NATURAL CONVECTIVE BOUNDARY LAYER FLOW OVER A HORIZONTAL PLATE EMBEDDED

Size: px
Start display at page:

Download "NATURAL CONVECTIVE BOUNDARY LAYER FLOW OVER A HORIZONTAL PLATE EMBEDDED"

Transcription

1 International Journal of Microscale and Nanoscale Thermal.... ISSN: Volume 2, Number Nova Science Publishers, Inc. NATURAL CONVECTIVE BOUNDARY LAYER FLOW OVER A HORIZONTAL PLATE EMBEDDED IN A POROUS MEDIUM SATURATED WITH A NON-NEWTONIAN NANOFLUID Rama Subba Reddy Gorla 1 and Ali J. Chamkha 2 1 Cleveland State University, Cleveland, Ohio USA 2 Public Authority for Applied Education and Training, Shuweikh, Kuwait ABSTRACT A boundary layer analysis is presented for the natural convection past a horizontal plate in a porous medium saturated with a non-newtonian nano fluid. Numerical results for friction factor, surface heat transfer rate and mass transfer rate have been presented for parametric variations of the buoyancy ratio parameter Nr, Brownian motion parameter Nb, thermophoresis parameter Nt and Lewis number Le. The dependency of the friction factor, surface heat transfer rate (Nusselt number) and mass transfer rate on these parameters has been discussed. Keywords: natural convection, porous medium, non-newtonian flow, nanofluid. NOMENCLATURE D B Brownian diffusion coefficient [m -2 s -1 ] D T thermophoretic diffusion coefficient [m -2 s -1 ] f rescaled nano-particle volume fraction g gravitational acceleration vector [m s -2 ] k m effective thermal conductivity of the porous medium [W m -1 K -1 ] K permeability of porous medium Le Lewis number (equation 11) Nr Buoyancy Ratio (equation 11) Nb Brownian motion parameter (equation 11) r.gorla@csuohio.edu

2 212 Rama Subba Reddy Gorla and Ali J. Chamkha Nt thermophoresis parameter (equation 11) Nu Nusselt number (equation 13) n power law index P pressure [Pa] q wall heat flux [W m -2 ] Ra x local Rayleigh number (equation 6) S dimensionless stream function T temperature [K] T W wall temperature of the vertical plate [K] T ambient temperature [K] U reference velocity [m s -1 ] u, v Darcy velocity components [m s -1 ] (x,y) Cartesian coordinates [m] Greek Symbols α m thermal diffusivity of porous medium [m -2 s -1 ] β volumetric expansion coefficient of fluid [K -1 ] ε porosity η dimensionless distance θ dimensionless temperature μ viscosity of fluid [kg m -1 s -1 ] ρ f fluid density [kg m -3 ] ρ p nano-particle mass density [kg m -3 ] (ρc) f heat capacity of the fluid [J m -3 K -1 ] (ρc) m effective heat capacity of porous medium [J m -3 K -1 ] (ρc) p effective heat capacity of nano-particle material [J m -3 K -1 ] τ parameter defined by equation (13) nano-particle volume fraction W nano-particle volume fraction at the wall of the vertical plate ambient nano-particle volume fraction ψ stream function INTRODUCTION The study of convective heat transfer in nanofluids is gaining a lot of attention. The nanofluids have many applications in the industry since materials of nanometer size have unique physical and chemical properties. Nanofluids are solid-liquid composite materials consisting of solid nanoparticles or nanofibers with sizes typically of nm suspended in liquid. Nanofluids have attracted great interest recently because of reports of greatly enhanced thermal properties. For example, a small amount (<1% volume fraction) of Cu nanoparticles or carbon nanotubes dispersed in ethylene glycol or oil is reported to increase the inherently poor thermal conductivity of the liquid by 40% and 150%, respectively [1,2]. Conventional particle-liquid suspensions require high concentrations (>10%) of particles to achieve such

3 Natural Convective Boundary Layer Flow over a Horizontal Plate enhancement. However, problems of rheology and stability are amplified at high concentrations, precluding the widespread use of conventional slurries as heat transfer fluids. In some cases, the observed enhancement in thermal conductivity of nanofluids is orders of magnitude larger than predicted by well-established theories. Other perplexing results in this rapidly evolving field include a surprisingly strong temperature dependence of the thermal conductivity [3] and a three-fold higher critical heat flux compared with the base fluids [4,5]. These enhanced thermal properties are not merely of academic interest. If confirmed and found consistent, they would make nanofluids promising for applications in thermal management. Furthermore, suspensions of metal nanoparticles are also being developed for other purposes, such as medical applications including cancer therapy. The interdisciplinary nature of nanofluid research presents a great opportunity for exploration and discovery at the frontiers of nanotechnology. Porous media heat transfer problems have several engineering applications such as geothermal energy recovery, crude oil extraction, ground water pollution, thermal energy storage and flow through filtering media. Cheng and Minkowycz [6] presented similarity solutions for free convective heat transfer from a vertical plate in a fluid-saturated porous medium. Gorla and co-workers [7,8] solved the nonsimilar problem of free convective heat transfer from a vertical plate embedded in a saturated porous medium with an arbitrarily varying surface temperature or heat flux. Chen and Chen [9] and Mehta and Rao [10] presented similarity solutions for free convection of non-newtonian fluids over horizontal surfaces in porous media. Nakayama and Koyama [11] studied the natural convection over a non-isothermal body of arbitrary geometry placed in a porous medium. All these studies were concerned with Newtonian fluid flows. The boundary layer flows in nano fluids have been analyzed recently by Nield and Kuznetsov and Kuznetsov [12] and Nield and Kuznetsov [13]. A clear picture about the nanofluid boundary layer flows is still to emerge. The present work has been undertaken in order to analyze the natural convection past an isothermal horizontal plate in a porous medium saturated by a non-newtonian nanofluid. The effects of Brownian motion and thermophoresis are included for the nanofluid. Numerical solutions of the boundary layer equations are obtained and discussion is provided for several values of the nanofluid parameters governing the problem. We consider the steady free convection boundary layer flow past a horizontal plate placed in a power-law type non-newtonian nano-fluid saturated porous medium. The coordinate system is selected such that x-axis is in the horizontal direction. We consider the two-dimensional problem. Figure 1 shows the coordinate system and flow model. At the surface, the temperature T and the nano-particle fraction ϕ take constant values T W and ϕ W, respectively. The ambient values, attained as y tends to infinity, of T and ϕ are denoted by T and ϕ, respectively. The Oberbeck-Boussinesq approximation is employed and the homogeneity and local thermal equilibrium in the porous medium are assumed. We consider the porous medium whose porosity is denoted by ε and permeability by K. The Darcy velocity is denoted by v. The following four field equations embody the conservation of total mass, momentum, thermal energy, and nano-particles, respectively.

4 214 Rama Subba Reddy Gorla and Ali J. Chamkha Analysis Figure 1. Coordinate System and Flow Geometry The field variables are the Darcy velocity v, the temperature T and the nano-particle volume fraction ϕ. u + v x μ u n k y y = 0 (1) = - (1- ) ρf β g T + ( ρ x p - ρ f ) g x u T x + v T y = α m 2 T y 2 + τ D B 1 ε u + v x y = D B y T y + D T T T y 2 2 y 2 + D T T 2 T y 2 (4) (2) (3) where m k c m, f c c f p The power-law model is used for the non-newtonian fluid, according to which the relationship between the shear stress and the strain rate is given as follows: xy u y n1 u y (5) when n 1, Eq. (5) represents a Newtonian fluid with dynamic coefficient of viscosity and when n 1, Eq. (5) represent dilatant or shear-thickening ( n 1 ) and a pseudoplastic or shear-thinning ( n 1) fluids with as the fluid consistency. The boundary conditions are given by: y = 0: v = 0, T = T w, = w y : u 0, T T, T T (6)

5 Natural Convective Boundary Layer Flow over a Horizontal Plate We define the following transformations: η = y x ( R a x ) n 2n+1 Ψ = α m ( R ax ) n 2n +1 S(η) R ax = x α m θ = T T T w T f = w 1 ρ k g β T w T μ 1 n (7) The continuity equation is automatically satisfies by defining a stream function ψ such that u = Ψ Ψ and v =. y x Substituting the transformations in equation (7) into the governing equations (1-4) we have: ( S ) n 1 S = n+1 n (2n+1) η θ f (8) θ + n 2n+1 Sθ + f θ + ( θ ) 2 = 0 (9) f + Le. n 2n+1 Sf + θ = 0 (10) The transformed boundary conditions are: 0 : : S 0, S 0, 1, 0, f f 1 0 (11) where the four parameters are defined as: N N N r b t P f W f T W T 1 cp DB W, cf m cp DT T W T, c mt f,

6 216 Rama Subba Reddy Gorla and Ali J. Chamkha L e m D B, (12) The local friction factor may be written as Cf x = u μ y y=0 ρ U 2 2 = 2R ax 3n 2n +1 P r Re x 2 S (0) n (13) The heat transfer rate at the surface is given by: q W k f T y y0 The heat transfer coefficient is given by: h qw T T W Local Nusselt number is given by: Nu x h x k f Ra n (2n1) x,0 (14) The mass transfer rate at the surface is given by: N W D y y0 h m W where h m = mass transfer coefficient, The local Sherwood number is given by: hm x Sh D Ra n (2n1) x f,0 (15)

7 Natural Convective Boundary Layer Flow over a Horizontal Plate RESULTS AND DISCUSSION Equations (8-10) were solved numerically to satisfy the boundary conditions (11) for parametric values of Le, Nr (buoyancy ratio number), Nb (Brownian motion parameter) and Nt (thermophoresis parameter) and the viscosity index n using finite difference method. Tables 1-5 indicate results for wall values for the gradients of velocity, temperature and concentration functions which are proportional to the friction factor, Nusselt number and Sherwood number, respectively. Table 1. Effects of on S"(0) n, -θ (0) and -f (0) for n=0.7,, and S"(0) n -θ (0) -f (0) E E E E E E E E E E E E Table 2. Effects of on S"(0) n, -θ (0) and -f (0) for n=0.7,, and S"(0) n -θ (0) -f (0) E E E E E E E E Table 3. Effects of on S"(0) n, -θ (0) and -f (0) for n=1.5,, and S"(0) n -θ (0) -f (0) E E E E E E E E E E From Table 1-3, we notice that as Nr and Nt increase, the heat transfer rate (Nusselt number) and mass transfer rate (Sherwood number) decrease. As Nb increases, surface mass transfer rate increases whereas the surface heat transfer rate decreases. Results from Table 4 indicate that as Le increases, the heat and mass transfer rates increase. From Table 5, we observe that the nano fluids display drag reducing and heat and mass transfer rate reducing characteristics. Table 6 displays the effect of the viscosity index n on the heat and mass transfer rates. As n increases, the friction factor as well as the heat and mass transfer rates decrease.

8 218 Rama Subba Reddy Gorla and Ali J. Chamkha Table 4. Effects of Le on S"(0) n, -θ (0) and -f (0) for n=1.5,, and Le S"(0) n -θ (0) -f (0) E E E E E E E E E Table 5. Effects of Le on S"(0) n, -θ (0) and -f (0) for n=1.5, =0, =0, and =0 Le S"(0) n -θ (0) -f (0) E E E E E E E E E Table 6. Effects of on S"(0), -θ (0) and -f (0) for,, Nt and n S"(0) n -θ (0) -f (0) E E E E E E E E E E Figures 2-4 indicate that as Nr increases, the velocity decreases and the temperature and concentration increase. Similar effects are observed from Figures 5-10 as Nt and Nb vary. Figure 2. Effects of on velocity profiles.

9 f Natural Convective Boundary Layer Flow over a Horizontal Plate n=0.7 =0, 0.1, 0.2, 0.3, 0.4, Figure 3. Effects of on temperature profiles. n=0.7 =0, 0.1, 0.2, 0.3, 0.4, Figure 4. Effects of on volume fraction profiles.

10 S' 220 Rama Subba Reddy Gorla and Ali J. Chamkha , 0.2, 0.3, 0.4 n= Figure 5. Effects of on velocity profiles. n=0.7, 0.2, 0.3, Figure 6. Effects of on temperature profiles.

11 S' f Natural Convective Boundary Layer Flow over a Horizontal Plate n=0.7, 0.2, 0.3, Figure 7. Effects of on volume fraction profiles , 0.2, 0.3, 0.4, 0.5 n= Figure 8. Effects of on velocity profiles.

12 f 222 Rama Subba Reddy Gorla and Ali J. Chamkha, 0.2, 0.3, 0.4, 0.5 n= Figure 9. Effects of on temperature profile. n=1.5, 0.2, 0.3, 0.4, Figure 10. Effects of on volume fraction profiles. Figure 11 illustrates the variation of velocity within the boundary layer as Le increases. The velocity increases as Le increases. From Figures 12 and 13, we observe that as Le

13 S' Natural Convective Boundary Layer Flow over a Horizontal Plate increases, the temperature and concentration within the boundary layer decrease and the thermal and concentration boundary later thicknesses decrease. As the viscosity index n increases, the velocity within the boundary layer decreases, temperature increases and concentration increases Le=5, 10, 100, 1000 n= Figure 11. Effects of Le on velocity profiles. n=1.5 Le=5, 10, 100, Figure 12. Effects of Le on temperature profiles.

14 S' f 224 Rama Subba Reddy Gorla and Ali J. Chamkha n=1.5 Le=5, 10, 100, Figure 13. Effects of Le on volume fraction profiles n, 0.8, 1.0, 1.2, Figure 14. Effects of n on velocity profiles.

15 f Natural Convective Boundary Layer Flow over a Horizontal Plate When n 1, Eq. (5) represents a Newtonian fluid with dynamic coefficient of viscosity and when n 1, Eq. (5) represent dilatant or shear-thickening ( n 1 ) and a pseudoplastic or shear-thinning ( n 1) fluids. The present results for n =1 as shown in Table 6 agree with the published results of Gorla and Chamkha [14]. n, 0.8, 1.0, 1.2, Figure 15. Effects of n on temperature profiles. n, 0.8, 1.0, 1.2, Figure 16. Effects of n on volume fraction profiles.

16 226 Rama Subba Reddy Gorla and Ali J. Chamkha The effective values of viscosity and thermal conductivity for the nanofluid may be taken as recommended by Oztop and Abu Nada [15] as: μ m = μ f k m k f = k p+2k f 2 k f k p k p +2k f + k f k p (16) CONCLUDING REMARKS In this paper, we presented a boundary layer analysis for the natural convection past a non-isothermal vertical plate in a porous medium saturated with a power-law type non- Newtonian nano fluid. Numerical results for friction factor, surface heat transfer rate and mass transfer rate have been presented for parametric variations of the buoyancy ratio parameter Nr, Brownian motion parameter Nb, thermophoresis parameter Nt and Lewis number Le. The results indicate that as Nr and Nt increase, the friction factor increases whereas the heat transfer rate (Nusselt number) and mass transfer rate (Sherwood number) decrease. As Nb increases, the friction factor and surface mass transfer rates increase whereas the surface heat transfer rate decreases. As Le increases, the heat and mass transfer rates increase. Nano fluids display drag reducing and heat and mass transfer rate reducing characteristics. REFERENCES [1] J.A. Eastman, S.U.S. Choi, S. Li, W. Yu and L.J. Thompson, "Anomalously Increased Effective Thermal Conductivities Containing Copper Nanoparticles," Applied Physics Letters, 78, (2001), [2] S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, "Anomalous Thermal Conductivity Enhancement on Nanotube Suspensions," Applied Physics Letters, 79, (2001), [3] H.E. Patel, S.K. Das, T. Sundararajan, A. Sreekumaran, B. George and T. Pradeep, "Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects," Applied Physics Letters, 83, (2003), [4] S.M. You, J.H. Kim and K.H. Kim, "Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer," Applied Physics Letters, 83, (2003), [5] P. Vassallo, R. Kumar and S. D'Amico, "Pool Boiling Heat Transfer Experiments in Silica-Water Nanofluids," International Journal of Heat and Mass Transfer, 47, (2004), [6] Cheng, P., and Minkowycz, W.J., "Free convection about a vertical flat plate embedded in a saturated porous medium with applications to heat transfer from a dike," J. Geophysics. Res., 82, (1977), [7] Gorla, R.S.R., and Tornabene, R., Free convection from a Vertical Plate With Nonuniform Surface Heat Flux and Embedded in a Porous Medium, Transport in Porous Media Journal, 3, (1988),

17 Natural Convective Boundary Layer Flow over a Horizontal Plate [8] Gorla, R.S.R., and Zinolabedini, A., Free Convection From a Vertical Plate With Nonuniform Surface Temperature and Embedded in a Porous Medium, Transactions of ASME, Journal of Energy Resources Technology, 109, (1987), [9] H.T. Chen and C.K. Chen, "Natural Convection of Non-Newtonian Fluids About a Horizontal Surface in a Porous Medium," Transactions of ASME, Journal of Energy Resources Technology, 109, (1987), [10] K.N. Mehta and K.N. Rao, "Buoyancy-induced Flow of Non-Newtonian Fluids in a Porous Medium Past a Horizontal Plate With Nonuniform Surface Heat Flux," International Journal of Engineering Science, 32, (1994), [11] A. Nakayama and H. Koyama, "Buoyancy-induced Flow of Non-Newtonian Fluids Over a Non-Isothermal Body of Arbitrary Shape in a Fluid-Saturated Porous Medium," Applied Scientific Research, 48, (1991), [12] D.A. Nield and A.V. Kuznetsov, "The Cheng-Minkowycz Problem for Natural Convective Boundary Layer Flow in a Porous Medium Saturated by a Nanofluid," International Journal of Heat and Mass Transfer, 52, (2009), [13] D.A. Nield and A.V. Kuznetsov, "Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid," International Journal of Heat and Mass Transfer, 52, (2009), [14] R.S.R. Gorla and A. Chamkha, "Natural Convective Boundary Layer Flow over a Horizontal Plate Embedded in a Porous Medium Saturated with a Nanofluid," Journal of Modern Physics, 2, (2011), [15] H.F. Oztop and E. Abu Nada, Int. J. Heat and Fluid Flow, 29, (2008), Received 05 September 2010; received in revised form 23 August 2011; accepted 24 August 2011.

MELTING HEAT TRANSFER IN A NANOFLUID FLOW PAST A PERMEABLE CONTINUOUS MOVING SURFACE

MELTING HEAT TRANSFER IN A NANOFLUID FLOW PAST A PERMEABLE CONTINUOUS MOVING SURFACE Journal of Naval Architecture and Marine Engineering December, 2011 DOI: 10.3329/jname.v8i2.6830 http://www.banglajol.info MELTING HEAT TRANSFER IN A NANOFLUID FLOW PAST A PERMEABLE CONTINUOUS MOVING SURFACE

More information

Natural Convective Boundary Layer Flow over a Horizontal Plate Embedded in a Porous Medium Saturated with a Nanofluid

Natural Convective Boundary Layer Flow over a Horizontal Plate Embedded in a Porous Medium Saturated with a Nanofluid Journal of Modern Physics, 011,, 6-71 doi:10.46/jp.011.011 Published Online February 011 (http://www.scirp.org/journal/jp) Natural Convective Boundary Layer Flow over a Horizontal Plate Ebedded in a Porous

More information

A new numerical approach for Soret effect on mixed convective boundary layer flow of a nanofluid over vertical frustum of a cone

A new numerical approach for Soret effect on mixed convective boundary layer flow of a nanofluid over vertical frustum of a cone Inter national Journal of Pure and Applied Mathematics Volume 113 No. 8 2017, 73 81 ISSN: 1311-8080 printed version); ISSN: 1314-3395 on-line version) url: http://www.ijpam.eu ijpam.eu A new numerical

More information

Effects of Radiation on Free Convection Flow past an Upward Facing Horizontal Plate in a Nanofluid in the Presence of Internal Heat Generation

Effects of Radiation on Free Convection Flow past an Upward Facing Horizontal Plate in a Nanofluid in the Presence of Internal Heat Generation Effects of Radiation on Free Convection Flow past an Upward Facing Horizontal Plate in a Nanofluid in the Presence of Internal Heat Generation M.B.K.MOORTHY Department of Mathematics Institute of Road

More information

INFLUENCE OF VARIABLE PERMEABILITY ON FREE CONVECTION OVER VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM

INFLUENCE OF VARIABLE PERMEABILITY ON FREE CONVECTION OVER VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM INFLUENCE OF VARIABLE PERMEABILITY ON FREE CONVECTION OVER VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM S. M. M. EL-Kabeir and A. M. Rashad Department of Mathematics, South Valley University, Faculty

More information

Temperature and Internal Heat Generation in a Porous Medium

Temperature and Internal Heat Generation in a Porous Medium TECHNISCHE MECHANIK, Band 21, Heft 4, (20011313318 Manuskripteingang: 20. September 200] Free Convection over 3 Vertical Flat Plate with a Variable Wall Temperature and Internal Heat Generation in a Porous

More information

Heat Transfer in a Nanofluid Flow past a Permeable Continuous Moving Surface

Heat Transfer in a Nanofluid Flow past a Permeable Continuous Moving Surface Cleveland State University EngagedScholarship@CSU ETD Archive 2010 Heat Transfer in a Nanofluid Flow past a Permeable Continuous Moving Surface Sarvang D. Shah Cleveland State University How does access

More information

EFFECTS OF VARIABLE VISCOSITY AND THERMAL CONDUCTIVITY ON NATURAL-CONVECTION OF NANOFLUIDS PAST A VERTICAL PLATE IN POROUS MEDIA

EFFECTS OF VARIABLE VISCOSITY AND THERMAL CONDUCTIVITY ON NATURAL-CONVECTION OF NANOFLUIDS PAST A VERTICAL PLATE IN POROUS MEDIA EFFECTS OF VARIABLE VISCOSITY AND THERMAL CONDUCTIVITY ON NATURAL-CONVECTION OF NANOFLUIDS PAST A VERTICAL PLATE IN POROUS MEDIA A. Noghrehabadi M. Ghalambaz A. Ghanbarzadeh Department of Mechanical Engineering

More information

Effect of Mass and Partial Slip on Boundary Layer Flow of a Nanofluid over a Porous Plate Embedded In a Porous Medium

Effect of Mass and Partial Slip on Boundary Layer Flow of a Nanofluid over a Porous Plate Embedded In a Porous Medium IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 4 Ver. II (Jul. - Aug. 2016), PP 42-49 www.iosrjournals.org Effect of Mass and Partial

More information

Heat source/sink and thermal conductivity effects on micropolar nanofluid flow over a MHD radiative stretching surface

Heat source/sink and thermal conductivity effects on micropolar nanofluid flow over a MHD radiative stretching surface Heat source/sink and thermal conductivity effects on micropolar nanofluid flow over a MHD radiative stretching surface Srinivas Maripala 1 and Kishan Naikoti 2 1Department of mathematics, Sreenidhi Institute

More information

Chapter Introduction

Chapter Introduction Chapter 4 Mixed Convection MHD Flow and Heat Transfer of Nanofluid over an Exponentially Stretching Sheet with Effects of Thermal Radiation and Viscous Dissipation 4.1 Introduction The study of boundary

More information

Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Vertical Surface in Porous Medium

Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Vertical Surface in Porous Medium Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Vertical Surface in Porous Medium M.B.K.MOORTHY, K.SENTHILVADIVU Department of Mathematics, Institute of Road

More information

FREE CONVECTION AROUND A SLENDER PARABOLOID OF NON- NEWTONIAN FLUID IN A POROUS MEDIUM

FREE CONVECTION AROUND A SLENDER PARABOLOID OF NON- NEWTONIAN FLUID IN A POROUS MEDIUM FREE CONVECTION AROUND A SLENDER PARABOLOID OF NON- NEWTONIAN FLUID IN A POROUS MEDIUM Rishi Raj KAIRI, Department of Mathematics, Islampur College, Uttar Dinajpur, West Bengal, India. Email: rishirajkairi@gmail.com

More information

Viscosity and Fluid Suction/Injection Effects on Free Convection Flow from a Vertical Plate in a Porous Medium Saturated with a Pseudoplastic Fluid

Viscosity and Fluid Suction/Injection Effects on Free Convection Flow from a Vertical Plate in a Porous Medium Saturated with a Pseudoplastic Fluid ISSN 749-3889 (print), 749-3897 (online) International Journal of Nonlinear Science Vol.8(4) No.,pp.7-38 Viscosity and Fluid Suction/Injection Effects on Free Convection Flow from a Vertical Plate in a

More information

MHD and Thermal Dispersion-Radiation Effects on Non-Newtonian Fluid Saturated Non-Darcy Mixed Convective Flow with Melting Effect

MHD and Thermal Dispersion-Radiation Effects on Non-Newtonian Fluid Saturated Non-Darcy Mixed Convective Flow with Melting Effect ISSN 975-333 Mapana J Sci,, 3(22), 25-232 https://doi.org/.2725/mjs.22.4 MHD and Thermal Dispersion-Radiation Effects on Non-Newtonian Fluid Saturated Non-Darcy Mixed Convective Flow with Melting Effect

More information

FORCED CONVECTION BOUNDARY LAYER MAGNETOHYDRODYNAMIC FLOW OF NANOFLUID OVER A PERMEABLE STRETCHING PLATE WITH VISCOUS DISSIPATION

FORCED CONVECTION BOUNDARY LAYER MAGNETOHYDRODYNAMIC FLOW OF NANOFLUID OVER A PERMEABLE STRETCHING PLATE WITH VISCOUS DISSIPATION S587 FORCED CONVECTION BOUNDARY LAYER MAGNETOHYDRODYNAMIC FLOW OF NANOFLUID OVER A PERMEABLE STRETCHING PLATE WITH VISCOUS DISSIPATION by Meisam HABIBI MATIN a,b and Pouyan JAHANGIRI c * a Department of

More information

MHD Chemically Reacting and Radiating Nanofluid Flow over a Vertical Cone Embedded in a Porous Medium with Variable Properties

MHD Chemically Reacting and Radiating Nanofluid Flow over a Vertical Cone Embedded in a Porous Medium with Variable Properties MHD Chemically Reacting and Radiating Nanofluid Flow over a Vertical Cone Embedded in a Porous Medium with Variable Properties P.Yogeswara Reddy 1 Dr.G.S.S. Raju 2 1. Department of Mathematics Vemana Institute

More information

Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with Heat Generation

Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with Heat Generation ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.7(2009) No.1,pp.50-56 Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 59 (2010) 3867 3878 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Double-diffusive

More information

Influence of Viscous Dissipation on Free Convection in a Non-Darcy Porous Medium Saturated with Nanofluid in the Presence of Magnetic Field

Influence of Viscous Dissipation on Free Convection in a Non-Darcy Porous Medium Saturated with Nanofluid in the Presence of Magnetic Field 20 The Open Transport Phenomena Journal, 2013, 5, 20-29 Send Orders for Reprints to reprints@benthamscience.net Open Access Influence of Viscous Dissipation on Free Convection in a Non-Darcy Porous Medium

More information

Boundary layer flow of nanofluids over a moving surface in a flowing fluid in the presence of radiation

Boundary layer flow of nanofluids over a moving surface in a flowing fluid in the presence of radiation International Journal of Applied Science and Technology Vol. No. 1; January 01 Boundary layer flo of nanofluids over a moving surface in a floing fluid in the presence of radiation a Olanreaju, P.O., b

More information

Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Horizontal Surface in Porous Medium

Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Horizontal Surface in Porous Medium Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Horizontal Surface in Porous Medium M. B. K. MOORTHY, K. SENTHILVADIVU Department of Mathematics, Institute

More information

Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium

Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium Transport in Porous Media (2006) 64: 1 14 Springer 2006 DOI 10.1007/s11242-005-1126-6 Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium

More information

Free convection in a porous cavity filled with nanofluids

Free convection in a porous cavity filled with nanofluids Free convection in a porous cavity illed with nanoluids GROSAN TEODOR, REVNIC CORNELIA, POP IOAN Faculty o Mathematics and Computer Sciences Babes-Bolyai University Cluj-Napoca ROMANIA tgrosan@math.ubbcluj.ro,

More information

NUMERICAL ANALYSIS OF A NANOFLUID FORCED CONVECTION IN A POROUS CHANNEL: A NEW HEAT FLUX MODEL IN LTNE CONDITION

NUMERICAL ANALYSIS OF A NANOFLUID FORCED CONVECTION IN A POROUS CHANNEL: A NEW HEAT FLUX MODEL IN LTNE CONDITION Journal of Porous Media, 17 (7): 637 646 (2014) NUMERICAL ANALYSIS OF A NANOFLUID FORCED CONVECTION IN A POROUS CHANNEL: A NEW HEAT FLUX MODEL IN LTNE CONDITION T. Armaghani, 1 Ali J. Chamkha, 2, M. J.

More information

Visualization of Natural Convection in Enclosure. Filled with Porous Medium by Sinusoidally. Temperature on the One Side

Visualization of Natural Convection in Enclosure. Filled with Porous Medium by Sinusoidally. Temperature on the One Side Applied Mathematical Sciences, Vol., 2012, no. 97, 801-812 Visualization of Natural Convection in Enclosure Filled with Porous Medium by Sinusoidally Temperature on the One Side Paweena Khansila Department

More information

MHD effects on micropolar nanofluid flow over a radiative stretching surface with thermal conductivity

MHD effects on micropolar nanofluid flow over a radiative stretching surface with thermal conductivity Available online at wwwpelagiaresearchlibrarycom Advances in Applied Science Research, 26, 7(3):73-82 ISSN: 976-86 CODEN (USA): AASRFC MHD effects on micropolar nanofluid flow over a radiative stretching

More information

Transient free convective flow of a micropolar fluid between two vertical walls

Transient free convective flow of a micropolar fluid between two vertical walls Available online at http://ijim.srbiau.ac.ir/ Int. J. Industrial Mathematics (ISSN 2008-5621) Vol. 5, No. 2, 2013 Article ID IJIM-00311, 9 pages Research Article Transient free convective flow of a micropolar

More information

Free convection modeling over a vertical flat plate embedded in saturated porous medium with a variable heat source and radiation flux

Free convection modeling over a vertical flat plate embedded in saturated porous medium with a variable heat source and radiation flux ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 9 (2013) No. 3, pp. 163-172 Free convection modeling over a vertical flat plate embedded in saturated porous medium with a variable

More information

Kabita Nath Department of Mathematics Dibrugarh University Dibrugarh, Assam, India

Kabita Nath Department of Mathematics Dibrugarh University Dibrugarh, Assam, India Influence of Chemical Reaction, Heat Source, Soret and Dufour Effects on Separation of a Binary Fluid Mixture in MHD Natural Convection Flow in Porous Media B.R.Sharma Department of Mathematics Dibrugarh

More information

On steady hydromagnetic flow of a radiating viscous fluid through a horizontal channel in a porous medium

On steady hydromagnetic flow of a radiating viscous fluid through a horizontal channel in a porous medium AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 1, Science Huβ, http://www.scihub.org/ajsir ISSN: 153-649X doi:1.551/ajsir.1.1..33.38 On steady hydromagnetic flow of a radiating viscous fluid through

More information

Follow this and additional works at: Part of the Materials Science and Engineering Commons

Follow this and additional works at:   Part of the Materials Science and Engineering Commons Engineering Conferences International ECI Digital Archives 5th International Conference on Porous Media and Their Applications in Science, Engineering and Industry Refereed Proceedings Suer 6-24-204 Effect

More information

Natural Convection in Vertical Channels with Porous Media and Adiabatic Extensions

Natural Convection in Vertical Channels with Porous Media and Adiabatic Extensions Natural Convection in Vertical Channels with Porous Media and Adiabatic Extensions Assunta Andreozzi 1,a, Bernardo Buonomo 2,b, Oronzio Manca 2,c and Sergio Nardini 2,d 1 DETEC, Università degli Studi

More information

Unsteady Laminar Free Convection from a Vertical Cone with Uniform Surface Heat Flux

Unsteady Laminar Free Convection from a Vertical Cone with Uniform Surface Heat Flux Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 1, 47 60 Unsteady Laminar Free Convection from a Vertical Cone with Uniform Surface Heat Flux Bapuji Pullepu 1, K. Ekambavanan 1, A. J. Chamkha

More information

Research Article Cooling Intensification of a Continuously Moving Stretching Surface Using Different Types of Nanofluids

Research Article Cooling Intensification of a Continuously Moving Stretching Surface Using Different Types of Nanofluids Applied Mathematics Volume 2012, Article ID 581471, 11 pages doi:10.1155/2012/581471 Research Article Cooling Intensification of a Continuously Moving Stretching Surface Using Different Types of Nanofluids

More information

SCITECH Volume 5, Issue 1 RESEARCH ORGANISATION Published online: August 20, 2015

SCITECH Volume 5, Issue 1 RESEARCH ORGANISATION Published online: August 20, 2015 SCITECH Volume 5, Issue 1 RESEARCH ORGANISATION Published online: August 20, 2015 Journal of Progressive Research in Mathematics www.scitecresearch.com/journals Momentum and Thermal Slip Conditions of

More information

NATURAL CONVECTION IN THE BOUNDARY LAYER OF A CONSTANT TEMPERATURE AND CONCENTRATION VERTICAL WALL EMBEDDED IN A DARCY DOUBLY STRATIFIED POROUS MEDIUM

NATURAL CONVECTION IN THE BOUNDARY LAYER OF A CONSTANT TEMPERATURE AND CONCENTRATION VERTICAL WALL EMBEDDED IN A DARCY DOUBLY STRATIFIED POROUS MEDIUM , EHNOLOGIES IN MAHINE BUILDING, ISSN 11-4566, 017 NAURAL ONVEION IN HE BOUNDARY LAYER OF A ONSAN EMPERAURE AND ONENRAION VERIAL WALL EMBEDDED IN A DARY DOUBLY SRAIFIED POROUS MEDIUM Maria Neagu 1 1 "Dunărea

More information

A Study on Mixed Convective, MHD Flow from a Vertical Plate Embedded in Non-Newtonian Fluid Saturated Non- Darcy Porous Medium with Melting Effect

A Study on Mixed Convective, MHD Flow from a Vertical Plate Embedded in Non-Newtonian Fluid Saturated Non- Darcy Porous Medium with Melting Effect Journal of Applied Fluid Mechanics, Vol. 9, No., pp. 293-32, 26. Available online at www.jafmonline.net, ISSN 735-3572, EISSN 735-3645. A Study on Mixed Convective, MHD Flow from a Vertical Plate Embedded

More information

ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD

ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD HEFAT 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 6 8 July Malta ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD Nawaf

More information

Boundary-Layer Flow over a Porous Medium of a Nanofluid Past from a Vertical Cone

Boundary-Layer Flow over a Porous Medium of a Nanofluid Past from a Vertical Cone Boundary-Layer Flow over a Porous Medium o a Nanoluid Past rom a Vertical Cone Mohammad Mehdi Keshtkar 1 and jamaladin hadizadeh 2 1 Assistant Proessor, Department o Mechanical Engineering, 2 MSc. Student,

More information

Influence of rheological behavior of nanofluid on heat transfer

Influence of rheological behavior of nanofluid on heat transfer Influence of rheological behavior of nanofluid on heat transfer ADNAN RAJKOTWALA AND JYOTIRMAY BANERJEE * Department of Mechanical Engineering National Institute of Technology Surat (Gujarat) - 395007

More information

THE EFFECT OF VARIATION OF BASE FLUID ON NATURAL CONVECTION IN CAVITY FILLED WITH NAOFLUID IN THE PRESENCE OF MAGNETIC FIELD

THE EFFECT OF VARIATION OF BASE FLUID ON NATURAL CONVECTION IN CAVITY FILLED WITH NAOFLUID IN THE PRESENCE OF MAGNETIC FIELD THE EFFECT OF VARIATION OF BASE FLUID ON NATURAL CONVECTION IN CAVITY FILLED WITH NAOFLUID IN THE PRESENCE OF MAGNETIC FIELD Salma H. RADWAN 1*, Mohamed TEAMAH 2, Mohamed M. ABO ELAZM 3, Wael El-MAGHLANY

More information

Finite element analysis of natural convective heat transfer in a porous square cavity filled with nanofluids in the presence of thermal radiation

Finite element analysis of natural convective heat transfer in a porous square cavity filled with nanofluids in the presence of thermal radiation Journal of Physics: Conference Series PAPER OPEN ACCESS Finite element analysis of natural convective heat transfer in a porous square cavity filled with nanofluids in the presence of thermal radiation

More information

Effect of Buoyancy Force on the Flow Field in a Square Cavity with Heated from Below

Effect of Buoyancy Force on the Flow Field in a Square Cavity with Heated from Below International Journal of Discrete Mathematics 017; (): 43-47 http://www.sciencepublishinggroup.com/j/dmath doi: 10.11648/j.dmath.01700.13 Effect of Buoyancy Force on the Flow Field in a Square Cavity with

More information

International Journal of Thermal Sciences

International Journal of Thermal Sciences International Journal of Thermal Sciences 105 (2016) 137e158 Contents lists available at ScienceDirect International Journal of Thermal Sciences journal homepage: www. elsevier. com/ locate/ ijts Natural

More information

Heat transfer enhancement in natural convection in micropolar nanofluids

Heat transfer enhancement in natural convection in micropolar nanofluids Arch. Mech., 68, 4, pp. 327 344, Warszawa 2016 Heat transfer enhancement in natural convection in micropolar nanofluids K. RUP, K. NERING Faculty of Mechanical Engineering Cracow University of Technology

More information

Research Article Soret and Dufour Effects on Natural Convection Flow Past a Vertical Surface in a Porous Medium with Variable Viscosity

Research Article Soret and Dufour Effects on Natural Convection Flow Past a Vertical Surface in a Porous Medium with Variable Viscosity Journal of Applied Mathematics Volume 22, Article ID 63486, 5 pages doi:.55/22/63486 Research Article Soret and Dufour Effects on Natural Convection Flow Past a Vertical Surface in a Porous Medium with

More information

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

Studies on flow through and around a porous permeable sphere: II. Heat Transfer Studies on flow through and around a porous permeable sphere: II. Heat Transfer A. K. Jain and S. Basu 1 Department of Chemical Engineering Indian Institute of Technology Delhi New Delhi 110016, India

More information

The Effects of Viscous Dissipation on Convection in a Porus Medium

The Effects of Viscous Dissipation on Convection in a Porus Medium Mathematica Aeterna, Vol. 7, 2017, no. 2, 131-145 The Effects of Viscous Dissipation on Convection in a Porus Medium T Raja Rani Military Technological College, Ministry of Defence, Sultanate of Oman.

More information

EFFECTS OF RADIATION ON CONVECTION HEAT TRANSFER OF Cu-WATER NANOFLUID PAST A MOVING WEDGE

EFFECTS OF RADIATION ON CONVECTION HEAT TRANSFER OF Cu-WATER NANOFLUID PAST A MOVING WEDGE THERMAL SCIENCE, Year 016, Vol. 0, No., pp. 437-447 437 EFFECTS OF RADIATION ON CONVECTION HEAT TRANSFER OF Cu-WATER NANOFLUID PAST A MOVING WEDGE by Faiza A. SALAMA a,b * a Department of Mathematics,

More information

UNSTEADY FREE CONVECTION BOUNDARY-LAYER FLOW PAST AN IMPULSIVELY STARTED VERTICAL SURFACE WITH NEWTONIAN HEATING

UNSTEADY FREE CONVECTION BOUNDARY-LAYER FLOW PAST AN IMPULSIVELY STARTED VERTICAL SURFACE WITH NEWTONIAN HEATING FLUID DYNAMICS UNSTEADY FREE CONVECTION BOUNDARY-LAYER FLOW PAST AN IMPULSIVELY STARTED VERTICAL SURFACE WITH NEWTONIAN HEATING R. C. CHAUDHARY, PREETI JAIN Department of Mathematics, University of Rajasthan

More information

EFFECT OF CHEMICAL REACTION ON UNSTEADY MHD FREE CONVECTIVE TWO IMMISCIBLE FLUIDS FLOW

EFFECT OF CHEMICAL REACTION ON UNSTEADY MHD FREE CONVECTIVE TWO IMMISCIBLE FLUIDS FLOW Science World Journal Vol (No 4) 07 ISSN 597-6343 EFFECT OF CHEMICAL REACTION ON NSTEADY MHD FREE CONVECTIVE TWO IMMISCIBLE FLIDS FLOW Mubarak M., Agaie B.G., Joseph K. M. *, Daniel S. and Ayuba P. Full

More information

FREE CONVECTION OF A NANOFLUID IN A SQUARE CAVITY WITH A HEAT SOURCE ON THE BOTTOM WALL AND PARTIALLY COOLED FROM SIDES

FREE CONVECTION OF A NANOFLUID IN A SQUARE CAVITY WITH A HEAT SOURCE ON THE BOTTOM WALL AND PARTIALLY COOLED FROM SIDES Abbasian Arani A. A., et al.: Free Convection of a Nanofluid in a Square Cavity S283 FREE CONVECTION OF A NANOFLUID IN A SQUARE CAVITY WITH A HEAT SOURCE ON THE BOTTOM WALL AND PARTIALLY COOLED FROM SIDES

More information

NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER

NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER Int. J. Chem. Sci.: 1(4), 14, 1487-1499 ISSN 97-768X www.sadgurupublications.com NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER R. LAKSHMI a, K. JAYARAMI

More information

International Journal of Advances in Applied Mathematics and Mechanics

International Journal of Advances in Applied Mathematics and Mechanics Int. J. Adv. Appl. Math. and Mech. 2(3) (205) 0-8 (ISSN: 2347-2529) Journal homepage: www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics Effects of variable viscosity

More information

G. C. Hazarika 2 Department of Mathematics Dibrugarh University, Dibrugarh

G. C. Hazarika 2 Department of Mathematics Dibrugarh University, Dibrugarh Effects of Variable Viscosity and Thermal Conductivity on Heat and Mass Transfer Flow of Micropolar Fluid along a Vertical Plate in Presence of Magnetic Field Parash Moni Thakur 1 Department of Mathematics

More information

Chemical Reaction, Radiation and Dufour Effects on Casson Magneto Hydro Dynamics Fluid Flow over A Vertical Plate with Heat Source/Sink

Chemical Reaction, Radiation and Dufour Effects on Casson Magneto Hydro Dynamics Fluid Flow over A Vertical Plate with Heat Source/Sink Global Journal of Pure and Applied Mathematics. ISSN 973-768 Volume, Number (6), pp. 9- Research India Publications http://www.ripublication.com Chemical Reaction, Radiation and Dufour Effects on Casson

More information

EFFECTS OF CIRCULAR CORNERS AND ASPECT-RATIO ON ENTROPY GENERATION DUE TO NATURAL CONVECTION OF NANOFLUID FLOWS IN RECTANGULAR CAVITIES

EFFECTS OF CIRCULAR CORNERS AND ASPECT-RATIO ON ENTROPY GENERATION DUE TO NATURAL CONVECTION OF NANOFLUID FLOWS IN RECTANGULAR CAVITIES THERMAL SCIENCE, Year 015, Vol. 19, No. 5, pp. 161-163 161 EFFECTS OF CIRCULAR CORNERS AND ASPECT-RATIO ON ENTROPY GENERATION DUE TO NATURAL CONVECTION OF NANOFLUID FLOWS IN RECTANGULAR CAVITIES by Mahmoud

More information

Soret and Dufour Effects on Mixed Convection in a Non-Darcy Micropolar Fluid. 1 Introduction

Soret and Dufour Effects on Mixed Convection in a Non-Darcy Micropolar Fluid. 1 Introduction ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.11(2011) No.2,pp.246-255 Soret and Dufour Effects on Mixed Convection in a Non-Darcy Micropolar Fluid D.Srinivasacharya,

More information

JJMIE Jordan Journal of Mechanical and Industrial Engineering

JJMIE Jordan Journal of Mechanical and Industrial Engineering JJMIE Jordan Journal of Mechanical and Industrial Engineering Volume 9 mber 2, April.215 ISSN 1995-6665 Pages 149-157 Heatline Visualization of Buoyancy-Driven Flow inside a Nanofluid-Saturated Porous

More information

Non-Darcy Mixed Convection with Thermal Dispersion-Radiation in a Saturated Porous Medium

Non-Darcy Mixed Convection with Thermal Dispersion-Radiation in a Saturated Porous Medium The Open Transport Phenomena Journal, 2010, 2, 109-115 109 Open Access Non-Darcy Mixed Convection with Thermal Dispersion-Radiation in a Saturated Porous Medium B. D. C. N. Prasad 1,2 and K. Hemalatha

More information

PROCEEDINGS SECOND WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING December 1-3,

PROCEEDINGS SECOND WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING December 1-3, -- --- -- - -------- ---- - -- -- ------- -- - -- ---- SGP-TR-2-34 PROCEEDNGS SECOND WORKSHOP GEOTHERMAL RESERVOR ENGNEERNG December -3,976 976 'Conducted under Grant No. NSF-AER-72-349 supported by the

More information

Online publication date: 25 November 2010

Online publication date: 25 November 2010 This article was downloaded by: [Chamkha, Ali] On: 30 April 2011 Access details: Access Details: [subscription number 930171483] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered

More information

Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet

Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet Meccanica (2006) 41:509 518 DOI 10.1007/s11012-006-0009-4 Mied convection boundary layers in the stagnation-point flow toward a stretching vertical sheet A. Ishak R. Nazar I. Pop Received: 17 June 2005

More information

Effect of Double Dispersion on Convective Flow over a Cone

Effect of Double Dispersion on Convective Flow over a Cone ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.15(2013) No.4,pp.309-321 Effect of Double Dispersion on Convective Flow over a Cone Ch.RamReddy Department of Mathematics,

More information

International Journal of Pure and Applied Mathematics

International Journal of Pure and Applied Mathematics Volume 117 No. 11 2017, 317-325 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu MHD Flow of a Nanofluid and Heat transfer over an Exponentially Shrinking

More information

Received: 12 July 2010 / Accepted: 3 September 2010 / Published online: 12 February 2011 Springer Science+Business Media B.V. 2011

Received: 12 July 2010 / Accepted: 3 September 2010 / Published online: 12 February 2011 Springer Science+Business Media B.V. 2011 Transp Porous Med (2) 87:7 23 DOI 7/s242--966- Unsteady Natural Convection, Heat and Mass Transfer in Inclined Triangular Porous Enclosures in the Presence of Heat Source or Sink: Effect of Sinusoidal

More information

International Journal of Thermal Sciences

International Journal of Thermal Sciences International Journal of Thermal Sciences 48 2009) 1658 1663 Contents lists available at ScienceDirect International Journal of Thermal Sciences www.elsevier.com/locate/ijts Combined effect of heat generation

More information

MOHD ZUKI SALLEH *, NAJIHAH MOHAMED 1, ROZIEANA KHAIRUDDIN 1, NAJIYAH SAFWA KHASI IE 1 & ROSLINDA NAZAR 2 ABSTRACT

MOHD ZUKI SALLEH *, NAJIHAH MOHAMED 1, ROZIEANA KHAIRUDDIN 1, NAJIYAH SAFWA KHASI IE 1 & ROSLINDA NAZAR 2 ABSTRACT Proc. nd International Conference on Mathematical Sciences ICMS 010 Pros. Persidangan Antarabangsa Sains Matematik Kedua NUMERICAL INVESTIGATION OF FREE CONVECTION OVER A PERMEABLE HORIZONTAL FLAT PLATE

More information

ijpam.eu Effects of thermal radiation on an unsteady nanofluid flow past over an vertical plate

ijpam.eu Effects of thermal radiation on an unsteady nanofluid flow past over an vertical plate Inter national Journal of Pure and Applied Mathematics Volume 113 No. 9 2017, 38 46 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Effects of thermal

More information

Fully developed mixed convection through a vertical porous channel with an anisotropic permeability: case of heat flux

Fully developed mixed convection through a vertical porous channel with an anisotropic permeability: case of heat flux Stud. Univ. Babeş-Bolyai Math. 60(2015), No. 2, 341 350 Fully developed mixed convection through a vertical porous channel with an anisotropic permeability: case of heat flux Diana Andrada Filip, Radu

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface International Journal of Engineering and Technology Volume 2 No. 4, April, 2012 Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface 1 Sahin

More information

International Journal of Mathematical Archive-5(3), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(3), 2014, Available online through  ISSN International Journal of Mathematical rchive-5(3), 204, 38-46 vailable online through www.ijma.info ISSN 2229 46 EFFEC OF VRILE VISCOSIY ON HERML CONVECIVE INSILIY IN NNOFLUID SURED POROUS LYER M. Dhananjaya

More information

Influence of the Order of Chemical Reaction and Soret Effect on Mass Transfer of a Binary Fluid Mixture in Porous Media

Influence of the Order of Chemical Reaction and Soret Effect on Mass Transfer of a Binary Fluid Mixture in Porous Media Influence of the Order of Chemical Reaction and Soret Effect on Mass Transfer of a Binary Fluid Mixture in Porous Media B.R.Sharma, Debozani Borgohain Department of Mathematics, Dibrugarh University, Dibrugarh-786004,

More information

ANALYSIS OF NANOFLUIDS IN LIQUID ELECTRONIC COOLING SYSTEMS

ANALYSIS OF NANOFLUIDS IN LIQUID ELECTRONIC COOLING SYSTEMS Proceedings of the ASME 2009 InterPACK Conference IPACK2009 July 19-23, 2009, San Francisco, California, USA Proceedings of InterPACK09 ASME/Pacific Rim Technical Conference and Exhibition on Packaging

More information

A problem of entropy generation in a channel filled with a porous medium

A problem of entropy generation in a channel filled with a porous medium CREATIVE MATH. & INF. 7 (8), No. 3, 357-36 Online version at http://creative-mathematics.ubm.ro/ Print Edition: ISSN 584-86X Online Edition: ISSN 843-44X Dedicated to Professor Iulian Coroian on the occasion

More information

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic

More information

Natural Convection Heat and Mass Transfer in the Boundary Layer along a Vertical Cylinder with Opposing Buoyancies

Natural Convection Heat and Mass Transfer in the Boundary Layer along a Vertical Cylinder with Opposing Buoyancies Journal of Applied Fluid Mechanics, Vol., No., pp. 15-1, 11. Available online at www.jafmonline.net, ISSN 1735-357, EISSN 1735-365. Natural Convection Heat and Mass Transfer in the Boundary ayer along

More information

SIMILARITY SOLUTION FOR DOUBLE NATURAL CONVECTION WITH DISPERSION FROM SOURCES IN AN INFINITE POROUS MEDIUM

SIMILARITY SOLUTION FOR DOUBLE NATURAL CONVECTION WITH DISPERSION FROM SOURCES IN AN INFINITE POROUS MEDIUM Proceedings NZ GeothermalWorkshop SIMILARITY SOLUTION FOR DOUBLE NATURAL CONVECTION WITH DISPERSION FROM SOURCES IN AN INFINITE POROUS MEDIUM A.V. and A. F. Geothermal Institute, The University of Auckland,

More information

Available online at ScienceDirect. Procedia Engineering 127 (2015 )

Available online at   ScienceDirect. Procedia Engineering 127 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 27 (25 ) 42 49 International Conference on Computational Heat and Mass Transfer-25 Finite Element Analysis of MHD viscoelastic

More information

Porous Plate In The Presence of Magnetic Field

Porous Plate In The Presence of Magnetic Field ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Impact of Suction on A Stagnation Point Flow of Copper Nanofluids Over A Vertical Porous Plate In The

More information

NUMERICAL ANALYSIS OF NATURAL CONVECTION IN A RIGHT- ANGLED TRIANGULAR ENCLOSURE

NUMERICAL ANALYSIS OF NATURAL CONVECTION IN A RIGHT- ANGLED TRIANGULAR ENCLOSURE Frontiers in Heat and Mass Transfer Available at www.thermalfluidscentral.org NUMERICAL ANALYSIS OF NATURAL CONVECTION IN A RIGHT- ANGLED TRIANGULAR ENCLOSURE Manoj Kr. Triveni *, Dipak Sen, RajSekhar

More information

USING MULTI-WALL CARBON NANOTUBE (MWCNT) BASED NANOFLUID IN THE HEAT PIPE TO GET BETTER THERMAL PERFORMANCE *

USING MULTI-WALL CARBON NANOTUBE (MWCNT) BASED NANOFLUID IN THE HEAT PIPE TO GET BETTER THERMAL PERFORMANCE * IJST, Transactions of Mechanical Engineering, Vol. 39, No. M2, pp 325-335 Printed in The Islamic Republic of Iran, 2015 Shiraz University USING MULTI-WALL CARBON NANOTUBE (MWCNT) BASED NANOFLUID IN THE

More information

Effect of Magnetic Field on Steady Boundary Layer Slip Flow Along With Heat and Mass Transfer over a Flat Porous Plate Embedded in a Porous Medium

Effect of Magnetic Field on Steady Boundary Layer Slip Flow Along With Heat and Mass Transfer over a Flat Porous Plate Embedded in a Porous Medium Global Journal of Pure and Applied Mathematics. ISSN 973-768 Volume 3, Number 2 (27), pp. 647-66 Research India Publications http://www.ripublication.com Effect of Magnetic Field on Steady Boundary Layer

More information

ENHANCEMENT OF HEAT TRANSFER RATE IN A RADIATOR USING CUO NANOFLUID

ENHANCEMENT OF HEAT TRANSFER RATE IN A RADIATOR USING CUO NANOFLUID International Journal of Advances in Applied Science and Engineering (IJAEAS) ISSN (P): 2348-1811; ISSN (E): 2348-182X Vol. 3, Issue 2, May 2016, 09-13 IIST ENHANCEMENT OF HEAT TRANSFER RATE IN A RADIATOR

More information

Solar Radiation Assisted Natural Convection in Uniform Porous Medium Supported by a Vertical Flat Plate

Solar Radiation Assisted Natural Convection in Uniform Porous Medium Supported by a Vertical Flat Plate A. J. Chamkha Department of Mechanical and Industrial Engineering, Kuwait University, P.O. Box 5969, Safat, 13060 Kuwait Solar Radiation Assisted Natural Convection in Uniform Porous Medium Supported by

More information

Chapter 7 A preliminary investigation on the transport properties of nanofluids based on iron oxide

Chapter 7 A preliminary investigation on the transport properties of nanofluids based on iron oxide A preliminary investigation on the transport properties of nanofluids based on iron oxide Ferrofluids are good heat transfer agents and hence thermal conductivity of these fluids decides their application

More information

Buoyancy Driven Heat Transfer of Water-Based CuO Nanofluids in a Tilted Enclosure with a Heat Conducting Solid Cylinder on its Center

Buoyancy Driven Heat Transfer of Water-Based CuO Nanofluids in a Tilted Enclosure with a Heat Conducting Solid Cylinder on its Center July 4-6 2012 London U.K. Buoyancy Driven Heat Transer o Water-Based CuO Nanoluids in a Tilted Enclosure with a Heat Conducting Solid Cylinder on its Center Ahmet Cihan Kamil Kahveci and Çiğdem Susantez

More information

Critical review of heat transfer characteristics of nanofluids

Critical review of heat transfer characteristics of nanofluids Critical review of heat transfer characteristics of nanofluids Visinee Trisaksri a, Somchai Wongwises b, a Energy Division, The Joint Graduate School of Energy and Environment, King Mongkut s University

More information

Thermophysical characteristics of ZnO nanofluid in L-shape enclosure.

Thermophysical characteristics of ZnO nanofluid in L-shape enclosure. Thermophysical characteristics of ZnO nanofluid in L-shape enclosure. Introduction Bin Wang, version 6, 05/25/2015 Conventional heat transfer fluids, such as water, ethylene glycol and engine oil, have

More information

Numerical Computation of Mixed Convection Past a Heated Vertical Plate within a Saturated Porous Medium with Variable Permeability

Numerical Computation of Mixed Convection Past a Heated Vertical Plate within a Saturated Porous Medium with Variable Permeability AMSE JOURNALS 014-Series: MODELLING B; Vol. 83; N 1; pp 50-66 Submitted April 013; Revised Oct. 30, 013; Accepted Feb. 1, 014 Numerical Computation of Mixed Convection Past a Heated Vertical Plate ithin

More information

Chemical reaction Soret and Dufour Effect on Micropolar Fluid

Chemical reaction Soret and Dufour Effect on Micropolar Fluid Chemical reaction Soret and Dufour Effect on Micropolar Fluid Rama Udai Kumar 1 and Sucharitha Joga Department of Mathematics, Osmania University, Hyderabad 5 7 Abstract. This work analyzes chemical reaction,

More information

Ramasamy Kandasamy Department of Mathematics, Institute of Road and Transport Technology Erode , India kandan

Ramasamy Kandasamy Department of Mathematics, Institute of Road and Transport Technology Erode , India kandan Journal of Computational and Applied Mechanics, Vol. 6., No. 1., (2005), pp. 27 37 NONLINEAR HYDROMAGNETIC FLOW, HEAT AND MASS TRANSFER OVER AN ACCELERATING VERTICAL SURFACE WITH INTERNAL HEAT GENERATION

More information

Available online at ScienceDirect. Procedia Engineering 90 (2014 )

Available online at  ScienceDirect. Procedia Engineering 90 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 90 (014 ) 517 53 10th International Conference on Mechanical Engineering, ICME 013 Numerical simulation on buoyancy-driven heat

More information

Chapter 7: Natural Convection

Chapter 7: Natural Convection 7-1 Introduction 7- The Grashof Number 7-3 Natural Convection over Surfaces 7-4 Natural Convection Inside Enclosures 7-5 Similarity Solution 7-6 Integral Method 7-7 Combined Natural and Forced Convection

More information

Numerical Solution of Mass Transfer Effects on Unsteady Flow Past an Accelerated Vertical Porous Plate with Suction

Numerical Solution of Mass Transfer Effects on Unsteady Flow Past an Accelerated Vertical Porous Plate with Suction BULLETIN of the Malaysian Mathematical Sciences Society http://math.usm.my/bulletin Bull. Malays. Math. Sci. Soc. (2) 29(1) (2006), 33 42 Numerical Solution of Mass Transfer Effects on Unsteady Flow Past

More information

Pallavaram, Chennai, Tamil Nadu. Pallavaram, Chennai, Tamil Nadu, India. Abstract

Pallavaram, Chennai, Tamil Nadu. Pallavaram, Chennai, Tamil Nadu, India. Abstract Volume 116 No. 24 2017, 81-92 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Skin Friction Analysis of Parabolic Started Infinite Vertical Plate

More information

Natural Convection from a Permeable Sphere Embedded in a Variable Porosity Porous Medium Due to Thermal Dispersion

Natural Convection from a Permeable Sphere Embedded in a Variable Porosity Porous Medium Due to Thermal Dispersion Nonlinear Analysis: Modelling and Control, 2007, Vol. 2, No. 3, 345 357 Natural Convection from a Permeable Sphere Embedded in a Variable Porosity Porous Medium Due to Thermal Dispersion S. M. M. EL-Kabeir,

More information

Joule Heating Effect on the Coupling of Conduction with Magnetohydrodynamic Free Convection Flow from a Vertical Flat Plate

Joule Heating Effect on the Coupling of Conduction with Magnetohydrodynamic Free Convection Flow from a Vertical Flat Plate Nonlinear Analysis: Modelling and Control, 27, Vol. 12, No. 3, 37 316 Joule Heating Effect on the Coupling of Conduction with Magnetohydrodynamic Free Convection Flow from a Vertical Flat Plate M. A. Alim

More information