Natural Convection in Vertical Channels with Porous Media and Adiabatic Extensions

Size: px
Start display at page:

Download "Natural Convection in Vertical Channels with Porous Media and Adiabatic Extensions"

Transcription

1 Natural Convection in Vertical Channels with Porous Media and Adiabatic Extensions Assunta Andreozzi 1,a, Bernardo Buonomo 2,b, Oronzio Manca 2,c and Sergio Nardini 2,d 1 DETEC, Università degli Studi Federico II, Piazzale Tecchio 80, Napoli, Italy 2 DIAM, Seconda Università degli Studi di Napoli, Via Roma 29, Aversa, Italy a asandreo@unina.it, b bernardo.buonomo@unina2.it, c oronzio.manca@unina2.it, d sergio.nardini@unina2.it Keywords: Natural convection, Porous media, Chimney effect, Vertical Channel, Wall Heat Flux, electronic cooling, thermal insulation. Abstract. A numerical investigation on natural convection in air in a vertical heated channel, partially filled with porous medium, with adiabatic extensions downward and collinear the heated plates is accomplished. The fluid flow is assumed two-dimensional, laminar, steady state and incompressible. The porous material is considered as homogeneous and isotropic and the Brinkman-Forchheimer-extended Darcy model is considered. A finite-extension computational domain is employed to simulate the free-stream condition and allows to account for the diffusive effects and the numerical results are obtained using the finite volume method by FLUENT. Results in terms of wall temperature profiles are presented to evaluate the effects of the main thermal and geometrical parameters. The adiabatic extensions determine a wall temperature decrease and wall temperature decreases increasing Darcy number. In full filled heated channels wall temperature presents a significant increase for Darcy number decrease. Introduction Natural convection in fluid-saturated porous media has received, during the past decade, and receives considerable attention due to its applications in many technological and geophysical systems [1-4]. The natural convection heat transfer in enclosures or cavities filled or partially filled with porous medium has been the subject of various studies [5,6]. Open-ended vertical channels fully or partially filled with porous media have been accomplished in various studies [7-15]. An analytical study on natural convection in porous channels was carried out in [7]. Analytical solutions for fully developed natural convection in an open-ended vertical totally and partially filled porous channel were presented in [8], respectively. Expressions for the transient fully developed volumetric flow rate, the mixing cup temperature and the local Nusselt number were evaluated for four fundamental boundary conditions. Natural convection fluid flow in open-ended vertical parallel-plate channels partially filled with porous material were studied in [9]. The role of the local macroscopic inertial term in the porous domain momentum equation was investigated. A numerical study on local thermal equilibrium assumption in the transient natural convection channel flow, partially filled with porous medium, was carried out in [10]. The Darcy-Brinkman-Forchheimer model was used to model the flow. The role of the local macroscopic inertial term in the porous domain momentum equation was studied. A numerical study of coupled fluid flow and heat transfer by transient natural convection and thermal radiation in a vertical channel opened at both ends and filled with a saturated porous medium was achieved in [11]. The Darcy law and of the local thermal equilibrium were assumed. The results indicated that the controlling parameters of the problems had significant effects on the

2 flow and thermal fields and on the transient process of heating or cooling of the medium. The extension to anisotropic, in both thermal conductivity and permeability, fluid-saturated porous media was accomplished in [12]. The developing hydrodynamic and thermal behaviors of natural convection gas flow in a vertical open-ended parallel-plate microchannel filled with porous media were investigated numerically in [13]. The extended Darcy-Brinkman-Forchheimer model was employed to model the flow in porous medium and the solid and fluid media were not assumed in local thermal equilibrium. The slip flow regime was considered for the microflow regime. A numerical simulation of the steady-state, laminar, two-dimensional, natural convection heat transfer in an open-ended channel partially filled with an isotropic porous medium was investigated in [14]. The Darcy-Brinkman-Forchheimer model and the Boussinesq approximation were assumed to describe the fluid flow in the porous region. The results indicated that air gap presence may reduce the average flow in the porous substrate to zero. This led to the presence of an optimum average Nusselt number at low and high values of the effective thermal conductivity ratios. The optimal configuration of a stacking of porous medium structure with the objective to minimize the hot spot temperature in natural convection was investigated in [15]. As far as the present authors knowledge is concerned, natural convection in air in a vertical channel filled with porous media and adiabatic extensions has not been dealt with. Then, in this paper, reference is made to natural convection in air in a vertical channel partially filled with an isotropic porous medium and the two principal heated flat plates at uniform heat flux with adiabatic extensions. The numerical analysis is accomplished in steady laminar and two dimensional regime. The working fluid is air. The study is carried out employing the Brinkman-Forchheimer-extended Darcy model. The numerical results are obtained using the commercial code FLUENT, which is based on the finite volume method. A finite-extension computational domain is employed to simulate the free-stream condition and allows to account for the diffusive effects which are peculiar to the elliptic model. Problem Description and Governing Equations The physical system and geometry under investigation are shown in Figure 1a. It consists of two parallel plates that form a vertical channel partially filled with a fluid-saturated porous medium and two parallel adiabatic extensions which are placed downward and collinear to the heated plates. Both heated plates are at uniform heat flux. The porous material is considered as homogeneous and isotropic. It is assumed that the steady state fluid flow in the channel is two-dimensional, laminar and incompressible. Viscous dissipation, heat generation and pressure work are all assumed to have negligible effect on the velocity and temperature fields and are therefore neglected. The working fluid is air, Pr=0.71. All the thermophysical properties of the fluid and the solid matrix of the porous medium are assumed constant except for the variation in density with temperature (Boussinesq approximation) giving rise to the buoyancy forces. The thermophysical properties of the fluid and the solid matrix of the porous medium are evaluated at the ambient temperature, T 0, which is equal to 300 K in all cases. With the above assumptions, the governing equations in the fluid region and in dimensionless variables are: U V + = 0. Y (1)

3 clear fluid porous medium L L h q w q w x b t y L y L x Figure 1. Geometric configuration: (a) physical domain; (b)computational domain. U U P U U U + V = + + Grθ. Y + Y V V P U V V V + = + + Y Y Y. 1 U θ V θ θ θ + = + Y Pr Y. (2) (3) (4) In the porous medium region, the generalized flow model, known as the Brinkman-Forchheimerextended Darcy model, is used in the governing equations. The equations for mass, momentum and energy in the porous medium region are: U V + = 0. Y U U 2 P U U 2 1 C 2 U + V = ε + ε + ε U V U ε Grθ. Y Y Da Da V V 2 P V V 2 1 C U + V = ε + ε + ε U V V. Y Y + + Y Da Da 1 U θ V θ θ θ + = +. Y Pr e Y (5) (6) (7) (8) The employed dimensionless variables are:

4 ( ) 2 p p0 b T T0 θ 2 ν / ν / 2 ρν / f x y tν u v =, Y =, τ =, U =, V =, P=, =, b b b b b qb k 4 L / b 2 0 w w w gβqb 1 b 1 ν Gr =, Ra = Pr Gr, Nu( ) =, Nu = d, Pr =, k fν θ ( ) L θ ( ) α ν K k Pr e =, Da =, =. α with: e α 2 e e b ρfcpf ( ε ) w (9) k = 1 k + ε k. (10) e s f where ε is the porosity coefficient or porosity. The permeability coefficient K and inertia coefficient C of porous medium are based on Ergun's experimental investigation [17] and it is expressed by Vafai [18] as follows: K 2 3 d b ε 1.75 =, C = ε ( ε ) (11) Numerical Model Since the vertical channel is in an infinite medium, from a numerical point of view the problem is solved with reference to a computational domain of finite extension, as shown in Figure 1b. Following the approach given in [19] the finite-extension computational domain is employed to simulate the free-stream condition and allows to account for the diffusive effects which are peculiar to the elliptic model. The choice of rectangular reservoirs with respect to other geometric configurations, such as circular, is related only to a simpler discretization of the extended computational domain. The imposed boundary conditions are the following: in the inlet permeable surfaces of the lower reservoir, the free stream conditions are considered and the air temperature is assumed equal to the ambient temperature. On the impermeable surfaces, in the lower and upper reservoir, the no slip condition are assumed and these surfaces are adiabatic. At permeable surfaces of the upper reservoir, free stream conditions are considered, whereas thermal conditions are to assign an adiabatic condition if the motion is outgoing, or the fluid temperature at ambient value if the motion is incoming. On the solid wall in the channel, no slip conditions and uniform heat flux are assumed. The commercial CFD code Fluent [20] is employed to solve the governing equations. The SIMPLE scheme is chosen to couple pressure and velocity. The porous medium model is active in the porous region. The convergence criteria of 10-4 for the residual of continuity equation and velocity components and 10-8 for the residuals of energy are assumed. A grid dependence test is accomplished to realize the most convenient grid size by monitoring the average Nusselt number, for Ra=10 4, an aspect ratio equal to 10 and for a case without porous medium and with porous medium (Da=1 and ε=). Three different grids were tested with 43x19, 85x38 and 171x77 nodes in the channel. The variations of the average Nusselt number values when the number of nodes were 85x38 in the channel, with respect to the reference values, obtained by the Richardson extrapolation, was 1.3%. The mesh size 85x38 was employed in this investigation because it ensures a good compromise between computational time and accuracy requirements.

5 An analogous analysis is carried out to set the optimal reservoirs dimensions, L x and L y. A reservoir vertical dimension L x, equal to the plate height L, and a reservoir horizontal dimension L y, equal to 11 times the channel gap, b, were chosen since the velocity and temperature in the channel, for larger dimensions of the reservoirs, present very small variation, as indicated in [20]. Results and Discussions The results are presented for an aspect ratio equal to 10, the ratio between the total channel height and the heated channel height is and 1.5 and a Rayleigh number equal to The ratio between the channel gap and the porous medium thickness is equal to 0.1, 0.3 and 05. The porous material in has values of Da= and ε=, and. The fluid is air and the solid matrix has a thermal conductivity from 1 to 10 times the one for the air. The heat capacity per unit volume, ρ c p, for fluid and porous medium are assumed to have the same value. A comparison between the wall temperature profiles for the simple channel, without adiabatic extensions, and the channel with L/L h =1.5 is reported in Fig. 2, for t/b=0.1 and 0.5. As expected the wall temperature along the heated channel increases increasing the axial coordinate and it attains a maximum value for <L h /b due to the end effects. Wall temperature decreases passing from the simple channel (L/L h =) to the channel with the adiabatic extensions. The decrease is higher for t/b=0.5 than for t/b=0.1 and this indicates that the presence of the adiabatic extension determines an increase of the chimney effect and consequently of the mass flow rate inside the channel. It is the same tendency presents in the channel-chimney system without porous material [21]. The effect of porosity, ε=, and, for L/L h =1.5, t/b=0.5 and Da=10-2 and 10-4 are given in Fig. 3. It is shown that for the highest considered Da value (10-4 ), in Fig. 3b, the effect of ε is negligible whereas for Da=10-2 some evident differences are noted at lowest considered porosity, ε=. In Fig. 4, for t/=0.5, completely filled heated channel, and e= wall temperature profiles present increasing values as the Da value decreases. The increase is greater as greater Da is and a very high increase is noted from Da=10-4 to 10-6 ; in fact, maximum wall temperature is equal to about 2.0 for Da=10-4 and about 15 for Da=10-6. The increase in the ratio between the thermal conductivities (γ=k s /k f ), in Fig. 5, determines the decrement of wall temperature. The differences between the wall temperatures decreases increasing the value of k s /k f. Wall temperature profiles for porosity equal to and t/b=0, 0.1 and 0.3 for different Da values are shown in Fig. 6. The effect of t/b at lowest considered Da value, in Figure 6a, is very weak at low t/b; in fact, the differences between the profile at t/b= and t/b=0.1 are negligible respect to the same differences between t/b = 0 and t/b = 0.3. The presence of porous medium on the heated walls determines, for the examined cases with k s /k f =1, an increase of wall temperature. For lower Da also at low t/b values the differences between the wall temperatures increase and they are higher as lower Da is. Moreover, decreasing Da a very significant increase of the difference between wall temperature profiles at t/b=0.1 and 0.3 is observed. This allow to employ this configurations as a thermal insulation system. Summary Natural convection in air in a vertical heated channel, partially filled with porous medium, with adiabatic extensions downward and collinear the heated plates was studied numerically. Results in terms of wall temperature profiles were carried out in order to evaluate the effects of the main thermal and geometrical parameters. It was found that the adiabatic extensions determined a wall

6 1.2 Ra=10 4, ε=, Da=10-2 L/b=10 L h /b=10 L/L h =1 L/L h =1.5 (a) t/b=0.1 (b) t/b=0.5 Figure 2. Wall temperature profiles for Ra=10 4, Da=10-2, ε= and (a) t/b=0.1, (b) t/b= Ra=10 4, L/b=10, L/L h =1.5, full porous ε= ε= ε= 3.0 (a) Da= (b) Da= Figure 3 Wall temperature profiles for Ra=10 4, for full filled heated channel, different porosities, L h /L=1.5 and (a) Da=10-2, Da= Da=10-1 Da=10-2 Da=10-3 Da=10-4 Da=10-5 Da=10-6 t/b=0.5 Ra=10 4, ε=, Da=10-4 L/b=10, L/L h =1.5, t/b=0.3 L h /b= (b) ε= γ=1 γ=2 γ=5 γ=10 Figure 4. Wall temperature profiles for Ra=10 4, for t/b=0.5, ε= and different Da values. Figure 5. Wall temperature profiles for Ra=10 4, for t/b=0.3, ε=, L h /L=1.5, Da=10-2 and different thermal conductivity ratio.

7 Ra=10 4, ε=, L/b=10, L/L h =1.5 L h /b=10 t/b=0 t/b=0.1 t/b=0.3 (a) Da=10-1 (b) Da=10-2 (c) Da=10-3 (d) Da=10-4 Figure 6. Wall temperature profiles for Ra=10 4, for t/b=0, 0.1, 0.3, ε= and different Da values: (a) Da=10-1, (b) Da=10-2, (c) Da=10-3 and (d) Da=10-4. temperature decrease respect to the simple heated channel, without adiabatic extensions. Wall temperature decreased increasing Darcy number and in full filled heated channels wall temperature attained a significant increase for Darcy number decrease. Nomenclature Symbol Quantity SI Unit Symbol Quantity SI Unit b channel spacing m p pressure Pa C inertia coefficient eq. (11) P dimensionless pressure eq. (9) c p specific heat at constant Jkg -1 K -1 Pr Prandtl number eq. (9) pressure Da Darcy number eq. (9) q heat flux Wm -2 g gravitational acceleration ms -2 Ra Rayleigh number eq (9) Gr Grashof number eq. (9) t porous medium thickness m k thermal conductivity Wm -1 K -1 T temperature K K permeability m 2 u,v velocity components ms -1 L total height of the channel m U,V dimensionless velocity eq. (9) components L h heated channel length m x,y coordinate distance m Nu() local Nusselt number eq. (9),Y dimensionless coordinate eq. (9) Nu average Nusselt number eq. (9)

8 Greek symbols Subscripts α thermal diffusivity m 2 s -1 a ambient β volumetric expansion K -1 e average coefficient δ convergence angle f fluid ε porosity coefficient s solid θ dimensionless temperature eq. (9) w wall ν kinematic viscosity m 2 s -1 0 initial or ambient ρ density kg/m 3 τ dimensionless time eq. (9) Acknowledgments This work was supported by MIUR with Art. 12 D. M. 593/2000 Grandi Laboratori EliosLab. References [1] D.A. Nield and A. Bejan: Convection in Porous Media, third ed. (Springer, New York 2006). [2] D.B. Ingham and I. Pop: Transport Phenomena in Porous Media (Pergamon, Oxford 2002). [3] K.Vafai: Handbook of Porous Media, vol. II (Marcel Dekker, New York 2005). [4] A. Bejan, I. Dincer, S. Lorente, A. F. Miguel and A. H. Reis: Porous and Complex Flow Structures in Modern Technologies (Springer, New York 2004). [5] S. Hsiao, C. Chen and P. Cheng, P.: Int. J. Heat Mass Transfer Vol. 37 (1994), p [6] A. Merrikh and A. Mohamad: Int. J. Heat Mass Transfer Vol. 45 (2002), p [7] T. Nilsen and L. Storesletten: J. Heat Transfer Vol. 112 (1990),pp [8] M. Al-Nimr and O. Haddad: J. Porous Media Vol. 2 (1999), p [9] A. F. Khadrawi and M. A. Al-Nimr: ASME, Fluids Engineering Division, Vol. FED-257 (2002), p [10] A. F. Khadrawi and M.A. Al-Nimr: J. Porous Media Vol. 6 (2003), p. 59. [11] K. Slimi, L. Zili-Ghdira, S. Ben Nasrallah and A. A. Mohamad: Num. Heat Transfer Part A Vol. 45 (2004), p [12] O. M. Haddad, M. M. Abuzaid and M. A. Al-Nimr: Num. Heat Transfer Part A Vol. 48 (2005), p [13] K. Slimi, A. Mhimid, M. Ben Salah, S. Ben Nasrallah, A.A. Mohamad and L. Storesletten: Num. Heat Transfer Part A Vol. 48 (2005), p [14] S. Kiwanand and M. Khodier: Heat Transfer Eng. Vol. 29 (1) (2008), p. 67. [15] A. Bejan: Int. J. Heat Mass Transfer Vol. 47 (2004), p [16] K.,Vafai and C. L. Tien: Int. J. Heat Mass Transfer Vol. 24 (1981), p [17] S. Ergun: Chem. Engng. Proc. Vol. 48 (1952), p. 89. [18] K. Vafai: J. Fluid Mech. Vol. 147 (1984), p [19] A. Andreozzi and O. Manca: Int. J. Heat Fluid Flow Vol. 22 (2001), p [20] Fluent Inc., Fluent 6.3, User Manual (Fluent Inc., Lebanon NH 2006). [21] A. Andreozzi, B. Buonomo and O. Manca: Num. Heat Transfer Part A Vol. 47 (2005), p. 741.

Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium

Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium Transport in Porous Media (2006) 64: 1 14 Springer 2006 DOI 10.1007/s11242-005-1126-6 Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium

More information

ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD

ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD HEFAT 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 6 8 July Malta ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD Nawaf

More information

INFLUENCE OF VARIABLE PERMEABILITY ON FREE CONVECTION OVER VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM

INFLUENCE OF VARIABLE PERMEABILITY ON FREE CONVECTION OVER VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM INFLUENCE OF VARIABLE PERMEABILITY ON FREE CONVECTION OVER VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM S. M. M. EL-Kabeir and A. M. Rashad Department of Mathematics, South Valley University, Faculty

More information

Radiation Effects on Mixed Convection Flow and Viscous Heating in a Vertical Channel Partially Filled with a Porous Medium

Radiation Effects on Mixed Convection Flow and Viscous Heating in a Vertical Channel Partially Filled with a Porous Medium Tamkang Journal of Science and Engineering, Vol. 14, No. 2, pp. 97 106 (2011) 97 Radiation Effects on Mixed Convection Flow and Viscous Heating in a Vertical Channel Partially Filled with a Porous Medium

More information

Visualization of Natural Convection in Enclosure. Filled with Porous Medium by Sinusoidally. Temperature on the One Side

Visualization of Natural Convection in Enclosure. Filled with Porous Medium by Sinusoidally. Temperature on the One Side Applied Mathematical Sciences, Vol., 2012, no. 97, 801-812 Visualization of Natural Convection in Enclosure Filled with Porous Medium by Sinusoidally Temperature on the One Side Paweena Khansila Department

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE Proceedings of the International Conference on Mechanical Engineering 2011 (ICME2011) 18-20 December 2011, Dhaka, Bangladesh ICME11-TH-014 FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT

More information

Forced Convection in a Cylinder Filled with Porous Medium, including Viscous Dissipation Effects

Forced Convection in a Cylinder Filled with Porous Medium, including Viscous Dissipation Effects Journal of Applied Fluid Mechanics, Vol. 9, Special Issue 1, pp. 139-145, 016. Selected papers from the 7 th International Exergy, Energy and Environment Symposium, IEEE7-015 Available online at www.jafmonline.net,

More information

UNSTEADY MIXED CONVECTION IN A POROUS MEDIA FILLED LID-DRIVEN CAVITY HEATED BY A SEMI-CIRCULAR HEATERS

UNSTEADY MIXED CONVECTION IN A POROUS MEDIA FILLED LID-DRIVEN CAVITY HEATED BY A SEMI-CIRCULAR HEATERS THERMAL SCIENCE, Year 2015, Vol. 19, No. 5, pp. 1761-1768 1761 UNSTEADY MIXED CONVECTION IN A POROUS MEDIA FILLED LID-DRIVEN CAVITY HEATED BY A SEMI-CIRCULAR HEATERS by Md Mustafizur RAHMAN a,c, Hakan

More information

Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Vertical Surface in Porous Medium

Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Vertical Surface in Porous Medium Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Vertical Surface in Porous Medium M.B.K.MOORTHY, K.SENTHILVADIVU Department of Mathematics, Institute of Road

More information

Effect of Buoyancy Force on the Flow Field in a Square Cavity with Heated from Below

Effect of Buoyancy Force on the Flow Field in a Square Cavity with Heated from Below International Journal of Discrete Mathematics 017; (): 43-47 http://www.sciencepublishinggroup.com/j/dmath doi: 10.11648/j.dmath.01700.13 Effect of Buoyancy Force on the Flow Field in a Square Cavity with

More information

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

Studies on flow through and around a porous permeable sphere: II. Heat Transfer Studies on flow through and around a porous permeable sphere: II. Heat Transfer A. K. Jain and S. Basu 1 Department of Chemical Engineering Indian Institute of Technology Delhi New Delhi 110016, India

More information

EFFECT OF THE INLET OPENING ON MIXED CONVECTION INSIDE A 3-D VENTILATED CAVITY

EFFECT OF THE INLET OPENING ON MIXED CONVECTION INSIDE A 3-D VENTILATED CAVITY THERMAL SCIENCE: Year 2018, Vol. 22, No. 6A, pp. 2413-2424 2413 EFFECT OF THE INLET OPENING ON MIXED CONVECTION INSIDE A 3-D VENTILATED CAVITY by Hicham DOGHMI *, Btissam ABOURIDA, Lahoucin BELARCHE, Mohamed

More information

Fully Developed Forced Convection Heat Transfer in a Porous Channel with Asymmetric Heat Flux Boundary Conditions

Fully Developed Forced Convection Heat Transfer in a Porous Channel with Asymmetric Heat Flux Boundary Conditions Transp Porous Med (2011) 90:791 806 DOI 10.1007/s11242-011-9816-8 Fully Developed Forced Convection Heat Transfer in a Porous Channel with Asymmetric Heat Flux Boundary Conditions Ozgur Cekmer Moghtada

More information

Influence of Heat Transfer Process in Porous Media with Air Cavity- A CFD Analysis

Influence of Heat Transfer Process in Porous Media with Air Cavity- A CFD Analysis Proceedings of the 4 th International Conference of Fluid Flow, Heat and Mass Transfer (FFHMT'17) Toronto, Canada August 21 23, 2017 Paper No. 161 DOI: 10.11159/ffhmt17.161 Influence of Heat Transfer Process

More information

Entropy 2011, 13, ; doi: /e OPEN ACCESS. Entropy Generation at Natural Convection in an Inclined Rectangular Cavity

Entropy 2011, 13, ; doi: /e OPEN ACCESS. Entropy Generation at Natural Convection in an Inclined Rectangular Cavity Entropy 011, 13, 100-1033; doi:10.3390/e1305100 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Entropy Generation at Natural Convection in an Inclined Rectangular Cavity Mounir

More information

Analysis of a Double Pipe Heat Exchanger Performance by Use of Porous Baffles and Nanofluids

Analysis of a Double Pipe Heat Exchanger Performance by Use of Porous Baffles and Nanofluids Analysis of a Double Pipe Heat Exchanger Performance by Use of Porous Baffles and Nanofluids N. Targui, H. Kahalerras Abstract The present work is a numerical simulation of nanofluids flow in a double

More information

Fully developed mixed convection through a vertical porous channel with an anisotropic permeability: case of heat flux

Fully developed mixed convection through a vertical porous channel with an anisotropic permeability: case of heat flux Stud. Univ. Babeş-Bolyai Math. 60(2015), No. 2, 341 350 Fully developed mixed convection through a vertical porous channel with an anisotropic permeability: case of heat flux Diana Andrada Filip, Radu

More information

The Effect Of MHD On Laminar Mixed Convection Of Newtonian Fluid Between Vertical Parallel Plates Channel

The Effect Of MHD On Laminar Mixed Convection Of Newtonian Fluid Between Vertical Parallel Plates Channel The Effect Of MH On Laminar Mixed Convection Of Newtonian Fluid Between Vertical Parallel Plates Channel Rasul alizadeh,alireza darvish behanbar epartment of Mechanic, Faculty of Engineering Science &

More information

The Study of Natural Convection Heat Transfer in a Partially Porous Cavity Based on LBM

The Study of Natural Convection Heat Transfer in a Partially Porous Cavity Based on LBM Send Orders for Reprints to reprints@benthamscience.ae 88 The Open Fuels & Energy Science Journal, 014, 7, 88-93 Open Access The Study of Natural Convection Heat Transfer in a Partially Porous Cavity Based

More information

Using LBM to Investigate the Effects of Solid-Porous Block in Channel

Using LBM to Investigate the Effects of Solid-Porous Block in Channel International Journal of Modern Physics and Applications Vol. 1, No. 3, 015, pp. 45-51 http://www.aiscience.org/journal/ijmpa Using LBM to Investigate the Effects of Solid-Porous Bloc in Channel Neda Janzadeh,

More information

Numerical Study of Natural Convection in. an Inclined L-shaped Porous Enclosure

Numerical Study of Natural Convection in. an Inclined L-shaped Porous Enclosure Adv. Theor. Appl. Mech., Vol. 5, 2012, no. 5, 237-245 Numerical Study of Natural Convection in an Inclined L-shaped Porous Enclosure S. M. Moghimi 1 *, G. Domairry 2, H. Bararnia 2, Soheil Soleimani 2

More information

NUMERICAL STUDY OF HEAT TRANSFER IN A FLAT PLAT THERMAL SOLAR COLLECTOR WITH PARTITIONS ATTACHED TO ITS GLAZING. Adel LAARABA.

NUMERICAL STUDY OF HEAT TRANSFER IN A FLAT PLAT THERMAL SOLAR COLLECTOR WITH PARTITIONS ATTACHED TO ITS GLAZING. Adel LAARABA. NUMERICAL STUDY OF HEAT TRANSFER IN A FLAT PLAT THERMAL SOLAR COLLECTOR WITH PARTITIONS ATTACHED TO ITS GLAZING Adel LAARABA. Department of physics. University of BATNA. (05000) Batna, Algeria Ccorresponding

More information

Maximum Heat Transfer Density From Finned Tubes Cooled By Natural Convection

Maximum Heat Transfer Density From Finned Tubes Cooled By Natural Convection Maximum Heat Transfer Density From Finned Tubes Cooled By Natural Convection Ahmed Waheed Mustafa 1 Mays Munir Ismael 2 AL-Nahrain University College of Engineering Mechanical Engineering Department ahmedwah@eng.nahrainuniv.edu.iq

More information

Forced Convection Heat Transfer Enhancement by Porous Pin Fins in Rectangular Channels

Forced Convection Heat Transfer Enhancement by Porous Pin Fins in Rectangular Channels Jian Yang Min Zeng Qiuwang Wang 1 e-mail: wangqw@mail.xjtu.edu.cn State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi an Jiaotong University, Xi an,

More information

Temperature and Internal Heat Generation in a Porous Medium

Temperature and Internal Heat Generation in a Porous Medium TECHNISCHE MECHANIK, Band 21, Heft 4, (20011313318 Manuskripteingang: 20. September 200] Free Convection over 3 Vertical Flat Plate with a Variable Wall Temperature and Internal Heat Generation in a Porous

More information

Viscosity and Fluid Suction/Injection Effects on Free Convection Flow from a Vertical Plate in a Porous Medium Saturated with a Pseudoplastic Fluid

Viscosity and Fluid Suction/Injection Effects on Free Convection Flow from a Vertical Plate in a Porous Medium Saturated with a Pseudoplastic Fluid ISSN 749-3889 (print), 749-3897 (online) International Journal of Nonlinear Science Vol.8(4) No.,pp.7-38 Viscosity and Fluid Suction/Injection Effects on Free Convection Flow from a Vertical Plate in a

More information

Kabita Nath Department of Mathematics Dibrugarh University Dibrugarh, Assam, India

Kabita Nath Department of Mathematics Dibrugarh University Dibrugarh, Assam, India Influence of Chemical Reaction, Heat Source, Soret and Dufour Effects on Separation of a Binary Fluid Mixture in MHD Natural Convection Flow in Porous Media B.R.Sharma Department of Mathematics Dibrugarh

More information

THERMAL PERFORMANCE EVALUATION OF AN INNOVATIVE DOUBLE GLAZING WINDOW

THERMAL PERFORMANCE EVALUATION OF AN INNOVATIVE DOUBLE GLAZING WINDOW THERMAL PERFORMANCE EVALUATION OF AN INNOVATIVE DOUBLE GLAZING WINDOW Luigi De Giorgi, Carlo Cima, Emilio Cafaro Dipartimento di Energetica, Politecnico di Torino, Torino, Italy Volfango Bertola School

More information

MIXED CONVECTION OF NEWTONIAN FLUID BETWEEN VERTICAL PARALLEL PLATES CHANNEL WITH MHD EFFECT AND VARIATION IN BRINKMAN NUMBER

MIXED CONVECTION OF NEWTONIAN FLUID BETWEEN VERTICAL PARALLEL PLATES CHANNEL WITH MHD EFFECT AND VARIATION IN BRINKMAN NUMBER Bulletin of Engineering Tome VII [14] ISSN: 67 389 1. Rasul ALIZADEH,. Alireza DARVISH BAHAMBARI, 3. Komeil RAHMDEL MIXED CONVECTION OF NEWTONIAN FLUID BETWEEN VERTICAL PARALLEL PLATES CHANNEL WITH MHD

More information

Chapter 7: Natural Convection

Chapter 7: Natural Convection 7-1 Introduction 7- The Grashof Number 7-3 Natural Convection over Surfaces 7-4 Natural Convection Inside Enclosures 7-5 Similarity Solution 7-6 Integral Method 7-7 Combined Natural and Forced Convection

More information

NATURAL CONVECTION FLOW IN A SQUARE CAVITY WITH INTERNAL HEAT GENERATION AND A FLUSH MOUNTED HEATER ON A SIDE WALL

NATURAL CONVECTION FLOW IN A SQUARE CAVITY WITH INTERNAL HEAT GENERATION AND A FLUSH MOUNTED HEATER ON A SIDE WALL Journal of Naval Architecture and Marine Engineering December, 2010 DOI: 10.3329/jname.v7i2.3292 http://www.banglajol.info NATURAL CONVECTION FLOW IN A SQUARE CAVITY WITH INTERNAL HEAT GENERATION AND A

More information

Numerical Solution of Mass Transfer Effects on Unsteady Flow Past an Accelerated Vertical Porous Plate with Suction

Numerical Solution of Mass Transfer Effects on Unsteady Flow Past an Accelerated Vertical Porous Plate with Suction BULLETIN of the Malaysian Mathematical Sciences Society http://math.usm.my/bulletin Bull. Malays. Math. Sci. Soc. (2) 29(1) (2006), 33 42 Numerical Solution of Mass Transfer Effects on Unsteady Flow Past

More information

MIXED CONVECTION IN A SQUARE CAVITY WITH A HEAT-CONDUCTING HORIZONTAL SQUARE CYLINDER

MIXED CONVECTION IN A SQUARE CAVITY WITH A HEAT-CONDUCTING HORIZONTAL SQUARE CYLINDER Suranaree J. Sci. Technol. Vol. 17 No. 2; April - June 2010 139 MIXED CONVECTION IN A SQUARE CAVITY WITH A HEAT-CONDUCTING HORIZONTAL SQUARE CYLINDER Md. Mustafizur Rahman 1 *, M. A. Alim 1 and Sumon Saha

More information

Influence of the Order of Chemical Reaction and Soret Effect on Mass Transfer of a Binary Fluid Mixture in Porous Media

Influence of the Order of Chemical Reaction and Soret Effect on Mass Transfer of a Binary Fluid Mixture in Porous Media Influence of the Order of Chemical Reaction and Soret Effect on Mass Transfer of a Binary Fluid Mixture in Porous Media B.R.Sharma, Debozani Borgohain Department of Mathematics, Dibrugarh University, Dibrugarh-786004,

More information

On steady hydromagnetic flow of a radiating viscous fluid through a horizontal channel in a porous medium

On steady hydromagnetic flow of a radiating viscous fluid through a horizontal channel in a porous medium AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 1, Science Huβ, http://www.scihub.org/ajsir ISSN: 153-649X doi:1.551/ajsir.1.1..33.38 On steady hydromagnetic flow of a radiating viscous fluid through

More information

MOHD ZUKI SALLEH *, NAJIHAH MOHAMED 1, ROZIEANA KHAIRUDDIN 1, NAJIYAH SAFWA KHASI IE 1 & ROSLINDA NAZAR 2 ABSTRACT

MOHD ZUKI SALLEH *, NAJIHAH MOHAMED 1, ROZIEANA KHAIRUDDIN 1, NAJIYAH SAFWA KHASI IE 1 & ROSLINDA NAZAR 2 ABSTRACT Proc. nd International Conference on Mathematical Sciences ICMS 010 Pros. Persidangan Antarabangsa Sains Matematik Kedua NUMERICAL INVESTIGATION OF FREE CONVECTION OVER A PERMEABLE HORIZONTAL FLAT PLATE

More information

A Finite Element Analysis on MHD Free Convection Flow in Open Square Cavity Containing Heated Circular Cylinder

A Finite Element Analysis on MHD Free Convection Flow in Open Square Cavity Containing Heated Circular Cylinder American Journal of Computational Mathematics, 2015, 5, 41-54 Published Online March 2015 in SciRes. http://www.scirp.org/journal/ajcm http://dx.doi.org/10.4236/ajcm.2015.51003 A Finite Element Analysis

More information

Influence of chemical reaction, Soret and Dufour effects on heat and mass transfer of a binary fluid mixture in porous medium over a rotating disk

Influence of chemical reaction, Soret and Dufour effects on heat and mass transfer of a binary fluid mixture in porous medium over a rotating disk IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 10, Issue 6 Ver. III (Nov - Dec. 2014), PP 73-78 Influence of chemical reaction, Soret and Dufour effects on heat and

More information

Magnetohydrodynamic Convection Effects with Viscous and Ohmic Dissipation in a Vertical Channel Partially Filled by a Porous Medium

Magnetohydrodynamic Convection Effects with Viscous and Ohmic Dissipation in a Vertical Channel Partially Filled by a Porous Medium Journal of Applied Science and Engineering, Vol. 15, No. 1, pp. 1 10 (2012) 1 Magnetohydrodynamic Convection Effects with Viscous and Ohmic Dissipation in a Vertical Channel Partially Filled by a Porous

More information

EFFECT OF HEATED WALL POSITION ON MIXED CONVECTION IN A CHANNEL WITH AN OPEN CAVITY

EFFECT OF HEATED WALL POSITION ON MIXED CONVECTION IN A CHANNEL WITH AN OPEN CAVITY Numerical Heat Transfer, Part A, 43: 259 282, 2003 Copyright # 2003 Taylor & Francis 1040-7782/03 $12.00 +.00 DOI: 10.1080/10407780390122664 EFFECT OF HEATED WALL POSITION ON MIXED CONVECTION IN A CHANNEL

More information

Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Horizontal Surface in Porous Medium

Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Horizontal Surface in Porous Medium Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Horizontal Surface in Porous Medium M. B. K. MOORTHY, K. SENTHILVADIVU Department of Mathematics, Institute

More information

Available online at ScienceDirect. Procedia Engineering 90 (2014 )

Available online at   ScienceDirect. Procedia Engineering 90 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 9 (24 ) 55 556 th International Conference on Mechanical Engineering, ICME 23 Analysis of heat transfer and flow due to natural

More information

PHYSICAL MECHANISM OF NATURAL CONVECTION

PHYSICAL MECHANISM OF NATURAL CONVECTION 1 NATURAL CONVECTION In this chapter, we consider natural convection, where any fluid motion occurs by natural means such as buoyancy. The fluid motion in forced convection is quite noticeable, since a

More information

MYcsvtu Notes HEAT TRANSFER BY CONVECTION

MYcsvtu Notes HEAT TRANSFER BY CONVECTION www.mycsvtunotes.in HEAT TRANSFER BY CONVECTION CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in

More information

Analysis of Transient Natural Convection flow past an Accelerated Infinite Vertical Plate

Analysis of Transient Natural Convection flow past an Accelerated Infinite Vertical Plate From the SelectedWorks of Innovative Research Publications IRP India Winter February 1, 015 Analysis of ransient Natural Convection flow past an Accelerated Infinite Vertical Plate Innovative Research

More information

THREE-DIMENSIONAL MIXED CONVECTION HEAT TRANSFER IN A PARTIALLY HEATED VENTILATED CAVITY. Corresponding author;

THREE-DIMENSIONAL MIXED CONVECTION HEAT TRANSFER IN A PARTIALLY HEATED VENTILATED CAVITY. Corresponding author; THREE-DIMENSIONAL MIXED CONVECTION HEAT TRANSFER IN A PARTIALLY HEATED VENTILATED CAVITY Hicham DOGHMI 1 *, Btissam ABOURIDA 1, Lahoucin BELARCHE 1, Mohamed SANNAD 1, Meriem OUZAOUIT 1 1 National School

More information

Numerical investigation of the buoyancy-induced flow field and heat transfer inside solar chimneys

Numerical investigation of the buoyancy-induced flow field and heat transfer inside solar chimneys Numerical investigation of the buoyancy-induced flow field and heat transfer inside solar chimneys E. BACHAROUDIS, M.GR. VRACHOPOULOS, M.K. KOUKOU, A.E. FILIOS Mechanical Engineering Department, Environmental

More information

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1 HEAT TRANSFER BY CONVECTION Dr. Şaziye Balku 1 CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in the

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017 Transient Heat Transfer Experiment ME 331 Introduction to Heat Transfer June 1 st, 2017 Abstract The lumped capacitance assumption for transient conduction was tested for three heated spheres; a gold plated

More information

Numerical Analysis of Laminar flow of Viscous Fluid Between Two Porous Bounding walls

Numerical Analysis of Laminar flow of Viscous Fluid Between Two Porous Bounding walls Numerical Analysis of Laminar flow of Viscous Fluid Between Two Porous Bounding walls Ramesh Yadav Department of Mathematics Babu Banarasi Das National Institute of Technology & Management Lucknow Uttar

More information

COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES OF DIFFERENT ASPECT RATIOS

COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES OF DIFFERENT ASPECT RATIOS HEFAT214 1 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 16 July 214 Orlando, Florida COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES

More information

Unsteady Magnetohydrodynamic Free Convective Flow Past a Vertical Porous Plate

Unsteady Magnetohydrodynamic Free Convective Flow Past a Vertical Porous Plate International Journal of Applied Science and Engineering 2013. 11, 3: 267-275 Unsteady Magnetohydrodynamic Free Convective Flow Past a Vertical Porous Plate Murali Gundagania,*, Sivaiah Sheria, Ajit Paulb,

More information

COMBINED EFFECTS OF RADIATION AND JOULE HEATING WITH VISCOUS DISSIPATION ON MAGNETOHYDRODYNAMIC FREE CONVECTION FLOW AROUND A SPHERE

COMBINED EFFECTS OF RADIATION AND JOULE HEATING WITH VISCOUS DISSIPATION ON MAGNETOHYDRODYNAMIC FREE CONVECTION FLOW AROUND A SPHERE Suranaree J. Sci. Technol. Vol. 20 No. 4; October - December 2013 257 COMBINED EFFECTS OF RADIATION AND JOULE HEATING WITH VISCOUS DISSIPATION ON MAGNETOHYDRODYNAMIC FREE CONVECTION FLOW AROUND A SPHERE

More information

Analysis of the Cooling Design in Electrical Transformer

Analysis of the Cooling Design in Electrical Transformer Analysis of the Cooling Design in Electrical Transformer Joel de Almeida Mendes E-mail: joeldealmeidamendes@hotmail.com Abstract This work presents the application of a CFD code Fluent to simulate the

More information

FORCED CONVECTION IN A SELF HEATING POROUS CHANNEL: LOCAL THERMAL NONEQUILIBIUM MODEL

FORCED CONVECTION IN A SELF HEATING POROUS CHANNEL: LOCAL THERMAL NONEQUILIBIUM MODEL FORCED CONVECTION IN A SELF HEATING POROUS CHANNEL: LOCAL THERMAL NONEQUILIBIUM MODEL by Azzedine ABDEDOU 1,2*, Khedidja BOUHADEF 2 and Rachid BENNACER 3 1 Département du Génie Mécanique, Faculté de Génie

More information

Natural Convection in Porous Triangular Enclosure with a Circular Obstacle in Presence of Heat Generation

Natural Convection in Porous Triangular Enclosure with a Circular Obstacle in Presence of Heat Generation American Journal of Applied Mathematics 2015; 3(2): 51-58 Published online March 20, 2015 (http://www.sciencepublishinggroup.com/j/ajam) doi: 10.11648/j.ajam.20150302.14 ISSN: 2330-0043 (Print); ISSN:

More information

UNSTEADY FREE CONVECTION BOUNDARY-LAYER FLOW PAST AN IMPULSIVELY STARTED VERTICAL SURFACE WITH NEWTONIAN HEATING

UNSTEADY FREE CONVECTION BOUNDARY-LAYER FLOW PAST AN IMPULSIVELY STARTED VERTICAL SURFACE WITH NEWTONIAN HEATING FLUID DYNAMICS UNSTEADY FREE CONVECTION BOUNDARY-LAYER FLOW PAST AN IMPULSIVELY STARTED VERTICAL SURFACE WITH NEWTONIAN HEATING R. C. CHAUDHARY, PREETI JAIN Department of Mathematics, University of Rajasthan

More information

Numerical Analysis of Laminar Natural Convection in a Quadrantal Cavity with a Solid Adiabatic Fin Attached to the Hot Vertical Wall

Numerical Analysis of Laminar Natural Convection in a Quadrantal Cavity with a Solid Adiabatic Fin Attached to the Hot Vertical Wall Journal of Applied Fluid Mechanics, Vol., No., pp. 01-10, 2013. Available online at www.jafmonline.net, ISSN 13-32, EISSN 13-3. Numerical Analysis of Laminar Natural Convection in a Quadrantal Cavity with

More information

NATURAL CONVECTION AND RADIATION IN CIRCULAR AND ARC CAVITY

NATURAL CONVECTION AND RADIATION IN CIRCULAR AND ARC CAVITY Proceedings of the International Conference on Mechanical Engineering 9 (ICME9) - 8 December 9, Dhaka, Bangladesh ICME9-TH- NATURAL CONVECTION AND RADIATION IN CIRCULAR AND ARC CAVITY Naheed Ferdous, Md.

More information

NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER

NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER Int. J. Chem. Sci.: 1(4), 14, 1487-1499 ISSN 97-768X www.sadgurupublications.com NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER R. LAKSHMI a, K. JAYARAMI

More information

Numerical Computation of Mixed Convection Past a Heated Vertical Plate within a Saturated Porous Medium with Variable Permeability

Numerical Computation of Mixed Convection Past a Heated Vertical Plate within a Saturated Porous Medium with Variable Permeability AMSE JOURNALS 014-Series: MODELLING B; Vol. 83; N 1; pp 50-66 Submitted April 013; Revised Oct. 30, 013; Accepted Feb. 1, 014 Numerical Computation of Mixed Convection Past a Heated Vertical Plate ithin

More information

NATURAL CONVECTION HEAT TRANSFER IN PARTIALLY OPEN ENCLOSURES CONTAINING AN INTERNAL LOCAL HEAT SOURCE

NATURAL CONVECTION HEAT TRANSFER IN PARTIALLY OPEN ENCLOSURES CONTAINING AN INTERNAL LOCAL HEAT SOURCE Brazilian Journal of Chemical Engineering ISSN 0104-6632 Printed in Brazil www.abeq.org.br/bjche Vol. 24, No. 03, pp. 375-388, July - September, 2007 NATURAL CONVECTION HEAT TRANSFER IN PARTIALLY OPEN

More information

FREE CONVECTION AROUND A SLENDER PARABOLOID OF NON- NEWTONIAN FLUID IN A POROUS MEDIUM

FREE CONVECTION AROUND A SLENDER PARABOLOID OF NON- NEWTONIAN FLUID IN A POROUS MEDIUM FREE CONVECTION AROUND A SLENDER PARABOLOID OF NON- NEWTONIAN FLUID IN A POROUS MEDIUM Rishi Raj KAIRI, Department of Mathematics, Islampur College, Uttar Dinajpur, West Bengal, India. Email: rishirajkairi@gmail.com

More information

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM ABDUL WAHID http://www.fkm.utm.my/~mazlan TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 5 th Edition, John Wiley and Sons Chapter 9 Natural

More information

Laminar natural convection in inclined open shallow cavities

Laminar natural convection in inclined open shallow cavities Int. J. Therm. Sci. 41 (2002) 360 368 www.elsevier.com/locate/ijts Laminar natural convection in inclined open shallow cavities O. Polat, E. Bilgen 1, École Polytechnique Box 6079, City Center, Montréal,

More information

Thermal diffusion effect on MHD free convection flow of stratified viscous fluid with heat and mass transfer

Thermal diffusion effect on MHD free convection flow of stratified viscous fluid with heat and mass transfer Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 03, 4():-9 ISSN: 0976-860 CODEN (USA): AASRFC Thermal diffusion effect on MHD free convection flow of stratified

More information

THREE-DIMENSIONAL DOUBLE-DIFFUSIVE NATURAL CONVECTION WITH OPPOSING BUOYANCY EFFECTS IN POROUS ENCLOSURE BY BOUNDARY ELEMENT METHOD

THREE-DIMENSIONAL DOUBLE-DIFFUSIVE NATURAL CONVECTION WITH OPPOSING BUOYANCY EFFECTS IN POROUS ENCLOSURE BY BOUNDARY ELEMENT METHOD J. Kramer et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 1, No. (013) 103 115 THREE-DIMENSIONAL DOUBLE-DIFFUSIVE NATURAL CONVECTION WITH OPPOSING BUOYANCY EFFECTS IN POROUS ENCLOSURE BY BOUNDARY ELEMENT

More information

Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4,

Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4, Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4, 513 524 Effects of Temperature Dependent Thermal Conductivity on Magnetohydrodynamic (MHD) Free Convection Flow along a Vertical Flat Plate

More information

Effect of an adiabatic fin on natural convection heat transfer in a triangular enclosure

Effect of an adiabatic fin on natural convection heat transfer in a triangular enclosure American Journal of Applied Mathematics 2013; 1(4): 78-83 Published online November 10, 2013 (http://www.sciencepublishinggroup.com/j/ajam) doi: 10.11648/j.ajam.20130104.16 Effect of an adiabatic fin on

More information

SELF-SUSTAINED OSCILLATIONS AND BIFURCATIONS OF MIXED CONVECTION IN A MULTIPLE VENTILATED ENCLOSURE

SELF-SUSTAINED OSCILLATIONS AND BIFURCATIONS OF MIXED CONVECTION IN A MULTIPLE VENTILATED ENCLOSURE Computational Thermal Sciences, 3 (1): 63 72 (2011) SELF-SUSTAINED OSCILLATIONS AND BIFURCATIONS OF MIXED CONVECTION IN A MULTIPLE VENTILATED ENCLOSURE M. Zhao, 1, M. Yang, 1 M. Lu, 1 & Y. W. Zhang 2 1

More information

The Effects of Viscous Dissipation on Convection in a Porus Medium

The Effects of Viscous Dissipation on Convection in a Porus Medium Mathematica Aeterna, Vol. 7, 2017, no. 2, 131-145 The Effects of Viscous Dissipation on Convection in a Porus Medium T Raja Rani Military Technological College, Ministry of Defence, Sultanate of Oman.

More information

HEFAT th International Conference on Heat Transfer, Fluid Mechanics, and Thermodynamics September 2005, Cairo, Egypt AA10

HEFAT th International Conference on Heat Transfer, Fluid Mechanics, and Thermodynamics September 2005, Cairo, Egypt AA10 HEFAT5 4 th International Conference on Heat Transfer, Fluid Mechanics, and Thermodynamics 9- September 5, Cairo, Egypt AA Numerical Study of Natural Convection Heat Transfer in Enclosures with Conducting

More information

A NUMERICAL APPROACH FOR ESTIMATING THE ENTROPY GENERATION IN FLAT HEAT PIPES

A NUMERICAL APPROACH FOR ESTIMATING THE ENTROPY GENERATION IN FLAT HEAT PIPES A NUMERICAL APPROACH FOR ESTIMATING THE ENTROPY GENERATION IN FLAT HEAT PIPES Dr. Mahesh Kumar. P Department of Mechanical Engineering Govt College of Engineering, Kannur Parassinikkadavu (P.O), Kannur,

More information

NATURAL CONVECTIVE HEAT TRANSFER FROM A RECESSED NARROW VERTICAL FLAT PLATE WITH A UNIFORM HEAT FLUX AT THE SURFACE

NATURAL CONVECTIVE HEAT TRANSFER FROM A RECESSED NARROW VERTICAL FLAT PLATE WITH A UNIFORM HEAT FLUX AT THE SURFACE HEFAT2007 5 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics Sun City, South Africa Paper number: OP2 NATURAL CONVECTIVE HEAT TRANSFER FROM A RECESSED NARROW VERTICAL FLAT

More information

NUMERICAL ANALYSIS OF NATURAL CONVECTION IN A RIGHT- ANGLED TRIANGULAR ENCLOSURE

NUMERICAL ANALYSIS OF NATURAL CONVECTION IN A RIGHT- ANGLED TRIANGULAR ENCLOSURE Frontiers in Heat and Mass Transfer Available at www.thermalfluidscentral.org NUMERICAL ANALYSIS OF NATURAL CONVECTION IN A RIGHT- ANGLED TRIANGULAR ENCLOSURE Manoj Kr. Triveni *, Dipak Sen, RajSekhar

More information

Amplitude Effects on Natural Convection in a Porous Enclosure having a Vertical Sidewall with Time-varying Temperature

Amplitude Effects on Natural Convection in a Porous Enclosure having a Vertical Sidewall with Time-varying Temperature IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-684,p-ISSN: 232-334, Volume 9, Issue (Sep. - Oct. 23), PP 79-95 Amplitude Effects on Natural Convection in a Porous Enclosure having

More information

Numerical Study of Free Convection Heat Transfer in a Square Cavity with a Fin Attached to Its Cold Wall

Numerical Study of Free Convection Heat Transfer in a Square Cavity with a Fin Attached to Its Cold Wall Heat Transfer Research, 2011, Vol. 42, No. 3 Numerical Study of Free Convection Heat Transfer in a Square Cavity with a Fin Attached to Its Cold Wall SAEID JANI, 1* MEYSAM AMINI, 2 and MOSTAFA MAHMOODI

More information

Free convection modeling over a vertical flat plate embedded in saturated porous medium with a variable heat source and radiation flux

Free convection modeling over a vertical flat plate embedded in saturated porous medium with a variable heat source and radiation flux ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 9 (2013) No. 3, pp. 163-172 Free convection modeling over a vertical flat plate embedded in saturated porous medium with a variable

More information

Natural Convection and Entropy Generation in a Porous Enclosure with Sinusoidal Temperature Variation on the Side Walls

Natural Convection and Entropy Generation in a Porous Enclosure with Sinusoidal Temperature Variation on the Side Walls Avestia Publishing Journal of Fluid Flow, Heat and Mass Transfer Volume 1, Year 14 Journal ISSN: 368-6111 DOI: 1.11159/jffhmt.14.4 Natural Convection and Entropy Generation in a Porous Enclosure with Sinusoidal

More information

Experimental investigation on the effect of aluminum foam on natural convection in horizontal channel heated below

Experimental investigation on the effect of aluminum foam on natural convection in horizontal channel heated below Experimental investigation on the effect of aluminum foam on natural convection in horizontal channel heated below ORONZIO MANCA, SERGIO NARDINI, BERNARDO BUONOMO, LORENZO MARINELLI, CLAUDIO MONTANIERO

More information

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization) ISSN(Online): 239-8753 Influence of Chemical Reaction, Heat Source, Soret and Dufour Effects on Heat And Mass Transfer in Boundary Layer Flow Over a Stretching Cylinder Embedded in a Porous Medium using

More information

MIXED CONVECTION SLIP FLOW WITH TEMPERATURE JUMP ALONG A MOVING PLATE IN PRESENCE OF FREE STREAM

MIXED CONVECTION SLIP FLOW WITH TEMPERATURE JUMP ALONG A MOVING PLATE IN PRESENCE OF FREE STREAM THERMAL SCIENCE, Year 015, Vol. 19, No. 1, pp. 119-18 119 MIXED CONVECTION SLIP FLOW WITH TEMPERATURE JUMP ALONG A MOVING PLATE IN PRESENCE OF FREE STREAM by Gurminder SINGH *a and Oluwole Daniel MAKINDE

More information

Numerical Study on Unsteady Free Convection and Mass Transfer Flow past a Vertical Porous Plate

Numerical Study on Unsteady Free Convection and Mass Transfer Flow past a Vertical Porous Plate Numerical Study on Unsteady Free Convection and Mass Transfer Flow past a Vertical Porous Plate S. F. Ahmmed Mathematics Discipline Khulna University, Bangladesh.. R. Ahmed Mathematics Discipline Khulna

More information

LAMINAR FILM CONDENSATION ON A HORIZONTAL PLATE IN A POROUS MEDIUM WITH SURFACE TENSION EFFECTS

LAMINAR FILM CONDENSATION ON A HORIZONTAL PLATE IN A POROUS MEDIUM WITH SURFACE TENSION EFFECTS Journal of Marine Science and Technology, Vol. 13, No. 4, pp. 57-64 (5) 57 LAMINAR FILM CONDENSATION ON A HORIZONTAL PLATE IN A POROUS MEDIUM WITH SURFACE TENSION EFFECTS Tong-Bou Chang Key words: surface

More information

LAMINAR NATURAL CONVECTION IN VERTICAL 2D GLAZING CAVITIES

LAMINAR NATURAL CONVECTION IN VERTICAL 2D GLAZING CAVITIES Mechanical and Industrial Engineering University of Massachusetts, Amherst AMINAR NATURA CONVECTION IN VERTICA 2D GAZING CAVITIES Bhaskar Adusumalli ABSTRACT Finite element predictions of natural convection

More information

Research Article Soret and Dufour Effects on Natural Convection Flow Past a Vertical Surface in a Porous Medium with Variable Viscosity

Research Article Soret and Dufour Effects on Natural Convection Flow Past a Vertical Surface in a Porous Medium with Variable Viscosity Journal of Applied Mathematics Volume 22, Article ID 63486, 5 pages doi:.55/22/63486 Research Article Soret and Dufour Effects on Natural Convection Flow Past a Vertical Surface in a Porous Medium with

More information

Chapter 9 NATURAL CONVECTION

Chapter 9 NATURAL CONVECTION Heat and Mass Transfer: Fundamentals & Applications Fourth Edition in SI Units Yunus A. Cengel, Afshin J. Ghajar McGraw-Hill, 2011 Chapter 9 NATURAL CONVECTION PM Dr Mazlan Abdul Wahid Universiti Teknologi

More information

Sigma J Eng & Nat Sci 36 (1), 2018, Sigma Journal of Engineering and Natural Sciences Sigma Mühendislik ve Fen Bilimleri Dergisi

Sigma J Eng & Nat Sci 36 (1), 2018, Sigma Journal of Engineering and Natural Sciences Sigma Mühendislik ve Fen Bilimleri Dergisi Sigma J Eng & Nat Sci 36 (1), 2018, 49-62 Sigma Journal of Engineering and Natural Sciences Sigma Mühendislik ve Fen Bilimleri Dergisi Research Article THE ENERGY EFFICIENT CONFIGURATIONS OF NATURAL CONVECTION

More information

Natural Convection in Parabolic Enclosure Heated from Below

Natural Convection in Parabolic Enclosure Heated from Below www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 3; June 011 Natural Convection in Parabolic Enclosure Heated from Below Dr. Ahmed W. Mustafa (Corresponding auther) University of Tikrit, College

More information

NATURAL CONVECTION OF AIR IN TILTED SQUARE CAVITIES WITH DIFFERENTIALLY HEATED OPPOSITE WALLS

NATURAL CONVECTION OF AIR IN TILTED SQUARE CAVITIES WITH DIFFERENTIALLY HEATED OPPOSITE WALLS Proceedings of the International onference on Mechanical Engineering 0 (IME0 8-0 December 0, Dhaka, Bangladesh IME- NATURAL ONVETION OF AIR IN TILTED SQUARE AVITIES WIT DIFFERENTIALLY EATED OPPOSITE WALLS

More information

Analysis of Variants Within the Porous Media Transport Models

Analysis of Variants Within the Porous Media Transport Models Analysis of Variants Within the Porous Media Transport Models B. Alazmi K. Vafai e-mail: Vafai.1@osu.edu Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210 An investigation

More information

Research Article Slip-Flow and Heat Transfer in a Porous Microchannel Saturated with Power-Law Fluid

Research Article Slip-Flow and Heat Transfer in a Porous Microchannel Saturated with Power-Law Fluid Fluids Volume 23, Article ID 64893, 9 pages http://dx.doi.org/.55/23/64893 Research Article Slip-Flow and Heat Transfer in a Porous Microchannel Saturated with Power-Law Fluid azan Taamneh and Reyad Omari

More information

Steady MHD Natural Convection Flow with Variable Electrical Conductivity and Heat Generation along an Isothermal Vertical Plate

Steady MHD Natural Convection Flow with Variable Electrical Conductivity and Heat Generation along an Isothermal Vertical Plate Tamkang Journal of Science and Engineering, Vol. 13, No. 3, pp. 235242 (2010) 235 Steady MHD Natural Convection Flow with Variable Electrical Conductivity and Heat Generation along an Isothermal Vertical

More information

Three-Dimensional Simulation of Mixing Flow in a Porous Medium with Heat and Mass Transfer in a Moisture Recovery System

Three-Dimensional Simulation of Mixing Flow in a Porous Medium with Heat and Mass Transfer in a Moisture Recovery System 12 th Fluid Dynamics Conference, Babol Noshirvani University of Technology, 28-30 April 2009 Three-Dimensional Simulation of Mixing Flow in a Porous Medium with Heat and Mass Transfer in a Moisture Recovery

More information

Numerical Investigation of Combined Buoyancy and Surface Tension Driven Convection in an Axi-Symmetric Cylindrical Annulus

Numerical Investigation of Combined Buoyancy and Surface Tension Driven Convection in an Axi-Symmetric Cylindrical Annulus Nonlinear Analysis: Modelling and Control, 2007, Vol. 12, No. 4, 541 552 Numerical Investigation of Combined Buoyancy and Surface Tension Driven Convection in an Axi-Symmetric Cylindrical Annulus M. Sankar

More information

Combined Effect of Buoyancy Force and Navier Slip on Entropy Generation in a Vertical Porous Channel

Combined Effect of Buoyancy Force and Navier Slip on Entropy Generation in a Vertical Porous Channel Entropy 0, 4, 08-044; doi:0.3390/e40608 Article OPEN ACCESS entropy ISSN 099-4300 www.mdpi.com/journal/entropy Combined Effect of Buoyancy Force and Navier Slip on Entropy Generation in a Vertical Porous

More information

Influence of chemical reaction and thermal radiation effects on MHD boundary layer flow over a moving vertical porous plate

Influence of chemical reaction and thermal radiation effects on MHD boundary layer flow over a moving vertical porous plate International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 2 Issue: 7 Oct-25 www.irjet.net p-issn: 2395-72 Influence of chemical reaction and thermal radiation effects

More information

Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a Rectangular Heated Body in Presence of External Oriented Magnetic Field

Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a Rectangular Heated Body in Presence of External Oriented Magnetic Field Publications Available Online J. Sci. Res. 10 (1), 11-23 (2018) JOURNAL OF SCIENTIFIC RESEARCH www.banglajol.info/index.php/jsr Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a

More information