ENHANCEMENT OF HEAT TRANSFER RATE IN A RADIATOR USING CUO NANOFLUID

Size: px
Start display at page:

Download "ENHANCEMENT OF HEAT TRANSFER RATE IN A RADIATOR USING CUO NANOFLUID"

Transcription

1 International Journal of Advances in Applied Science and Engineering (IJAEAS) ISSN (P): ; ISSN (E): X Vol. 3, Issue 2, May 2016, IIST ENHANCEMENT OF HEAT TRANSFER RATE IN A RADIATOR USING CUO NANOFLUID AMRUTA P. BIRAR 1, SWAPNIL S. DARADE 2, ASHISH W. KHANDALKAR 3 1,2 Student, Dept. of mechanical engineering, KGCE, Karjat, India 3 Asst. Professsor,Dept. of production engineering, KGCE, Karjat, India biraramruta@gmail.com, swapnildarade3@gmail.com ABSTRACT - In the past decade more emphasis is placed on reduction in energy consumption by introducing various heat transfer enhancement techniques. The entry of nanofluid technology has provided a great alternative for the current methods of increasing heat. The nanofluids prove to be a phenomenal resource for enhancement of heat transfer which indirectly leads to the increase in the efficiency of engine. In this paper we discuss about various aspects of CuO nanofluid which includes the enhancement of heat transfer rate from the radiator and effects on thermophysical properties KEYWORD: Nanoparticles,radiator, thermal conductivity. I. INTRODUCTION The current trend in various industries demand micro-electronic devices with higher outputs. Such devices have high heat s and therefore proper thermal management of these devices is necessary to achieve desired performance. The conventional method of enhancing the heat transfer rate includes usage of extended heat transfer surfaces known as fins. But the heat to a certain extent. The objective of this project is to increase heat of a radiator thus increasing its efficiency. It can be achieved by Increasing temperature difference ( T),Increasing the area (A) and Increasing overall heat transfer coefficient (h). To achieve higher heat we are going to make use of CuO Nano fluid as coolant and by changing the concentration of particle in different percentage in the base fluid we can increase the thermal conductivity,overall heat transfer coefficient. This the heat by 35-45% and the radiator size can be decreased thus decreasing the overall weight of the component. It also the engine efficiency and decreases the fuel consumption. Nano fluids are prepared by dispersing and stably suspending nanometre sized solid particles in conventional heat transfer fluids. Nanofluids consist of nanoparticles and base fluids. Nanoparticles are Al 2 O 3, Fe, CuO, etc. Base fluids can be DI-water, ethylene glycol, pump oil, transformer oil. The use of nanofluids as coolants would allow for smaller size and better positioning of the radiators. Owing to the fact that there would be less fluid due to the higher efficiency, coolant pumps could be shrunk and truck engines could be operated at higher temperatures allowing for more horsepower while still meeting stringent emission standards. Nanofluids are prepared by mixing nanometer-sized particles of less than 100 nm in a base fluid such as ethylene glycol, water etc. These novel and advanced concepts of coolants offer intriguing heat transfer characteristics compared to conventional coolants. There are considerable researches on the superior heat transfer 9

2 properties of nanofluids especially on thermal conductivity and convective heat transfer. II. LITERATURE SURVEY A greater temperature difference can lead to increase the heat flow, but it is often limited by process or materials constraints. For example, the maximum temperature in a nuclear reactor must be kept below a certain value to avoid runaway reactions and meltdown. Therefore increased temp difference can only be achieved by decreasing the temperature of the coolant. However, this would reduce the rate of the nuclear reaction and decrease the efficiency of the process. Maximizing the heat transfer area A is a common strategy to improve heat transfer, and many heat exchangers such as radiators and plate-andframe heat exchangers are designed to maximize the heat transfer area. However, this strategy cannot be employed in microprocessors and micro electro mechanical systems (MEMS) because the area cannot be increased. In aerospace and automotive systems, increasing the heat transfer area can only be achieved by increasing the size of the heat exchanger which can lead to unwanted in weight.the conventional base fluid ethylene glycol used with water displayed poor conductivity. Table1: Thermal conductivity of different materials SR NO MATERIAL THERMAL CONDUCTIVITY 1 WATER ETHYLENE GLYCOL 3 ALUMINIUM 40 4 COPPER SILVER NANO TUBES WATER/Al EG/Al2O EG WATER/Al2O3 10 WATER/CuO The first results on the improved thermal conductivity of nanofluids were reported by Eastman et al.[1]. By dispersing CuO nanoparticles in water there was a phenomenal increase of 60% in thermal conductivity for a nanoparticle volume concentration of 5%. In case of Cu/oil-based nanofluids, it was found that there was an increase of 44% in thermal conductivity by dispersing vol% of Cu nanoparticles in HE-200 oil. Also for the same CuO nanoparticle dispersed in water and ethylene glycol, it displayed a moderate enhancement of thermal conductivity[2]. For 4% of volume of CuO nanoparticles, 20% enhancement was observed in thermal conductivity of ethylene glycol. A 17% increase in thermal conductivity for 0.4 % of volume of 50 nm sized CuO nanoparticles was reported by Wang et al[3]. Li and Peterson measured the thermal conductivity for 29 nm CuO nanofluid[4]. They reported that the thermal conductivity increased by 52% at a volume fraction of 6% at 34 degrees. K. Y. Leong et. al (2010) found that about 3.8% of heat transfer enhancement could be achieved by adding 2% copper particles in base fluid (ethylene glycol) at the Reynolds number 6000 for air and 5000 for coolant. Also, reduction in air frontal area was estimated. III. METHODOLOGY EXPERIMENTAL REVIEW ON CAR RADIATOR: Experimental Review on nano fluid used in Car radiator at different concentration,different inlet temperature &different flow rate for CuO nanofluid: Table 2: Working conditions and result WORKING CONDITIONS (0to0.4%) Volume flow rate Inlet temperature (60to80 degree) (0.15 to 0.65 %) RESULT If then Heat If flow rate heat If inlet temperature heat transfer rate decreases If then Heat 10

3 Flow rate Effect of different parameters: 1. Effect of fluid temperature: transfer increase rate If flow rate then Heat increase increasing the volume concentration of nano fluid the heat and heat is enhanced from 31% to 46 % when volume concentration from 1% to 2.5%[8] Fluid temperature has a significant role in enhancing the effective thermal conductivity of CuO nanofluid. Das et al[5] conducted an experiment to investigate the effect of temperature on thermal conductivity of nanofluids containing 38.4 nm sized Al 2 O 3 nanoparticles and 28.6 nm sized CuO nanoparticles in water. The thermal conductivity was determined by using a temperature oscillation technique. It was observed that CuO/water-based nanofluid showed greater enhancement of thermal conductivity than Al 2 O 3 nanoparticles. Das et al concluded that Brownian motion of nanoparticles was responsible for the strong temperature dependence of thermal conductivity. 2. Convective heat transfer studies of nanofluids: Eastman et al[6] showed that convective heat of water under dynamic flow conditions was increased by more than 15% with 1% vol of CuO nanoparticles. Heris et al checked heat transfer coefficient of CuO/water-based nanofluid under laminar flow conditions through an annular copper tube[7]. It was found that thermal conductivity increased with increasing volume fraction of nanoparticles. S. M. Peyghambarzadeh (2012) evaluated heat transfer performance experimentally. Copper oxide and iron oxide nanoparticles were added to the water & effect of these variables on overall heat transfer coefficient was studied. Results displayed that both Nano fluids show greater overall heat transfer coefficient In comparison with water up to 9%. 3. Enhancement of heat transfer by using volume concentration: Adnan M.Hussein (2014) ) studied the effect of Volume concentration. Figure shows that heat of car radiator depends on nano fluid volume concentration. it shows that with the Fig 1: Effect of volume concentration on heat transfer rate 4. Enhancement of heat transfer on the basis of inlet temperature: Adnan M.Hussein (2014) ) investigated the effect of inlet temperature on enhancement rate. it displayed that heat of car radiator is depend on nano fluid inlet temperature of car radiator it is shows that the heat transfer enhancement from 39% to56% from if increase the temperature from 60 to 80 degree Celsius. Fig2: The effect of nanofluid inlet temperature on the heat Fig. above compares the results for nanofluid at the concentration of 0.4 vol.% and at different inlet temperatures in order to study the effect of temperature variation on the overall heat transfer coefficient of the automobile radiator. It is clear from Fig that with the increasing in fluid inlet 11

4 temperature it decreases the overall heat transfer coefficient of nanofluid. 5. effect of nanofluid inlet temperature on overall heat transfer co-efficient: IV. RESULT AND CONCLUSION: 1) The overall heat transfer coefficient decreases with increasing inlet temperature of the nanofluid. 2) The overall heat transfer coefficient enhances with the addition of nanoparticles to the base fluid with a concentrations of 0.15 and 0.4 vol.% of CuO nanoparticles, the overall heat transfer coefficient enhancements compared with the pure water are 6% and 8%. 3)for a certain range of fluid temperature, the thermal conductivity with increasing temperature. NOMENCLATURE h k m heat transfer coefficient, W/m 2 C thermal conductivity, W/mC mass flow rate, Kg/sec Fig 3. Effect of inlet nanofluid temperature on the overall heat transfer coefficient with nanofluid. CALCULATION OF HEAT TRANSFER COEFFICIENT: The nanofluid flowing inside the tube transfers heat to the outside air flowing in the air flow channel. The air-side and the tube-side heat transfer rates can be calculated as: Nu Nusselt number Q heat s, KW Re Reynolds number U overall heat transfer coefficient W/C ρ density, kg/m 3 ACKNOLEDGEMENT where Qa and Qnf are the heat s at the air and nanofluid flows, respectively. This decrease in the overall heat transfer coefficient of the nanofluid with increase in nanofluid inlet temperature is mainly because of two factors: 1- Rapid alignment of nanoparticles in lower viscosity fluids whichleads to less contact between nanoparticles. 2- When the temperature, a very small decrease occurred in the nanofluid density while its viscosity drops greater, leading to a higher Reynolds number in hightemperature nanofluid. We would like to acknowledgement the whole hearted support extended to us by Department of mechanical engineering, KONKAN GYANPEETH COLLEGE OF ENGINEERING, KARJAT. We take this opportunity to express our sincere gratitude to project co-ordinator Prof. N.A.Meshram for his valuable guidance in this project. Special thanks to the facilities provided by the mechanical engineering department. We are also grateful for the active cooperation and valuable suggestion rendered by Prof. K.A.Chaudhari as a Head of Department and all other teaching staff of mechanical department. We are indeed obliged by constant support and encouragement of our principal Dr. M.J.Lengare. 12

5 REFERENCES [1] J.A. Eastman, S.U.S. Choi, S. Li, L.J. Thompson, Enhanced thermal conductivity through the development of nanofluids, Proceedings of the Symposium on Nanophase and Nanocomposite Materials II, vol. 457, Materials Research Society, USA, 1997 [2] S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, Journal of Heat Transfer 121 (1999). [3] B.-X. Wang, L.-P. Zhou, X.-F. Peng, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, International Journal of Heat and Mass Transfer 46 (2003). [4] C.H. Li, G.P. Peterson, Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), Journal of Applied Physics 99 (2006). [5] S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, Journal of Heat Transfer 125 (2003). [6] J.A. Eastman, S.U.S. Choi, S. Li, G. Soyez, L.J. Thompson, R.J. Dimelfi, Novel thermal properties of nanostructured materials, Materials Science Forum (1999). [7] S.Z. Heris, S.G. Etemad, M.S. Esfahany, Experimental investigation of oxide nanofluids laminar flow convective heat transfer, International Communications in Heat and Mass Transfer 3 (2006). [8] S.M. Peyghambarzadeh, S.H. Hashemabadi, M. Naraki, Y. Vermahmoudi ; Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator Applied Thermal Engineering, Volume 52, Issue 1, 5 April [9] M. Naraki, S.M. Peyghambarzadeh, S.H. Hashemabadi, Y. Vermahmoudi, Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator, International Journal of Thermal Sciences, Volume 66, April

Experimental Investigation of Heat Transfer Characteristics of Automobile Radiator using TiO 2. - Nanofluid Coolant

Experimental Investigation of Heat Transfer Characteristics of Automobile Radiator using TiO 2. - Nanofluid Coolant IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Experimental Investigation of Heat Transfer Characteristics of Automobile Radiator using TiO 2 - Nanofluid Coolant To cite this

More information

Improving Performance in Engine Cooling System using Nanofluid-Based Coolant

Improving Performance in Engine Cooling System using Nanofluid-Based Coolant Improving Performance in Engine Cooling System using Nanofluid-Based Coolant 1 Ummal Salmaan N, 2 Senthilnathan A K, 3 Suseendran K. 1 Assistant Professor, 23 Student, Department of Mechanical Engineering,

More information

NANOFLUIDS. Abstract INTRODUCTION

NANOFLUIDS. Abstract INTRODUCTION NANOFLUIDS Abstract Suspended nano particles in conventional fluids are called nanofluids...recent development of nanotechnology brings out a new heat transfer coolant called 'nanofluids'. These fluids

More information

ANALYSIS OF NANOFLUIDS IN LIQUID ELECTRONIC COOLING SYSTEMS

ANALYSIS OF NANOFLUIDS IN LIQUID ELECTRONIC COOLING SYSTEMS Proceedings of the ASME 2009 InterPACK Conference IPACK2009 July 19-23, 2009, San Francisco, California, USA Proceedings of InterPACK09 ASME/Pacific Rim Technical Conference and Exhibition on Packaging

More information

NANOFLUID PROPERTIES FOR FORCED CONVECTION HEAT TRANSFER: AN OVERVIEW

NANOFLUID PROPERTIES FOR FORCED CONVECTION HEAT TRANSFER: AN OVERVIEW Journal of Mechanical Engineering and Sciences (JMES) ISSN (Print): 2289-4659; e-issn: 2231-8380; Volume 4, pp. 397-408, June 2013 Universiti Malaysia Pahang, Pekan, Pahang, Malaysia DOI: http://dx.doi.org/10.15282/jmes.4.2013.4.0037

More information

model for the effective thermal conductivity of nanofluids effect of interfacial layer and non-uniform size distribution of nanoparticles

model for the effective thermal conductivity of nanofluids effect of interfacial layer and non-uniform size distribution of nanoparticles 98-9 5394 mme.modares.ac.ir : * - - moghiman@um.ac.ir977948944 *.. -. - - - - -. - 5. 393 0 : 393 : 393 0 : modelfortheeffectivethermalconductivityofnanofluids effectof interfaciallayerandnon-uniformsizedistributionofnanoparticles

More information

Effect of particle volume concentration on thermo physical properties of Silicon Carbide Water based Nanofluid

Effect of particle volume concentration on thermo physical properties of Silicon Carbide Water based Nanofluid Effect of particle volume concentration on thermo physical properties of Silicon Carbide Water based Nanofluid S. Seetaram 1, A.N.S. Sandeep 2, B. Mohan Krishna 3, S. Laxmana Kumar 4, N. Surendra Kumar

More information

EFFECT OF TWISTED TAPE INSERTS IN DOUBLE PIPE HEAT EXCHANGER USING AL2O3/WATER NANO FLUIDS

EFFECT OF TWISTED TAPE INSERTS IN DOUBLE PIPE HEAT EXCHANGER USING AL2O3/WATER NANO FLUIDS EFFECT OF TWISTED TAPE INSERTS IN DOUBLE PIPE HEAT EXCHANGER USING AL2O3/WATER NANO FLUIDS Govindharajan. B, Manikandan. S, Manoj Natesan, Sathish kumar.r, Assistant Professors Department of Mechanical

More information

Chapter 7 A preliminary investigation on the transport properties of nanofluids based on iron oxide

Chapter 7 A preliminary investigation on the transport properties of nanofluids based on iron oxide A preliminary investigation on the transport properties of nanofluids based on iron oxide Ferrofluids are good heat transfer agents and hence thermal conductivity of these fluids decides their application

More information

In this project a comparison of heat transfer and

In this project a comparison of heat transfer and Heat Transfer Enhancement in Vertical Helical Coiled Heat Exchanger by Using Nano Fluid-Tio2 /Water A.Akbar Ali 1, B.Kumaragurubaran 2, S.Suresh 3,K.Lakshmana Babu 4 1 Assistant Professor, Chettinad College

More information

Received 31 December 2015; revised 16 October 2016; accepted 21 November 2016; available online 10 June 2017

Received 31 December 2015; revised 16 October 2016; accepted 21 November 2016; available online 10 June 2017 Trans. Phenom. Nano Micro Scales, 5(): 13-138, Summer and Autumn 17 DOI: 1.8/tpnms.17.. ORIGINAL RESEARCH PAPER merical Simulation of Laminar Convective Heat Transfer and Pressure Drop of Water Based-Al

More information

Heat Transfer And Pressure Drop of Nanofluids Containing Aluminium Oxide with Transformer Oil in Horizontal Pipe

Heat Transfer And Pressure Drop of Nanofluids Containing Aluminium Oxide with Transformer Oil in Horizontal Pipe Heat Transfer And Pressure Drop of Nanofluids Containing Aluminium Oxide with Transformer Oil in Horizontal Pipe Anuj Khullar 1, Sumeet Sharma 2 & D. Gangacharyulu 3 1&2 Department of Mechanical Engineering,

More information

Effect of Nanoparticle Size on Heat Transfer Intensification

Effect of Nanoparticle Size on Heat Transfer Intensification Effect of Nanoparticle Size on Heat Transfer Intensification Vivekanand Limbaji Khatke 1, Manil Rathi 2, V.L. Bhanavase 3, A.J. Patil 4 1 Department of Mechanical Engineering, Smt. Kashibai Navale College

More information

Effect of Nanofluid Concentration on the Performance of Circular Heat Pipe

Effect of Nanofluid Concentration on the Performance of Circular Heat Pipe International Journal of Scientific & Engineering Research Volume 2, Issue 4, April-2011 1 Effect of Nanofluid Concentration on the Performance of Circular Heat Pipe M. G. Mousa Abstract The goal of this

More information

APPLICATION OF NANOTECHNOLOGY TO IMPROVE THE PERFORMANCE OF TRACTOR RADIATOR USING CU-WATER NANOFLUID

APPLICATION OF NANOTECHNOLOGY TO IMPROVE THE PERFORMANCE OF TRACTOR RADIATOR USING CU-WATER NANOFLUID Journal of Thermal Engineering, Vol. 4, No. 4, Special Issue 8, pp. 2188-2200, Yildiz Technical University Press, Istanbul, Turkey APPLICATION OF NANOTECHNOLOGY TO IMPROVE THE PERFORMANCE OF TRACTOR RADIATOR

More information

CFD Study of the Turbulent Forced Convective Heat Transfer of Non-Newtonian Nanofluid

CFD Study of the Turbulent Forced Convective Heat Transfer of Non-Newtonian Nanofluid Reduction of Parasitic Currents in Simulation of Droplet Secondary Breakup with Density Ratio Higher than 60 by InterDyMFoam Iranian Journal of Chemical Engineering Vol. 11, No. 2 (Spring 2014), IAChE

More information

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 3, No 1, Copyright by the authors - Licensee IPA- Under Creative Commons license 3.

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 3, No 1, Copyright by the authors - Licensee IPA- Under Creative Commons license 3. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 3, No 1, 2012 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Review article ISSN 0976 4402 An overview of Nanofluids:

More information

Microchannel Heat Sink with nanofluids

Microchannel Heat Sink with nanofluids Microchannel Heat Sink with nanofluids The Summary of the PhD thesis University Politehnica Timişoara ing. Laza Ioan PhD supervisor: Prof. dr.ing. Dorin LELEA 2016 The Summary of the PhD thesis 2 The miniaturization

More information

Flow Boiling Heat Transfer in Small Diameter Channels Using Nano Fluids: A Review

Flow Boiling Heat Transfer in Small Diameter Channels Using Nano Fluids: A Review Flow Boiling Heat Transfer in Small Diameter Channels Using Nano Fluids: A Review Hemant Gautam 1, Hardik Patel 2 P.G.Student, Mechanical Engineering Department, SVMIT, Bharuch, India 1 Assistant Professor,

More information

EXPERIMENTAL STUDIES OF THERMAL CONDUCTIVITY, VISCOSITY AND STABILITY OF ETHYLENE GLYCOL NANOFLUIDS

EXPERIMENTAL STUDIES OF THERMAL CONDUCTIVITY, VISCOSITY AND STABILITY OF ETHYLENE GLYCOL NANOFLUIDS ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

Computational Analysis of CuO Nano Coolant in a Car Radiator

Computational Analysis of CuO Nano Coolant in a Car Radiator IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 14, Issue 1 Ver. II (Jan. - Feb. 2017), PP 40-45 www.iosrjournals.org Computational Analysis of

More information

Buoyancy Driven Heat Transfer of Water-Based CuO Nanofluids in a Tilted Enclosure with a Heat Conducting Solid Cylinder on its Center

Buoyancy Driven Heat Transfer of Water-Based CuO Nanofluids in a Tilted Enclosure with a Heat Conducting Solid Cylinder on its Center July 4-6 2012 London U.K. Buoyancy Driven Heat Transer o Water-Based CuO Nanoluids in a Tilted Enclosure with a Heat Conducting Solid Cylinder on its Center Ahmet Cihan Kamil Kahveci and Çiğdem Susantez

More information

A. Zamzamian * Materials and Energy Research Center (MERC), Karaj, I. R. Iran

A. Zamzamian * Materials and Energy Research Center (MERC), Karaj, I. R. Iran Int. J. Nanosci. Nanotechnol., Vol. 10, No. 2, June 2014, pp. 103-110 Entropy Generation Analysis of EG Al 2 Nanofluid Flows through a Helical Pipe A. Zamzamian * Materials and Energy Research Center (MERC),

More information

Application of Nano-Fluids as Coolant in Heat Exchangers: A Review

Application of Nano-Fluids as Coolant in Heat Exchangers: A Review Application of Nano-Fluids as Coolant in Heat Exchangers: A Review M. A. Khattak *,1, A. Mukhtar 2,a, and S. Kamran Afaq 2,b 1 Department of Nuclear Engineering, Faculty of Chemical and Energy Engineering,

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume6, Issue 5, November 2016

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume6, Issue 5, November 2016 Enhancement of Heat Transfer in Forced Convection by using Fe 2 O 3 -Water Nanofluid in a Concentric Tube Heat Exchanger V. Murali Krishna Department of Mechanical Engineering, B. V. Raju Institute of

More information

Australian Journal of Basic and Applied Sciences. Thermal Performance of Spiral Tube Heat Exchanger using Nano Fluid Experimental Study

Australian Journal of Basic and Applied Sciences. Thermal Performance of Spiral Tube Heat Exchanger using Nano Fluid Experimental Study ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Thermal Performance of Spiral Tube Heat Exchanger using Nano Fluid Experimental Study 1 P. Prabhu and

More information

THE EXPERIMENTAL STUDY OF THE EFFECT OF ADDING HIGH-MOLECULAR POLYMERS ON HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS

THE EXPERIMENTAL STUDY OF THE EFFECT OF ADDING HIGH-MOLECULAR POLYMERS ON HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS THE EXPERIMENTAL STUDY OF THE EFFECT OF ADDING HIGH-MOLECULAR POLYMERS ON HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS Dmitriy Guzei 1, *, Maxim Pryazhnikov 1, Andrey Minakov 1,, and Vladimir Zhigarev 1

More information

NATURAL CONVECTIVE BOUNDARY LAYER FLOW OVER A HORIZONTAL PLATE EMBEDDED

NATURAL CONVECTIVE BOUNDARY LAYER FLOW OVER A HORIZONTAL PLATE EMBEDDED International Journal of Microscale and Nanoscale Thermal.... ISSN: 1949-4955 Volume 2, Number 3 2011 Nova Science Publishers, Inc. NATURAL CONVECTIVE BOUNDARY LAYER FLOW OVER A HORIZONTAL PLATE EMBEDDED

More information

An Introduction to the. NanoFluid. By Amin Behzadmehr Hassan Azarkish

An Introduction to the. NanoFluid. By Amin Behzadmehr Hassan Azarkish An Introduction to the NanoFluid By Amin Behzadmehr Hassan Azarkish Introduction Nanofluids are a relatively new class of fluids which consist of a base fluid with nano-sized particles (1 100 nm) suspended

More information

THERMAL PERFORMANCE OF SHELL AND TUBE HEAT EXCHANGER USING NANOFLUIDS 1

THERMAL PERFORMANCE OF SHELL AND TUBE HEAT EXCHANGER USING NANOFLUIDS 1 THERMAL PERFORMANCE OF SHELL AND TUBE HEAT EXCHANGER USING NANOFLUIDS 1 Arun Kumar Tiwari 1 Department of Mechanical Engineering, Institute of Engineering & Technology, GLA University, Mathura, 281004,

More information

ABSTRACT I. INTRODUCTION II. BACKGROUND OF STUDY

ABSTRACT I. INTRODUCTION II. BACKGROUND OF STUDY 2017 IJSRST Volume 3 Issue 3 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology Preparation and Experimental Investigation of CUO Nanoparticles Based Engine OILS Sk Salman

More information

A Study On The Heat Transfer of Nanofluids in Pipes

A Study On The Heat Transfer of Nanofluids in Pipes Project Report 2014 MVK160 Heat and Mass Transport May 15, 2014, Lund, Sweden A Study On The Heat Transfer of Nanofluids in Pipes Koh Kai Liang Peter Dept. of Energy Sciences, Faculty of Engineering, Lund

More information

USING MULTI-WALL CARBON NANOTUBE (MWCNT) BASED NANOFLUID IN THE HEAT PIPE TO GET BETTER THERMAL PERFORMANCE *

USING MULTI-WALL CARBON NANOTUBE (MWCNT) BASED NANOFLUID IN THE HEAT PIPE TO GET BETTER THERMAL PERFORMANCE * IJST, Transactions of Mechanical Engineering, Vol. 39, No. M2, pp 325-335 Printed in The Islamic Republic of Iran, 2015 Shiraz University USING MULTI-WALL CARBON NANOTUBE (MWCNT) BASED NANOFLUID IN THE

More information

Critical review of heat transfer characteristics of nanofluids

Critical review of heat transfer characteristics of nanofluids Critical review of heat transfer characteristics of nanofluids Visinee Trisaksri a, Somchai Wongwises b, a Energy Division, The Joint Graduate School of Energy and Environment, King Mongkut s University

More information

Monika R. Kohale 1, Shrikrushna P. Chincholkar 2 1 P.G.Student,Heat Power Engineering, 2 Asst. Prof. of Mechanical Department

Monika R. Kohale 1, Shrikrushna P. Chincholkar 2 1 P.G.Student,Heat Power Engineering, 2 Asst. Prof. of Mechanical Department Al2O3 a Nanofluid in Radiator to Increase Cooling Performance Based On Water Monika R. Kohale 1, Shrikrushna P. Chincholkar 2 1 P.G.Student,Heat Power Engineering, 2 Asst. Prof. of Mechanical Department

More information

Experimental Study of Heat Transfer Enhancement Using Water Based Nanofluids as a New Coolant for Car Radiators

Experimental Study of Heat Transfer Enhancement Using Water Based Nanofluids as a New Coolant for Car Radiators Experimental Study of Heat Transfer Enhancement Using Water Based Nanofluids as a New Coolant for Car Radiators V. L. Bhimani 1, Dr. P. P. Rathod 2, Prof. A. S. Sorathiya 3 1 PG Student, 2,3 Associate

More information

Heat Transfer Enhancement by using Al 2 O 3 -Water Nanofluid in a Liquid Cooling System for Microprocessors

Heat Transfer Enhancement by using Al 2 O 3 -Water Nanofluid in a Liquid Cooling System for Microprocessors Heat Transfer Enhancement by using Al 2 O 3 -Water Nanofluid in a Liquid Cooling System for Microprocessors C. T. NGUYEN 1 *, G. ROY 1, N. GALANIS 2, S. SUIRO 3 1 Faculty of Engineering, Université de

More information

Enhancement in heat transfer coefficient of water by using nano-fluids for corrugated plate heat exchanger

Enhancement in heat transfer coefficient of water by using nano-fluids for corrugated plate heat exchanger Enhancement in heat transfer coefficient of water by using nano-fluids for corrugated plate heat exchanger #1 Mr. M. C. Shinde, #2 Dr. P. A. Patil #12 Mechanical Engineering Department, Jayawantrao Sawant

More information

Vijayawada, AP. Fig Two-Step Mixing Procedure Diagram of Nano- Fluid

Vijayawada, AP. Fig Two-Step Mixing Procedure Diagram of Nano- Fluid GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES EXPERIMENTAL ANALYSIS OF DOUBLE PIPE HEAT EXCHANGER BY USING NANO FLUIDS AL 2 O 3 & SIO 2 Sk.Subhani 1 & D.Gopi Chand 2 1&2 Assistant Professor, Department

More information

Heat Transfer Enhancement in Fe3O4-water Nanofluid through a Finned Tube Counter Flow Heat Exchanger

Heat Transfer Enhancement in Fe3O4-water Nanofluid through a Finned Tube Counter Flow Heat Exchanger Heat Transfer Enhancement in Fe3O4-ater Nanofluid through a Finned Tube Counter Flo Heat Exchanger Md.Sikindar Baba Research scholar, Jaaharlal Nehru Technological University, Hyderabad, Telangana, India

More information

Numerical Analysis of Fe 3 O 4 Nanofluid Flow in a Double Pipe U-Bend Heat Exchanger

Numerical Analysis of Fe 3 O 4 Nanofluid Flow in a Double Pipe U-Bend Heat Exchanger International Journal of Engineering Studies. ISSN 0975-6469 Volume 8, Number 2 (2016), pp. 211-224 Research India Publications http://www.ripublication.com Numerical Analysis of Fe 3 O 4 Nanofluid Flow

More information

PERFORMANCE ANALYSIS OF CORRUGATED PLATE HEAT EXCHANGER WITH WATER AS WORKING FLUID

PERFORMANCE ANALYSIS OF CORRUGATED PLATE HEAT EXCHANGER WITH WATER AS WORKING FLUID PERFORMANCE ANALYSIS OF CORRUGATED PLATE HEAT EXCHANGER WITH WATER AS WORKING FLUID Tisekar Salman W 1, Mukadam Shakeeb A 2, Vedpathak Harshad S 3, Rasal Priyanka K 4, Khandekar S. B 5 1 Student of B.E.,

More information

CHARACTERISTICS OF HEAT TRANSFER AND PRESSURE DROP IN A CHEVRON-TYPE PLATE HEAT EXCHANGER WITH Al 2 O 3 -WATER NANOFLUIDS

CHARACTERISTICS OF HEAT TRANSFER AND PRESSURE DROP IN A CHEVRON-TYPE PLATE HEAT EXCHANGER WITH Al 2 O 3 -WATER NANOFLUIDS THERMAL SCIENCE: Year 2017, Vol. 21, No. 6A, pp. 2379-2391 2379 CHARACTERISTICS OF HEAT TRANSFER AND PRESSURE DROP IN A CHEVRON-TYPE PLATE HEAT EXCHANGER WITH Al 2 -WATER NANOFLUIDS by Murat UNVERDI *

More information

Measuring Thermal Conductivity of Nanofluid by New Method

Measuring Thermal Conductivity of Nanofluid by New Method Australian Journal of Basic and Applied Sciences, 5(9): 985-996, 011 ISSN 1991-8178 Measuring Thermal Conductivity of Nanofluid by New Method 1 S.Sh. Hosseini, N.M. Adam, 3 B.Z.Azmi, 4 A. Ahmadi, 1 A.

More information

HEAT TRANSFER ENHANCEMENT WITH ELLIPTICAL TUBE UNDER TURBULENT FLOW TiO 2 -WATER NANOFLUID

HEAT TRANSFER ENHANCEMENT WITH ELLIPTICAL TUBE UNDER TURBULENT FLOW TiO 2 -WATER NANOFLUID THERMAL SCIENCE: Year 2016, Vol. 20, No. 1, pp. 89-97 89 HEAT TRANSFER ENHANCEMENT WITH ELLIPTICAL TUBE UNDER TURBULENT FLOW TiO 2 -WATER NANOFLUID by Adnan M. HUSSEIN a*, Rosli Abu BAKAR b, Kumaran KADIRGAMA

More information

Investigation of the Flow Characteristics of Titanium - Oxide - Water Nanofluid in Microchannel with Circular Cross Section

Investigation of the Flow Characteristics of Titanium - Oxide - Water Nanofluid in Microchannel with Circular Cross Section American Journal of Nano Research and Applications 2017; 5(6): 102-109 http://www.sciencepublishinggroup.com/j/nano doi: 10.11648/j.nano.20170506.14 ISSN: 2575-3754 (Print); ISSN: 2575-3738 (Online) Investigation

More information

Numerical Study of Forced Convective Heat Transfer of Nanofluids inside a Vertical Tube

Numerical Study of Forced Convective Heat Transfer of Nanofluids inside a Vertical Tube Research Article International Journal of Thermal Technologies ISSN 2277-4114 2013 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijtt Numerical Study of Forced Convective Heat

More information

Research Article Numerical Study of Fluid Dynamic and Heat Transfer in a Compact Heat Exchanger Using Nanofluids

Research Article Numerical Study of Fluid Dynamic and Heat Transfer in a Compact Heat Exchanger Using Nanofluids International Scholarly Research Network ISRN Mechanical Engineering Volume 2012, Article ID 585496, 11 pages doi:10.5402/2012/585496 Research Article Numerical Study of Fluid Dynamic and Heat Transfer

More information

Temperature dependent thermal conductivity enhancement of copper oxide nanoparticles dispersed in propylene glycol-water base fluid

Temperature dependent thermal conductivity enhancement of copper oxide nanoparticles dispersed in propylene glycol-water base fluid Int. J. Nanoparticles, Vol. 3, No. 2, 2010 149 Temperature dependent thermal conductivity enhancement of copper oxide nanoparticles dispersed in propylene glycol-water base fluid M.T. Naik* Centre for

More information

Convective Heat Transfer of Al 2 O 3 and CuO Nanofluids Using Various Mixtures of Water- Ethylene Glycol as Base Fluids

Convective Heat Transfer of Al 2 O 3 and CuO Nanofluids Using Various Mixtures of Water- Ethylene Glycol as Base Fluids Engineering, Technology & Applied Science Research Vol. 7, No. 2, 2017, 1496-1503 1496 Convective Heat Transfer of Al 2 O 3 and CuO Nanofluids Using Various Mixtures of Water- Ethylene Glycol as Base Fluids

More information

Thermal Characteristic of Nanofluids Containing Titanium Dioxide Nanoparticles in Ethylene Glycol

Thermal Characteristic of Nanofluids Containing Titanium Dioxide Nanoparticles in Ethylene Glycol 1459 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 56, 2017 Guest Editors: Jiří Jaromír Klemeš, Peng Yen Liew, Wai Shin Ho, Jeng Shiun Lim Copyright 2017, AIDIC Servizi S.r.l., ISBN 978-88-95608-47-1;

More information

International Journal of Advancements in Research & Technology, Volume 3, Issue 11, November ISSN

International Journal of Advancements in Research & Technology, Volume 3, Issue 11, November ISSN International Journal of Advancements in Research & Technology, Volume 3, Issue 11, November -2014 30 HEAT TRANSFER INTENSIFICATION USING NANOFLUIDS INTRODUCTION Prof. B.N. Havaraddi Assistant Professor

More information

Laminar forced convective heat transfer of Al 2 O 3 /water nanofluids

Laminar forced convective heat transfer of Al 2 O 3 /water nanofluids Computational Methods and Experimental Measurements XVI 179 Laminar forced convective heat transfer of Al 2 O 3 /water nanofluids A. M. Sharifi 1,2, A. Emamzadeh 3, A. A. Hamidi 4, H. Farzaneh 1 & M. Rastgarpour

More information

Heat Transfer Augmentation of Heat pipe using Nanofluids

Heat Transfer Augmentation of Heat pipe using Nanofluids International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2017 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Heat

More information

Computational Analysis to Enhance Laminar Flow Convective Heat Transfer Rate in an Enclosure Using Aerosol Nanofluids

Computational Analysis to Enhance Laminar Flow Convective Heat Transfer Rate in an Enclosure Using Aerosol Nanofluids Georgia Southern University Digital Commons@Georgia Southern Electronic Theses & Dissertations Graduate Studies, Jack N. Averitt College of Spring 2013 Computational Analysis to Enhance Laminar Flow Convective

More information

Thermophysical characteristics of ZnO nanofluid in L-shape enclosure.

Thermophysical characteristics of ZnO nanofluid in L-shape enclosure. Thermophysical characteristics of ZnO nanofluid in L-shape enclosure. Introduction Bin Wang, version 6, 05/25/2015 Conventional heat transfer fluids, such as water, ethylene glycol and engine oil, have

More information

A Study of Heat Transfer with Nanofluids

A Study of Heat Transfer with Nanofluids International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2017 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Sanjyot

More information

On the reliable estimation of heat transfer coefficients for nanofluids in a microchannel

On the reliable estimation of heat transfer coefficients for nanofluids in a microchannel Journal of Physics: Conference Series PAPER OPEN ACCESS On the reliable estimation of heat transfer coefficients for nanofluids in a microchannel To cite this article: Ridho Irwansyah et al 2016 J. Phys.:

More information

HEAT TRANSFER ENHANCEMENT USING NANOFLUIDS An Overview

HEAT TRANSFER ENHANCEMENT USING NANOFLUIDS An Overview THERMAL SCIENCE: Year 2012, Vol. 16, No. 2, pp. 423-444 423 HEAT TRANSFER ENHANCEMENT USING NANOFLUIDS An Overview by Shanthi R a*, Shanmuga Sundaram ANANDAN b, and Velraj RAMALINGAM c a Department of

More information

Turbulent Convective Heat Transfer and Pressure Drop of Dilute CuO (Copper Oxide) - Water Nanofluid Inside a Circular Tube

Turbulent Convective Heat Transfer and Pressure Drop of Dilute CuO (Copper Oxide) - Water Nanofluid Inside a Circular Tube Turbulent Convective Heat Transfer and Pressure Drop of Dilute CuO (Copper Oxide) - Water Nanofluid Inside a Circular Tube Eldwin DJAJADIWINATA 1,*, Hany A. AL-ANSARY 1, Khalid AL-DAKKAN 2, Abdulaziz BAGABAS

More information

Experimental study of forced convective heat transfer from a vertical tube conveying dilute Ag/DI water nanofluids in a cross flow of air

Experimental study of forced convective heat transfer from a vertical tube conveying dilute Ag/DI water nanofluids in a cross flow of air Mohammadian et al. International Nano Letters 2013, 3:15 ORIGINAL ARTICLE Experimental study of forced convective heat transfer from a vertical tube conveying dilute Ag/DI water nanofluids in a cross flow

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

Available online at ScienceDirect. Energy Procedia 79 (2015 )

Available online at  ScienceDirect. Energy Procedia 79 (2015 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 79 (2015 ) 252 258 2015 International Conference on Alternative Energy in Developing Countries and Emerging Economies Experimental

More information

Untersuchungen zum Wärmeübergang in einem quadratischen Mikrokanal mit Al 2 O 3 -H 2 O Nanofluid

Untersuchungen zum Wärmeübergang in einem quadratischen Mikrokanal mit Al 2 O 3 -H 2 O Nanofluid Fachtagung Lasermethoden in der Strömungsmesstechnik 8. 10. September 2015, Dresden Untersuchungen zum Wärmeübergang in einem quadratischen Mikrokanal mit Al 2 O 3 -H 2 O Nanofluid Investigation of the

More information

Comparison of the Heat Transfer Efficiency of Nanofluids

Comparison of the Heat Transfer Efficiency of Nanofluids 703 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 43, 2015 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 2015, AIDIC Servizi S.r.l., ISBN 978-88-95608-34-1; ISSN 2283-9216 The Italian

More information

Research Article Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger

Research Article Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger International Scholarly Research Notices Article ID 736424 7 pages http://dx.doi.org/10.1155/2014/736424 Research Article Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger Reza Aghayari 1 Heydar

More information

Investigation of Heat Transfer Coefficient of Ethylene Glycol/ Graphenenanofluid in Turbulent Flow Regime

Investigation of Heat Transfer Coefficient of Ethylene Glycol/ Graphenenanofluid in Turbulent Flow Regime Int. J. Nanosci. Nanotechnol., Vol. 10, No. 4, Dec. 2014, pp. 237-244 Investigation of Heat Transfer Coefficient of Ethylene Glycol/ Graphenenanofluid in Turbulent Flow Regime A. Ghozatloo 1,2, M. Shariaty-Niasar

More information

Effect of CuO/ Water Nanofluid Heat Transfer IN Serpentine Shaped Microchannel Heat Sink

Effect of CuO/ Water Nanofluid Heat Transfer IN Serpentine Shaped Microchannel Heat Sink International Journal of Mechanics and Thermodynamics. ISSN 2278-361X Volume 5, Number 1 (2014), pp. 1-12 International Research Publication House http://www.irphouse.com Effect of CuO/ Water Nanofluid

More information

Computer-Aided Simulation of Heat Transfer in Nanofluids

Computer-Aided Simulation of Heat Transfer in Nanofluids Computer-Aided Simulation of Heat Transfer in Nanofluids A.M. Sharifi, A. Emamzadeh, A. A. Hamidi, H. Farzaneh, M. Rastgarpour Abstract_ Numerical simulation and experimental investigation were used for

More information

Abstract. 1. Introduction

Abstract. 1. Introduction International Engineering Research Journal Performance evaluation of Nano fluids for Radiator effectiveness Ganore D j, Kulkarni V S and Sonawane K R ϯ Department of Mechanical, SPPU, MCOERC, NASIK, INDIA

More information

PERFORMANCE ANALYSIS OF PARABOLIC TROUGH COLLECTOR TUBE WITH INTERNAL INTERMITTENT FINS

PERFORMANCE ANALYSIS OF PARABOLIC TROUGH COLLECTOR TUBE WITH INTERNAL INTERMITTENT FINS PERFORMANCE ANALYSIS OF PARABOLIC TROUGH COLLECTOR TUBE WITH INTERNAL INTERMITTENT FINS Binoj K. George 1, Jacob Kuriakose 2 1Student, M. A. College of Engineering, Kothamangalam 2Asst. Prof, M. A. College

More information

Experimental Investigation of plate heat exchanger using Nanofluids

Experimental Investigation of plate heat exchanger using Nanofluids Experimental Investigation of plate heat exchanger using Nanofluids Dr.Syed Amjad Ahmad 1, M. Naheed Javed 2, M. Zahid Saeed 3, Hashaam Syed 4, M. Awais Aslam 5 1Head of Department, 2 Assistant Professor,

More information

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #2. April 3, 2014

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #2. April 3, 2014 Circle one: Div. 1 (12:30 pm, Prof. Choi) Div. 2 (9:30 am, Prof. Xu) School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer Exam #2 April 3, 2014 Instructions: Write your name

More information

A CFD Study of Turbulent Convective Heat Transfer Enhancement in Circular Pipeflow Perumal Kumar, Rajamohan Ganesan

A CFD Study of Turbulent Convective Heat Transfer Enhancement in Circular Pipeflow Perumal Kumar, Rajamohan Ganesan A CFD Study of Turbulent Convective Heat Transfer Enhancement in Circular Pipeflow Perumal Kumar, Rajamohan Ganesan Abstract Addition of milli or micro sized particles to the heat transfer fluid is one

More information

Research Article Numerical Study of Laminar Flow Forced Convection of Water-Al 2 O 3 Nanofluids under Constant Wall Temperature Condition

Research Article Numerical Study of Laminar Flow Forced Convection of Water-Al 2 O 3 Nanofluids under Constant Wall Temperature Condition Mathematical Problems in Engineering Volume 2015, Article ID 180841, 8 pages http://dx.doi.org/10.1155/2015/180841 search Article Numerical Study of Laminar Flow Forced Convection of Water-Al 2 O 3 Nanofluids

More information

CFD Analysis on Flow Through Plate Fin Heat Exchangers with Perforations

CFD Analysis on Flow Through Plate Fin Heat Exchangers with Perforations CFD Analysis on Flow Through Plate Fin Heat Exchangers with Perforations 1 Ganapathi Harish, 2 C.Mahesh, 3 K.Siva Krishna 1 M.Tech in Thermal Engineering, Mechanical Department, V.R Siddhartha Engineering

More information

Study of Forced Convection Heat Transfer with Single phase and mixture phase Nanofluid Model at different Reynolds Numbers

Study of Forced Convection Heat Transfer with Single phase and mixture phase Nanofluid Model at different Reynolds Numbers IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 14, Issue 1 Ver. V (Jan. - Feb. 2017), PP 44-55 www.iosrjournals.org Study of Forced Convection

More information

MELTING HEAT TRANSFER IN A NANOFLUID FLOW PAST A PERMEABLE CONTINUOUS MOVING SURFACE

MELTING HEAT TRANSFER IN A NANOFLUID FLOW PAST A PERMEABLE CONTINUOUS MOVING SURFACE Journal of Naval Architecture and Marine Engineering December, 2011 DOI: 10.3329/jname.v8i2.6830 http://www.banglajol.info MELTING HEAT TRANSFER IN A NANOFLUID FLOW PAST A PERMEABLE CONTINUOUS MOVING SURFACE

More information

HEAT TRANSFER STUDY IN A COAXIAL HEAT EXCHANGER USING NANOFLUIDS

HEAT TRANSFER STUDY IN A COAXIAL HEAT EXCHANGER USING NANOFLUIDS BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI Publicat de Universitatea Tehnică Gheorghe Asachi din Iaşi Tomul LVI (LX), Fasc. 4, 2010 Secţia CONSTRUCŢII. ĂRHITECTURĂ HEAT TRANSFER STUDY IN A COAXIAL HEAT

More information

Numerical Investigation of Air-Side Heat Transfer and Fluid Flow in a Microchannel Heat Exchanger

Numerical Investigation of Air-Side Heat Transfer and Fluid Flow in a Microchannel Heat Exchanger Proceedings of the 2 nd World Congress on Mechanical, Chemical, and Material Engineering (MCM'16) Budapest, Hungary August 22 23, 2016 Paper No. HTFF 135 DOI: 10.11159/htff16.135 Numerical Investigation

More information

This is a repository copy of Aqueous Al2O3 nanofluids: the important factors impacting convective heat transfer.

This is a repository copy of Aqueous Al2O3 nanofluids: the important factors impacting convective heat transfer. This is a repository copy of Aqueous Al2O3 nanofluids: the important factors impacting convective heat transfer. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/93095/ Version:

More information

Numerical Investigation of Turbulent Convective Heat Transfer of Various Nanofluids in Tube

Numerical Investigation of Turbulent Convective Heat Transfer of Various Nanofluids in Tube Numerical Investigation of Turbulent Convective Heat Transfer of Various Nanofluids in Tube Ch Saikumar 1, A Ramakrishna 2 P.G. Student, Department of Mechanical Engineering, BVC Engineering College, Odalarevu,

More information

Available online at ScienceDirect. Energy Procedia 79 (2015 )

Available online at  ScienceDirect. Energy Procedia 79 (2015 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 79 (2015 ) 259 264 2015 International Conference on Alternative Energy in Developing Countries and Emerging Economies Thermal Analysis

More information

Analysis of a Double Pipe Heat Exchanger Performance by Use of Porous Baffles and Nanofluids

Analysis of a Double Pipe Heat Exchanger Performance by Use of Porous Baffles and Nanofluids Analysis of a Double Pipe Heat Exchanger Performance by Use of Porous Baffles and Nanofluids N. Targui, H. Kahalerras Abstract The present work is a numerical simulation of nanofluids flow in a double

More information

Thermal Conductivity of AlN Ethanol Nanofluids

Thermal Conductivity of AlN Ethanol Nanofluids Int J Thermophys (2008) 29:1968 1973 DOI 10.1007/s10765-008-0529-3 Thermal Conductivity of AlN Ethanol Nanofluids Peng Hu Wan-Liang Shan Fei Yu Ze-Shao Chen Published online: 7 November 2008 Springer Science+Business

More information

Numerical investigation of Al 2 O 3 /water nanofluid laminar convective heat transfer through triangular ducts

Numerical investigation of Al 2 O 3 /water nanofluid laminar convective heat transfer through triangular ducts Zeinali Heris et al. Nanoscale Research Letters 011, 6:179 NANO EXPRESS Open Access Numerical investigation of Al O 3 /water nanofluid laminar convective heat transfer through triangular ducts Saeed Zeinali

More information

Thermo-Fluid Performance of a Vapor- Chamber Finned Heat Sink

Thermo-Fluid Performance of a Vapor- Chamber Finned Heat Sink The Egyptian International Journal of Engineering Sciences and Technology Vol. 20 (July 2016) 10 24 http://www.eijest.zu.edu.eg Thermo-Fluid Performance of a Vapor- Chamber Finned Heat Sink Saeed A.A.

More information

Investigations of Heat Transfer Augmentation for Turbulent Nanofluids Flow in a Circular Tube: Recent Literature Review

Investigations of Heat Transfer Augmentation for Turbulent Nanofluids Flow in a Circular Tube: Recent Literature Review AASCIT Journal of Nanoscience 2015; 1(4): 60-65 Published online September 20, 2015 (http://www.aascit.org/journal/nanoscience) Investigations of Heat Transfer Augmentation for Turbulent Nanofluids Flow

More information

HEAT TRANSFER ENHANCEMENT BY USING NANOFLUID JET IMPINGEMENT

HEAT TRANSFER ENHANCEMENT BY USING NANOFLUID JET IMPINGEMENT HEAT TRANSFER ENHANCEMENT BY USING NANOFLUID JET IMPINGEMENT Yatander Dayal 1, Prof. Amitesh Paul 2 1 M.Tech. Student, Department of Mechanical Engineering, AGNOS College of Technology, M.P., India 2 Professor,

More information

Analysis of heat and mass transfer between air and falling film in a cross flow configuration

Analysis of heat and mass transfer between air and falling film in a cross flow configuration International Journal of Heat and Mass Transfer 47 (004) 743 755 www.elsevier.com/locate/ijhmt Analysis of heat and mass transfer between air and falling film in a cross flow configuration A. Ali a, K.

More information

An Experimental Study of Counter flow Concentric Tube Heat Exchanger using CuO / Water Nanofluid

An Experimental Study of Counter flow Concentric Tube Heat Exchanger using CuO / Water Nanofluid An Experimental Study of Counter flow Concentric Tube Heat Exchanger using CuO / Water Nanofluid 1 Mr. Vatsal. S. Patel M.E.[Thermal Engg.] Student Department of Mechanical Engineering, S.V.M. Institute

More information

EVALUATION OF NANOFLUIDS PERFORMANCE FOR SIMULATED MICROPROCESSOR

EVALUATION OF NANOFLUIDS PERFORMANCE FOR SIMULATED MICROPROCESSOR THERMAL SCIENCE, Year 2017, Vol. 21, No. 5, pp. 2227-2236 2227 EVALUATION OF NANOFLUIDS PERFORMANCE FOR SIMULATED MICROPROCESSOR by Aysha Maryam SIDDIQUI a, Waqas ARSHAD b, Hafiz Muhammad ALI b*, Muzaffar

More information

neural network as well as experimental data, two models were established in order to

neural network as well as experimental data, two models were established in order to Application of the FCM-based Neuro-fuzzy Inference System and Genetic Algorithm-polynomial Neural Network Approaches to Modelling the Thermal Conductivity of Alumina-water Nanofluids M.Mehrabi, M.Sharifpur,

More information

Numerical Investigation of Aspect Ratio Effect on Thermal Parameters in Laminar Nanofluid Flow in Microchannel Heat Sink

Numerical Investigation of Aspect Ratio Effect on Thermal Parameters in Laminar Nanofluid Flow in Microchannel Heat Sink Numerical Investigation of Aspect Ratio Effect on hermal Parameters in Laminar Nanofluid Flo in Microchannel Heat Sink Seyed S. HOSSEINI 1, Abbas. ABBASSI 2 * Corresponding author: el.: ++98 (21)64543425;

More information

EXPERIMENTAL STUDY ON CAVITY FLOW NATURAL CONVECTION IN A POROUS MEDIUM, SATURATED WITH AN Al 2 O 3 60%EG-40%WATER NANOFLUID

EXPERIMENTAL STUDY ON CAVITY FLOW NATURAL CONVECTION IN A POROUS MEDIUM, SATURATED WITH AN Al 2 O 3 60%EG-40%WATER NANOFLUID EXPERIMENTAL STUDY ON CAVITY FLOW NATURAL CONVECTION IN A POROUS MEDIUM, SATURATED WITH AN Al 2 O 3 60%EG-40%WATER NANOFLUID C. Grobler 1, M. Sharifpur* 2, H. Ghodsinezhad 2, R. Capitani 2 and J.P. Meyer

More information

Kersten Grote. B.Eng.(Hons.) (Pretoria) Thesis submitted to the University of Pretoria in candidature for the degree of Masters in Engineering

Kersten Grote. B.Eng.(Hons.) (Pretoria) Thesis submitted to the University of Pretoria in candidature for the degree of Masters in Engineering THE INFLUENCE OF MULTI-WALLED CARBON NANOTUBES ON SINGLE-PHASE HEAT TRANSFER AND PRESSURE DROP CHARACTERISTICS IN THE TRANSITIONAL FLOW REGIME OF SMOOTH TUBES Kersten Grote B.Eng.(Hons.) (Pretoria) Thesis

More information

Evaporation of nanofluid droplet on heated surface

Evaporation of nanofluid droplet on heated surface Research Article Evaporation of nanofluid droplet on heated surface Advances in Mechanical Engineering 1 8 Ó The Author(s) 2015 DOI: 10.1177/1687814015578358 aime.sagepub.com Yeung Chan Kim Abstract In

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 3, March -2017 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Numerical

More information

International Journal of Engineering Trends and Technology (IJETT) Volume-45 Number-8 -March 2017

International Journal of Engineering Trends and Technology (IJETT) Volume-45 Number-8 -March 2017 Advanced Heat Transfer Enhancement by using Nanofluids: A Review M. A. Boda 1*, M. Ramachandran 2 S. S. Deshetti 3, M. A. Gavade 4 1 Assistant Professor, 2 Assistant Professor, 3 &43 U.G. Students 1, 2,

More information

CFD AND CONJUGATE HEAT TRANSFER ANALYSIS OF HEAT SINKS WITH DIFFERENT FIN GEOMETRIES SUBJECTED TO FORCED CONVECTION USED IN ELECTRONICS COOLING

CFD AND CONJUGATE HEAT TRANSFER ANALYSIS OF HEAT SINKS WITH DIFFERENT FIN GEOMETRIES SUBJECTED TO FORCED CONVECTION USED IN ELECTRONICS COOLING CFD AND CONJUGATE HEAT TRANSFER ANALYSIS OF HEAT SINKS WITH DIFFERENT FIN GEOMETRIES SUBJECTED TO FORCED CONVECTION USED IN ELECTRONICS COOLING V. M Kulkarni 1, Basavaraj Dotihal 2 1 Professor, Thermal

More information