mJ/cm² 4.1mJ/cm² 25 Time delay (fs) Ni pump fluence (mj/cm²) t s-l (ps) pump fluence (mj/cm²) delay (fs) 2.5mJ/cm² delay (fs) 2 3.8mJ/cm² 4 delay (fs) 4.7mJ/cm² o Ni Fe

42 ) Elemental demagnetization of Ni vs Ni 8 Fe 2 T c, Ni < T c, NiFe in permalloy: J NiNi < J NiFe.4 Tc Py.8 Tc Ni τ M Ni (pure) < τ M Ni (Permalloy) μ Ni (pur) < μni (permalloy) μ Ni(py) 2μ Ni(pure) τ Mi α μ i BUT τ M Ni (permalloy)~τ M Fe (Permalloy) μ Ni (permalloy) < μfe (permalloy) μ Fe 4μ Ni τ Mi ~ μ i 2α i γ i E exch i Maghraoui et al. in preparation

43 Elemental momenta dynamics in Ni 8 Fe 2 : mean field exchange + LLB with Langevin dynamics + heat step Landau Lifshitz Bloch with Mean Filed Approx of exchange fields Neglecting dipolar interactions (I) (II) (I):Transverse dynamics: precession motion (II) : Longitudinal dynamics: Mz I and II Connected to the same microscopic parameter : Gilbert damping Hinzke et al., Phys. Rev. B. 92, (215) Exchange

44 DM/M DM/M DM/ Experimentally: Dqq Ni x1-3 Dqq Ni x1-3 Dqq Ni x t Ni M delay = (fs) t Fe M mJ/cm² 4 delay (fs) 2 3 delay (ps) 4 delay (fs) 1.5mJ/cm² Ni delay = 4.7mJ/cm² (ps) Fe delay (ps) Ni Fe 2.5mJ/cm² 6 Ni Fe 3.8mJ/cm² 6 4 Ni Fe Dqq Fe x1-3 Dqq Fe x1-3 Dqq Fe x1-3 Hinzke et al., Phys. Rev. B. 92, (215) τ M Ni τ M Fe μ Fe μ Ni 4 ~ μ Niα Fe γ Fe E exch Fe μ Fe α Ni γ Ni E exch Ni E exch Ni = 4E exch Fe Effective exchange interaction sensed by each sublattice Maghraoui et al. in preparation

45 M edge Elemental demagnetization measurements in Py DM/M DM/M DM/M 1. Both Ni and Fe demagnetize simultaneously within our time resolution 2. t M is increased with fluence exchange reduced? 3. We do not observe a clear delayed Ni demagnetization at lowest fluences Favors the high hybridization of Ni and Fe d Bands mJ/cm² 2 4 delay (fs) mJ/cm² delay (fs) 4.7mJ/cm² delay (fs) Dependent on fluence? Mathias et al PNAS 212

46 DM/M Conclusion Thermal vs all optical switching Thermal vs optical manipulation of precession XUV for L-edge or M-edge probing of TMs Coherent coupling of E laser with spins states. Ni 7.5 nm a) CoPt 3 15 nm c) mJ/cm² 6 delay (fs) HHG vs XMCD Dqq Kerr rotations (mrad) q pp = 9 q pp = b) optic magnetic Pump - probe delay t (fs) d)

47 Merci! M.Vomir M.Barthelemy V.Halte Y.Brelet J.-Y.Bigot M.Albrecht G.Versini J.Faerber G.Dekyndt A.Maghraoui M. Sanches Piaia J.Kim E.Terrier M.Deb J.Panigrani O.Kovalenko V.Shokeen Équipe Femtomag en 215

Radboud Universeit Nijmegen

Radboud Universeit Nijmegen Magnetism and Light Theo Rasing Radboud Universeit Nijmegen Challenges Magnetism and on the Opportunities timescale of fth the exchange interaction ti Theo Rasing Radboud University Nijmegen JFe-Fe=1.4x10-19

More information

Femtosecond Heating as a Sufficient Stimulus for Magnetization Reversal

Femtosecond Heating as a Sufficient Stimulus for Magnetization Reversal Femtosecond Heating as a Sufficient Stimulus for Magnetization Reversal T. Ostler, J. Barker, R. F. L. Evans and R. W. Chantrell Dept. of Physics, The University of York, York, United Kingdom. Seagate,

More information

Magnetization Dynamics: Relevance to Synchrotron. Experiments C.H. Back

Magnetization Dynamics: Relevance to Synchrotron. Experiments C.H. Back Magnetization Dynamics: Relevance to Synchrotron Experiments C.H. Back Universität Regensburg Eigenmodes in confined magnetic structures (TR-XPEEM) Spin Dynamics of the AF/FM phase transition in FeRh Conclusion

More information

Ultrafast MOKE Study of Magnetization Dynamics in an Exchange-Biased IrMn/Co Thin Film

Ultrafast MOKE Study of Magnetization Dynamics in an Exchange-Biased IrMn/Co Thin Film Ultrafast MOKE Study of Magnetization Dynamics in an Exchange-Biased IrMn/Co Thin Film Keoki Seu, a Hailong Huang, a Anne Reilly, a Li Gan, b William Egelhoff, Jr. b a College of William and Mary, Williamsburg,

More information

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Rays have come a long way Application to Magnetic Systems 1 µm 1895 1993 2003 http://www-ssrl.slac.stanford.edu/stohr/index.htm

More information

Institute of Physics and Chemistry of Materials Strasbourg. Department of Ultrafast Optics and Nanophotonics (DON) Ultrafast Microscopy.

Institute of Physics and Chemistry of Materials Strasbourg. Department of Ultrafast Optics and Nanophotonics (DON) Ultrafast Microscopy. Institute of Physics and Chemistry of Materials Strasbourg Department of Ultrafast Optics and Nanophotonics (DON) Ultrafast Microscopy Mircea Vomir Outline Microscopy Ultrafast magnetism Ultrafast magnetic

More information

OBE solutions in the rotating frame

OBE solutions in the rotating frame OBE solutions in the rotating frame The light interaction with the 2-level system is VV iiiiii = μμ EE, where μμ is the dipole moment μμ 11 = 0 and μμ 22 = 0 because of parity. Therefore, light does not

More information

V High frequency magnetic measurements

V High frequency magnetic measurements V High frequency magnetic measurements Rémy Lassalle-Balier What we are doing and why Ferromagnetic resonance CHIMP memory Time-resolved magneto-optic Kerr effect NISE Task 8 New materials Spin dynamics

More information

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3 Marino Marsi Laboratoire de Physique des Solides CNRS UMR 8502 - Université Paris-Sud IMPACT, Orsay, September 2012 Outline Topological

More information

Supplementary Figure S1 The magneto-optical images of Gd24Fe66.5Co9.5

Supplementary Figure S1 The magneto-optical images of Gd24Fe66.5Co9.5 Supplementary Figure S1 The magneto-optical images of Gd24Fe66.5Co9.5 continuous film obtained after the action of a sequence of the N right-handed (σ+ σ+) σ+ and left-handed (σ σ ) σ circularly-polarized

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

Damping of magnetization dynamics

Damping of magnetization dynamics Damping of magnetization dynamics Andrei Kirilyuk! Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands 1 2 Landau-Lifshitz equation N Heff energy gain:! torque equation:

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Chapter 7 EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Hot dense plasma lasing medium d θ λ λ Visible laser pump Ch07_00VG.ai The Processes of Absorption, Spontaneous Emission, and Stimulated Emission Absorption

More information

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Frank Ceballos 1, Ming-Gang Ju 2 Samuel D. Lane 1, Xiao Cheng Zeng 2 & Hui Zhao 1 1 Department of Physics and Astronomy,

More information

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble I) - Basic concepts of XAS and XMCD - XMCD at L 2,3 edges

More information

THz field strength larger than MV/cm generated in organic crystal

THz field strength larger than MV/cm generated in organic crystal SwissFEL Wir schaffen Wissen heute für morgen 1 2 C. Vicario 1, R. Clemens 1 and C. P. Hauri 1,2 THz field strength larger than MV/cm generated in organic crystal 10/16/12 Workshop on High Field THz science

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale

A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale Jan Lüning Outline Scientific motivation: Random magnetization processes Technique: Lensless imaging by Fourier Transform holography Feasibility:

More information

Graphene for THz technology

Graphene for THz technology Graphene for THz technology J. Mangeney1, J. Maysonnave1, S. Huppert1, F. Wang1, S. Maero1, C. Berger2,3, W. de Heer2, T.B. Norris4, L.A. De Vaulchier1, S. Dhillon1, J. Tignon1 and R. Ferreira1 1 Laboratoire

More information

.O. Demokritov niversität Münster, Germany

.O. Demokritov niversität Münster, Germany Quantum Thermodynamics of Magnons.O. Demokritov niversität Münster, Germany Magnon Frequency Population BEC-condensates http://www.uni-muenster.de/physik/ap/demokritov/ k z k y Group of NonLinea Magnetic

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure. X-ray diffraction pattern of CH 3 NH 3 PbI 3 film. Strong reflections of the () family of planes is characteristics of the preferred orientation of the perovskite

More information

arxiv: v2 [cond-mat.mtrl-sci] 1 Mar 2016

arxiv: v2 [cond-mat.mtrl-sci] 1 Mar 2016 Two types of all-optical magnetization switching mechanisms using femtosecond laser pulses M.S. El Hadri, P. Pirro, C.-H. Lambert, S. Petit-Watelot, Y. Quessab, M. Hehn, F. Montaigne, G. Malinowski, and

More information

Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction

Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction K. Sokolowski-Tinten, M. Horn von Hoegen, D. von der Linde Inst. for Laser- and Plasmaphysics, University

More information

Dynamics of electrons in surface states with large spin-orbit splitting. L. Perfetti, Laboratoire des Solides Irradiés

Dynamics of electrons in surface states with large spin-orbit splitting. L. Perfetti, Laboratoire des Solides Irradiés Dynamics of electrons in surface states with large spin-orbit splitting L. Perfetti, Laboratoire des Solides Irradiés Outline Topology of surface states on the Bi(111) surface Spectroscopy of electronic

More information

Ultrafast all-optical control of the magnetization in magnetic dielectrics

Ultrafast all-optical control of the magnetization in magnetic dielectrics Fiika Nikikh Temperatur, 6, v. 3, Nos. 8/9, p. 985 19 Ultrafast all-optical control of the magnetiation in magnetic dielectrics Andrei Kirilyuk 1, Alexey Kimel 1, Fredrik Hansteen 1, Roman V. Pisarev,

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/34738

More information

Drickamer type. Disk containing the specimen. Pressure cell. Press

Drickamer type. Disk containing the specimen. Pressure cell. Press ε-fe Drickamer type Press Pressure cell Disk containing the specimen Low Temperature Cryostat Diamond Anvil Cell (DAC) Ruby manometry Re gasket for collimation Small size of specimen space High-density

More information

Ultrafast nanoscience with ELI ALPS

Ultrafast nanoscience with ELI ALPS Ultrafast nanoscience with ELI ALPS Péter Dombi Wigner Research Centre for Physics, Budapest & Max Planck Institute of Quantum Optics, Garching Overview ultrafast (femtosecond/attosecond) dynamicsin metal

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature9829 Supplementary Information S1: Movie of the photo-induced phase transition: Figures 2b-e show four selected XUV ARPES snapshots illustrating the most pronounced changes in the course

More information

Nanoacoustics II Lecture #2 More on generation and pick-up of phonons

Nanoacoustics II Lecture #2 More on generation and pick-up of phonons Nanoacoustics II Lecture #2 More on generation and pick-up of phonons Dr. Ari Salmi www.helsinki.fi/yliopisto 26.3.2018 1 Last lecture key points Coherent acoustic phonons = sound at nanoscale Incoherent

More information

Time-resolved spectroscopy

Time-resolved spectroscopy Time-resolved spectroscopy Chih-Wei Luo ( 羅志偉 ) Department of Electrophysics, National Chiao Tung University, Taiwan Ultrafast Dynamics Lab Outline 1. Introduction of pulses 2. Spectroscopic methods for

More information

Ultrafast X-ray Spectroscopy of Solvated Transition-metal Complexes and Oxide Materials

Ultrafast X-ray Spectroscopy of Solvated Transition-metal Complexes and Oxide Materials Ultrafast X-ray Spectroscopy of Solvated Transition-metal Complexes and Oxide Materials Robert Schoenlein Materials Sciences Division Chemical Sciences Division - UXSL Matteo Rini ils Huse F. Reboani &

More information

doi: /PhysRevLett

doi: /PhysRevLett doi: 1.113/PhysRevLett.9.17 PRL 9, 17 (7) 5 JANUARY 7 Optical Control of the Magnetic Anisotropy of Ferromagnetic Bilayered Manganites S. Tomimoto, 1 M. Matsubara, 1 T. Ogasawara, 1 H. Okamoto, 1, T. Kimura,

More information

Magnetization Processes I (and II) C.H. Back. Bert Koopmans / TU Eindhoven

Magnetization Processes I (and II) C.H. Back. Bert Koopmans / TU Eindhoven Magnetization Processes I (and II) C.H. Back Universität Regensburg Bert Koopmans / TU Eindhoven 1 Tentative Title: Magnetization processes in bulk materials and films, and control: H and E, current, strain,

More information

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Jyhpyng Wang ( ) Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National

More information

Magnetic recording technology

Magnetic recording technology Magnetic recording technology The grain (particle) can be described as a single macrospin μ = Σ i μ i 1 0 1 0 1 W~500nm 1 bit = 300 grains All spins in the grain are ferromagnetically aligned B~50nm Exchange

More information

7. Basics of Magnetization Switching

7. Basics of Magnetization Switching Beyond CMOS computing 7. Basics of Magnetization Switching Dmitri Nikonov Dmitri.e.nikonov@intel.com 1 Outline Energies in a nanomagnet Precession in a magnetic field Anisotropies in a nanomagnet Hysteresis

More information

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 Spin transfer torques in high anisotropy magnetic nanostructures S. Mangin 1, Y. enry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 1) Laboratoire de Physique des

More information

Multi-Dimensional IR Spectroscopy of Acetic Acid Dimers and Liquid Water

Multi-Dimensional IR Spectroscopy of Acetic Acid Dimers and Liquid Water Multi-Dimensional IR Spectroscopy of Acetic Acid Dimers and Liquid Water N. Huse 1, J. Dreyer 1, E.T.J.Nibbering 1, T. Elsaesser 1 B.D. Bruner 2, M.L. Cowan 2, J.R. Dwyer 2, B. Chugh 2, R.J.D. Miller 2

More information

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems Photonics group W. Claeys, S. Dilhair, S. Grauby, JM. Rampnoux, L. Patino Lopez,

More information

Doctor of Philosophy

Doctor of Philosophy FEMTOSECOND TIME-DOMAIN SPECTROSCOPY AND NONLINEAR OPTICAL PROPERTIES OF IRON-PNICTIDE SUPERCONDUCTORS AND NANOSYSTEMS A Thesis Submitted for the degree of Doctor of Philosophy IN THE FACULTY OF SCIENCE

More information

Time-resolved magneto-optical Kerr effect for studies of phonon thermal transport

Time-resolved magneto-optical Kerr effect for studies of phonon thermal transport Time-resolved magneto-optical Kerr effect for studies of phonon thermal transport David G. Cahill, Jun Liu, Judith Kimling, Johannes Kimling, Department of Materials Science and Engineering University

More information

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES experiments on 3D topological insulators Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Outline Using ARPES to demonstrate that certain materials

More information

Time-resolved spectroscopy

Time-resolved spectroscopy Time-resolved spectroscopy Chih-Wei Luo ( 羅志偉 ) Department of Electrophysics, National Chiao Tung University, Taiwan Ultrafast Dynamics Lab Outline 1. Introduction of pulses. Spectroscopic methods for

More information

Magnetic domain theory in dynamics

Magnetic domain theory in dynamics Chapter 3 Magnetic domain theory in dynamics Microscale magnetization reversal dynamics is one of the hot issues, because of a great demand for fast response and high density data storage devices, for

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NPHOTON.213.76 N. Tesařová, 1 P. Němec, 1 E. Rozkotová, 1 J. Zemen, 2,3 T. Janda, 1 D. Butkovičová, 1 F. Trojánek, 1 K. Olejník, 3 V. Novák, 3 P. Malý, 1 and T. Jungwirth 3,2 1 Faculty of Mathematics

More information

arxiv: v2 [cond-mat.mtrl-sci] 18 Mar 2010

arxiv: v2 [cond-mat.mtrl-sci] 18 Mar 2010 Femtosecond x-ray absorption spectroscopy of spin and orbital angular momentum in photoexcited Ni films during ultrafast demagnetization C. Stamm, a N. Pontius, T. Kachel, M. Wietstruk, and H. A. Dürr

More information

Nanomagnetism a perspective from the dynamic side

Nanomagnetism a perspective from the dynamic side Nanomagnetism a perspective from the dynamic side Burkard Hillebrands Fachbereich Physik and Research Center OPTIMAS Technische Universität Kaiserslautern Kaiserslautern, Germany TNT 2009 Nanotechnology

More information

DIFFRACTION UNDER LASER IRRADIATION. ANF RECIPROCS C. Mariette

DIFFRACTION UNDER LASER IRRADIATION. ANF RECIPROCS C. Mariette DIFFRACTION UNDER LASER IRRADIATION ANF RECIPROCS- 2018 C. Mariette Okhoshi et al., Nat. Chem.(2010) Calculated DOS of photo-switchable Ti 3 O 5 Photochromism Conductivity Insulating Metal This also

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source 3rd International EUVL Symposium NOVEMBER 1-4, 2004 Miyazaki, Japan Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi

More information

Coupling of heat and spin currents at the nanoscale in cuprates and metallic multilayers

Coupling of heat and spin currents at the nanoscale in cuprates and metallic multilayers Coupling of heat and spin currents at the nanoscale in cuprates and metallic multilayers David G. Cahill, Greg Hohensee, and Gyung-Min Choi Department of Materials Science and Engineering University of

More information

Molecular alignment, wavepacket interference and Isotope separation

Molecular alignment, wavepacket interference and Isotope separation Molecular alignment, wavepacket interference and Isotope separation Sharly Fleischer, Ilya Averbukh and Yehiam Prior Chemical Physics, Weizmann Institute Yehiam.prior@weizmann.ac.il Frisno-8, Ein Bokek,

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 5: MAGNETIC STRUCTURES - Mean field theory and magnetic order - Classification of magnetic structures - Collinear and non-collinear magnetic structures. - Magnetic

More information

超短パルス レーザーを用いた磁化ダイナミクス計測と円偏光誘起磁化反転

超短パルス レーザーを用いた磁化ダイナミクス計測と円偏光誘起磁化反転 SPring-8 利用推進協議会先端磁性材料研究会第 4 回研究会 スピンダイナミクスと光誘起磁化過程 2010.8.5 総評会館 201 会議室, Japan 超短パルス レーザーを用いた磁化ダイナミクス計測と円偏光誘起磁化反転 塚本新 1,2 1 College of science and technology,, Japan; 2 PSTO, Japan Science and Technology

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov October 2018 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Dynamics of fluctuations in high temperature superconductors far from equilibrium L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Superconductors display amazing properties: Dissipation-less

More information

Electronic thermal transport in nanoscale metal layers

Electronic thermal transport in nanoscale metal layers Electronic thermal transport in nanoscale metal layers David Cahill, Richard Wilson, Wei Wang, Joseph Feser Department of Materials Science and Engineering Materials Research Laboratory University of Illinois

More information

THz experiments at the UCSB FELs and the THz Science and Technology Network.

THz experiments at the UCSB FELs and the THz Science and Technology Network. THz experiments at the UCSB FELs and the THz Science and Technology Network. Mark Sherwin UCSB Physics Department and Institute for Quantum and Complex Dynamics UCSB Center for Terahertz Science and Technology

More information

Part II Course Content. Outline Lecture 9. Frequency Correlations & Lineshapes. Nonlinear Spectroscopic Methods

Part II Course Content. Outline Lecture 9. Frequency Correlations & Lineshapes. Nonlinear Spectroscopic Methods Part II Course Content Outline Lecture 9 Optical Bloch equations Nonlinear polarizations in matter: the perturbative expansion approach. Ultrafast Fourier-transform spectroscopy: two and more dimensions.

More information

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor-like by Electrostatic Gating S.-F. Shi, 1,2* T.-T. Tang, 1 B. Zeng, 1 L. Ju, 1 Q. Zhou, 1 A. Zettl, 1,2,3 F. Wang 1,2,3

More information

Spatiotemporal magnetic imaging at the nanometer and picosecond scales

Spatiotemporal magnetic imaging at the nanometer and picosecond scales AFOSR Nanoelectronics Review, Oct. 24, 2016 Spatiotemporal magnetic imaging at the nanometer and picosecond scales Gregory D. Fuchs School of Applied & Engineering Physics, Cornell University T M V TRANE

More information

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube PN junction photodiodes Authors: Nathaniel. M. Gabor 1,*, Zhaohui Zhong 2, Ken Bosnick 3, Paul L.

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov 26 February 2014 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

Peter Oppeneer. Department of Physics and Astronomy Uppsala University, S Uppsala, Sweden

Peter Oppeneer. Department of Physics and Astronomy Uppsala University, S Uppsala, Sweden Light Matter Interactions (II Peter Oppeneer Department of Physics and Astronomy Uppsala University, S-751 20 Uppsala, Sweden 1 Outline Lecture II Light-magnetism interaction Phenomenology of magnetic

More information

Ultrafast Laser Physics!

Ultrafast Laser Physics! Ultrafast Laser Physics! Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 10: Ultrafast Measurements Ultrafast Laser Physics ETH Zurich Ultrafast laser

More information

Exploring Ultrafast Excitations in Solids with Pulsed e-beams

Exploring Ultrafast Excitations in Solids with Pulsed e-beams Exploring Ultrafast Excitations in Solids with Pulsed e-beams Joachim Stöhr and Hans Siegmann Stanford Synchrotron Radiation Laboratory Collaborators: Y. Acremann, Sara Gamble, Mark Burkhardt ( SLAC/Stanford

More information

PEEM and XPEEM: methodology and applications for dynamic processes

PEEM and XPEEM: methodology and applications for dynamic processes PEEM and XPEEM: methodology and applications for dynamic processes PEEM methods and General considerations Chemical imaging Magnetic imaging XMCD/XMLD Examples Dynamic studies PEEM and XPEEM methods 1

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Quantum transport in nanoscale solids

Quantum transport in nanoscale solids Quantum transport in nanoscale solids The Landauer approach Dietmar Weinmann Institut de Physique et Chimie des Matériaux de Strasbourg Strasbourg, ESC 2012 p. 1 Quantum effects in electron transport R.

More information

Unidirectional spin-wave heat conveyer

Unidirectional spin-wave heat conveyer Unidirectional spin-wave heat conveyer Figure S1: Calculation of spin-wave modes and their dispersion relations excited in a 0.4 mm-thick and 4 mm-diameter Y 3 Fe 5 O 12 disk. a, Experimentally obtained

More information

Supported by NSF and ARL

Supported by NSF and ARL Ultrafast Coherent Electron Spin Flip in a 2D Electron Gas Carey Phelps 1, Timothy Sweeney 1, Ronald T. Cox 2, Hailin Wang 1 1 Department of Physics, University of Oregon, Eugene, OR 97403 2 Nanophysics

More information

High-order harmonics with fully tunable polarization by attosecond synchronization of electron recollisions

High-order harmonics with fully tunable polarization by attosecond synchronization of electron recollisions High-order harmonics with fully tunable polarization by attosecond synchronization of electron recollisions,, Ofer Kfir, Zvi Diskin, Pavel Sidorenko and Oren Cohen Department of Physics and Optical Engineering,

More information

Gilbert damping constant of ultrathin perpendicularly magnetized CoFeB/Pt-structures

Gilbert damping constant of ultrathin perpendicularly magnetized CoFeB/Pt-structures Eindhoven University of Technology MASTER Gilbert damping constant of ultrathin perpendicularly magnetized CoFeB/Pt-structures Kuiper, K.C. Award date: 2009 Disclaimer This document contains a student

More information

Picosecond spin caloritronics

Picosecond spin caloritronics Picosecond spin caloritronics David Cahill, Johannes Kimling, and Gyung-Min Choi Department of Materials Science and Engineering, Materials Research Laboratory, University of Illinois at Urbana-Champaign

More information

Magnetism in Condensed Matter

Magnetism in Condensed Matter Magnetism in Condensed Matter STEPHEN BLUNDELL Department of Physics University of Oxford OXFORD 'UNIVERSITY PRESS Contents 1 Introduction 1.1 Magnetic moments 1 1 1.1.1 Magnetic moments and angular momentum

More information

High-Harmonic Generation II

High-Harmonic Generation II Soft X-Rays and Extreme Ultraviolet Radiation High-Harmonic Generation II Phasematching techniques Attosecond pulse generation Applications Specialized optics for HHG sources Dr. Yanwei Liu, University

More information

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism Coordination Small Ferromagnets Superlattices Basic properties of a permanent magnet Magnetization "the strength of the magnet" depends

More information

WHY ARE SPIN WAVE EXCITATIONS ALL IMPORTANT IN NANOSCALE MAGNETISM?

WHY ARE SPIN WAVE EXCITATIONS ALL IMPORTANT IN NANOSCALE MAGNETISM? WHY ARE SPIN WAVE EXCITATIONS ALL IMPORTANT IN NANOSCALE MAGNETISM? Klaus Baberschke Institut für Experimentalphysik Freie Universität Berlin Arnimallee 14 D-14195 Berlin-Dahlem Germany 1. Element specific

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

T he current trend in the spintronics devices with faster response demands the study of the magnetization

T he current trend in the spintronics devices with faster response demands the study of the magnetization OPEN SUBJECT AREAS: CONDENSED-MATTER PHYSICS NANOSCALE MATERIALS MAGNETIC PROPERTIES AND MATERIALS Received 5 August 2013 Accepted 16 September 2013 Published 7 October 2013 Correspondence and requests

More information

The Initial Process of Photoinduced Phase Transition in an Organic Electron-Lattice Correlated System using 10-fs Pulse

The Initial Process of Photoinduced Phase Transition in an Organic Electron-Lattice Correlated System using 10-fs Pulse The Initial Process of Photoinduced Phase Transition in an Organic Electron-Lattice Correlated System using 1-fs Pulse S. Koshihara, K. Onda, Y. Matsubara, T. Ishikawa, Y. Okimoto, T. Hiramatsu, G. Saito,

More information

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information.

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. A.A. Baker,, 2 A.I. Figueroa, 2 L.J. Collins-McIntyre, G. van der Laan, 2 and T., a) Hesjedal )

More information

Plan of the lectures

Plan of the lectures Plan of the lectures 1. Introductory remarks on metallic nanostructures Relevant quantities and typical physical parameters Applications. Linear electron response: Mie theory and generalizations 3. Nonlinear

More information

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Cliquez et modifiez le titre Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Laboratoire de Physique des Solides Orsay, France June 15, 2016 Workshop Condensed

More information

Lecture 6: Spin Dynamics

Lecture 6: Spin Dynamics Lecture 6: Spin Dynamics All kinds of resonance spectroscopies deliver (at least) 3 informations: 1. The resonance position. The width of the resonance (and its shape) 3. The area under the resonance From

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION An effective magnetic field from optically driven phonons T. F. Nova 1 *, A. Cartella 1, A. Cantaluppi 1, M. Först 1, D. Bossini 2 #, R. V. Mikhaylovskiy 2, A.V. Kimel 2, R. Merlin 3 and A. Cavalleri 1,

More information

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source C. Blome, K. Sokolowski-Tinten *, C. Dietrich, A. Tarasevitch, D. von der Linde Inst. for Laser- and

More information

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Richard Haight IBM TJ Watson Research Center PO Box 218 Yorktown Hts., NY 10598 Collaborators Al Wagner Pete Longo Daeyoung

More information

Time-resolved magnetization-induced second-harmonic generation from the Ni 110 surface

Time-resolved magnetization-induced second-harmonic generation from the Ni 110 surface PHYSICAL REVIEW B VOLUME 61, NUMBER 21 1 JUNE 2-I Time-resolved magnetization-induced second-harmonic generation from the Ni 11 surface H. Regensburger, R. Vollmer, and J. Kirschner Max-Planck-Institut

More information

X-ray Magnetic Circular and Linear Dichroism (XMCD, XMLD) and X-ray Magnetic Imaging (PEEM,...)

X-ray Magnetic Circular and Linear Dichroism (XMCD, XMLD) and X-ray Magnetic Imaging (PEEM,...) X-ray Magnetic Circular and Linear Dichroism (XMCD, XMLD) and X-ray Magnetic Imaging (PEEM,...) Jan Vogel Institut Néel (CNRS, UJF), Nanoscience Department Grenoble, France - X-ray (Magnetic) Circular

More information

Funding provided by the Los Alamos National Laboratory Directed Research and Development Program

Funding provided by the Los Alamos National Laboratory Directed Research and Development Program Combining ferroelectricity and magnetism: the low energy electrodynamics Diyar Talbayev Center for Integrated Nanotechnologies Los Alamos National Laboratory Acknowledgements Los Alamos National Laboratory

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/331/6014/189/dc1 Supporting Online Material for Light-Induced Superconductivity in a Stripe-Ordered Cuprate D. Fausti,* R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M.

More information

Magnetization dynamics of the ferrimagnet CoGd near the compensation of magnetization and angular momentum

Magnetization dynamics of the ferrimagnet CoGd near the compensation of magnetization and angular momentum Magnetization dynamics of the ferrimagnet CoGd near the compensation of magnetization and angular momentum M. Binder, 1 A. Weber, 1 O. Mosendz, 2 G. Woltersdorf, 1 M. Izquierdo, 3 I. Neudecker, 1 J. R.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NNANO.211.214 Control over topological insulator photocurrents with light polarization J.W. McIver*, D. Hsieh*, H. Steinberg, P. Jarillo-Herrero and N. Gedik SI I. Materials and device fabrication

More information

Ultrafast X-ray Studies of Complex Materials: Science Challenges and Opportunities

Ultrafast X-ray Studies of Complex Materials: Science Challenges and Opportunities Ultrafast X-ray Studies of Complex Materials: Science Challenges and Opportunities Lawrence Berkeley National Laboratory Robert Schoenlein Materials Sciences Division - Chemical Sciences Division Ultrafast

More information

SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION

SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION Principles and Applications DAVID ATTWOOD UNIVERSITY OF CALIFORNIA, BERKELEY AND LAWRENCE BERKELEY NATIONAL LABORATORY CAMBRIDGE UNIVERSITY PRESS Contents

More information

High-Speed Quadratic Electrooptic Nonlinearity in dc-biased InP

High-Speed Quadratic Electrooptic Nonlinearity in dc-biased InP Vol. 107 (2005) ACTA PHYSICA POLONICA A No. 2 Proceedings of the 12th International Symposium UFPS, Vilnius, Lithuania 2004 High-Speed Quadratic Electrooptic Nonlinearity in dc-biased InP L. Subačius a,,

More information