INSTRUCTOR: PM DR MAZLAN ABDUL WAHID


 Russell Perry
 2 years ago
 Views:
Transcription
1 SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM ABDUL WAHID TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 5 th Edition, John Wiley and Sons Chapter 9 Natural Convection Assoc Prof. Dr Mazlan Abdul Wahid Faculty of Mechanical Engineering Universiti Teknologi Malaysia 1
2 Objectives When you finish studying this chapter, you should be able to: Understand the physical mechanism of natural convection, Derive the governing equations of natural convection, and obtain the dimensionless Grashof number by nondimensionalizing them, Evaluate the Nusselt number for natural convection associated with vertical, horizontal, and inclined plates as well as cylinders and spheres, Examine natural convection from finned surfaces, and determine the optimum fin spacing, Analyze natural convection inside enclosures such as doublepane windows, and Consider combined natural and forced convection, and assess the relative importance of each mode. Buoyancy forces are responsible for the fluid motion in natural convection. Viscous forces appose the fluid motion. Buoyancy forces are expressed in terms of fluid temperature differences through the volume expansion coefficient 1 V 1 ρ β = = ( 1 K) V T ρ T P P (93) Viscous Force Buoyancy Force 2
3 volume expansion coefficient β The volume expansion coefficient can be expressed approximately by replacing differential quantities by differences as 1 ρ 1 ρ ρ β = ( at constant P) (94) ρ T ρ T T or ρ ρ = ρβ T T at constant P (95) ( ) ( ) For ideal gas 1 β ideal gas = T ( 1/K ) (96) Equation of Motion and the Grashof Number Consider a vertical hot flat plate immersed in a quiescent fluid body. Assumptions: steady, laminar, twodimensional, Newtonian fluid, and constant properties, except the density difference ρρ (Boussinesq approximation). g 3
4 a Consider a differential volume element. Newton s second law of motion δ m a = F (97) x x x ( dx dy 1) δ m = ρ The acceleration in the xdirection is obtained by taking the total differential of u(x, y) du u dx u dy = = + dt x dt y dt g a x u u = u + v x y (98) The net surface force acting in the xdirection Net viscous force Net pressure force Gravitational force τ P Fx = dy dx dx dy g dx dy y x ( 1) ( 1) ρ ( 1) 2 u P = µ ρg 2 y x ( dx dy 1) (99) Substituting Eqs. 9 8 and 9 9 into Eq. 9 7 and dividing by ρ dx dy 1 gives the conservation of momentum in the xdirection 2 u u u P ρ u + v = µ ρg 2 x y y x (910) 4
5 The xmomentum equation in the quiescent fluid outside the boundary layer (setting u=0) P = ρ g (911) x Noting that v<<u in the boundary layer and thus v/ x v/ y 0, and there are no body forces (including gravity) in the y direction, the force balance in the ydirection is P P P = 0 = = ρ g y x x Substituting into Eq u u u ρ u + v = µ + 2 ( ρ ρ ) g x y y (912) Substituting Eq. 95 it into Eq and dividing both sides by ρ gives 2 u u u u + v = ν + gβ 2 ( T T ) (913) x y y The momentum equation involves the temperature, and thus the momentum and energy equations must be solved simultaneously. The set of three partial differential equations (the continuity, momentum, and the energy equations) that govern natural convection flow over vertical isothermal plates can be reduced to a set of two ordinary nonlinear differential equations by the introduction of a similarity variable. 5
6 The Grashof Number The governing equations of natural convection and the boundary conditions can be nondimensionalized u * x * y * u * v * T T x = ; y = ; u = ; v = ; T = L L V V T T c c s Substituting into the momentum equation and simplifying give ( ) gβ T T L * * 3 * 2 * * u * u s c T 1 u + v = * * * x y ν ReL ReL y Gr L (914) The dimensionless parameter in the brackets represents the natural convection effects, and is called the Grashof number Gr L gβ T T L Gr ( ) 3 s c L = (915) 2 Gr L = ν Buoyancy force Viscous force Viscous force The flow regime in natural convection is governed by the Grashof number Gr L >10 9 flow is turbulent Buoyancy force 6
7 Natural Convection over Surfaces Natural convection heat transfer on a surface depends on geometry, orientation, variation of temperature on the surface, and thermophysical properties of the fluid. The simple empirical correlations for the average Nusselt number in natural convection are of the form hlc ( Pr) n n Nu = = C GrL = C RaL (916) k Where Ra L is the Rayleigh number gβ ( T ) 3 s T Lc RaL = GrL Pr = Pr (917) 2 ν The values of the constants C and n depend on the geometry of the surface and the flow regime (which depend on the Rayleigh number). All fluid properties are to be evaluated at the film temperature T f =(T s +T ). The Nusselt number relations for the constant surface temperature and constant surface heat flux cases are nearly identical. The relations for uniform heat flux is valid when the plate midpoint temperature T L/2 is used for T s in the evaluation of the film temperature. Thus for uniform heat flux: hl q& sl Nu = = k k TL 2 T ( ) (927) 7
8 (926) Empirical correlations for Nu avg (926) (930) (931) (934) (935) Natural Convection from Finned Surfaces Natural convection flow through a channel formed by two parallel plates is commonly encountered in practice. Long Surface fully developed channel flow. Short surface or large spacing natural convection from two independent plates in a quiescent medium. 8
9 The recommended relation for the average Nusselt number for vertical isothermal parallel plates is 0.5 hs Nu = = k ( Ras S L) ( Ras S L) Closely packed fins greater surface area smaller heat transfer coefficient. Widely spaced fins higher heat transfer coefficient smaller surface area. Optimum fin spacing for a vertical heat sink (931) S opt S L L = = Ras Ra 0.25 L (932) Natural Convection Inside Enclosures In a vertical enclosure, the fluid adjacent to the hotter surface rises and the fluid adjacent to the cooler one falls, setting off a rotationary motion within the enclosure that enhances heat transfer through the enclosure. Heat transfer through a horizontal enclosure hotter plate is at the top no convection currents (Nu=1). hotter plate is at the bottom Ra<1708 no convection currents (Nu=1). 3x10 5 >Ra>1708 Bénard Cells. Ra>3x10 5 turbulent flow. 9
10 Nusselt Number Correlations for Enclosures Simple powerlaw type relations in the form of n Nu = C Ra L where C and n are constants, are sufficiently accurate, but they are usually applicable to a narrow range of Prandtl and Rayleigh numbers and aspect ratios. Numerous correlations are widely available for horizontal rectangular enclosures, inclined rectangular enclosures, vertical rectangular enclosures, concentric cylinders, concentric spheres. Combined Natural and Forced Convection Heat transfer coefficients in forced convection are typically much higher than in natural convection. The error involved in ignoring natural convection may be considerable at low velocities. Nusselt Number: Forced convection (flat plate, laminar flow): Nu Natural convection (vertical plate, laminar flow): Nu forced convection natural convection Re Gr Therefore, the parameter Gr/Re 2 represents the importance of natural convection relative to forced convection
11 Gr/Re 2 <0.1 natural convection is negligible. Gr/Re 2 >10 forced convection is negligible. 0.1<Gr/Re 2 <10 forced and natural convection are not negligible. Natural convection may help or hurt forced convection heat transfer depending on the relative directions of buoyancyinduced and the forced convection motions. hot isothermal vertical plate Nusselt Number for Combined Natural and Forced Convection A review of experimental data suggests a Nusselt number correlation of the form n n ( ) 1 Nu = Nu ± Nu (966) combined forced natural Nu forced and Nu natural are determined from the correlations for pure forced and pure natural convection, respectively. n 11
12 Chapter 9 NATURAL CONVECTION Dr. Mazlan Abdul Wahid Faculty of Mechanical Engineering Universiti Teknologi Malaysia 12
13 The free (natural) convection is originated a thermal instability, i.e., when a body force acts on a fluid in which there are density gradients. The net effect is a buoyancy force, which induces free convection currents. The density gradient is mainly due to a temperature gradient and the body force is due to the gravity. In free convection, the convection rate are smaller compared those in the forced convection. In many systems involving multimode heat transfer effects, free convection provides the largest resistance to heat transfer and thus plays an important role in the design or performance of the system. When it is desirable to minimize heat transfer rates or to minimize operating cost, free convection is often preferred to forced convection. 13
14 14
15 15
16 16
17 17
18 18
19 19
20 20
21 21
Chapter 7: Natural Convection
71 Introduction 7 The Grashof Number 73 Natural Convection over Surfaces 74 Natural Convection Inside Enclosures 75 Similarity Solution 76 Integral Method 77 Combined Natural and Forced Convection
More informationChapter 9 NATURAL CONVECTION
Heat and Mass Transfer: Fundamentals & Applications Fourth Edition in SI Units Yunus A. Cengel, Afshin J. Ghajar McGrawHill, 2011 Chapter 9 NATURAL CONVECTION PM Dr Mazlan Abdul Wahid Universiti Teknologi
More informationPHYSICAL MECHANISM OF NATURAL CONVECTION
1 NATURAL CONVECTION In this chapter, we consider natural convection, where any fluid motion occurs by natural means such as buoyancy. The fluid motion in forced convection is quite noticeable, since a
More informationINSTRUCTOR: PM DR MAZLAN ABDUL WAHID
SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM ABDUL WAHID http://www.fkm.utm.my/~mazlan TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 6 th Edition, John Wiley and Sons Chapter 7 External
More information6.2 Governing Equations for Natural Convection
6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed
More informationIn Chapters 7 and 8, we considered heat transfer by forced convection,
cen58933_ch09.qxd 9/4/2002 2:25 PM Page 459 NATURAL CONVECTION CHAPTER 9 In Chapters 7 and 8, we considered heat transfer by forced convection, where a fluid was forced to move over a surface or in a tube
More informationConvection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.
Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,
More informationConvection Heat Transfer. Introduction
Convection Heat Transfer Reading Problems 121 128 1240, 1249, 1268, 1270, 1287, 1298 131 136 1339, 1347, 1359 141 144 1418, 1424, 1445, 1482 Introduction Newton s Law of Cooling Controlling
More informationHeat Transfer Convection
Heat ransfer Convection Previous lectures conduction: heat transfer without fluid motion oday (textbook nearly 00 pages) Convection: heat transfer with fluid motion Research methods different Natural Convection
More informationIntroduction to Heat and Mass Transfer. Week 14
Introduction to Heat and Mass Transfer Week 14 HW # 7 prob. 2 Hot water at 50C flows through a steel pipe (thermal conductivity 14 W/mK) of 100 mm outside diameter and 8 mm wall thickness. During winter,
More informationAdvanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell
Laminar external natural convection on vertical and horizontal flat plates, over horizontal and vertical cylinders and sphere, as well as plumes, wakes and other types of free flow will be discussed in
More information10. Buoyancydriven flow
10. Buoyancydriven flow For such flows to occur, need: Gravity field Variation of density (note: not the same as variable density!) Simplest case: Viscous flow, incompressible fluid, densityvariation
More informationThermal and Fluids in Architectural Engineering
hermal and Fluids in Architectural Engineering 12. Convection heat transfer JunSeo Par, Dr. Eng., Prof. Dept. of Architectural Engineering Hanyang Univ. Where do we learn in this chaper 1. Introduction
More informationChapter 3 NATURAL CONVECTION
Fundamentals of ThermalFluid Sciences, 3rd Edition Yunus A. Cengel, Robert H. Turner, John M. Cimbala McGrawHill, 2008 Chapter 3 NATURAL CONVECTION Mehmet Kanoglu Copyright The McGrawHill Companies,
More informationUNIT II CONVECTION HEAT TRANSFER
UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid
More informationHEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1
HEAT TRANSFER BY CONVECTION Dr. Şaziye Balku 1 CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in the
More informationMYcsvtu Notes HEAT TRANSFER BY CONVECTION
www.mycsvtunotes.in HEAT TRANSFER BY CONVECTION CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in
More informationNatural Convection Systems
C H A P T E R 6 Natural Convection Systems 6.1 Physical Mechanism Of Natural Convection Many familiar heat transfer applications involve natural convection as the primary mechanism of heat transfer. Some
More informationENGR Heat Transfer II
ENGR 7901  Heat Transfer II Convective Heat Transfer 1 Introduction In this portion of the course we will examine convection heat transfer principles. We are now interested in how to predict the value
More informationPrinciples of Convection
Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid
More informationEffects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium
Transport in Porous Media (2006) 64: 1 14 Springer 2006 DOI 10.1007/s1124200511266 Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium
More informationINSTRUCTOR: PM DR MAZLAN ABDUL WAHID
SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM DR MAZLAN ABDUL WAHID http://www.fkm.utm.my/~mazlan TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 5 th Edition, John Wiley and Sons DR
More informationCHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW
CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW 4.1 Introduction Boundary layer concept (Prandtl 1904): Eliminate selected terms in the governing equations Two key questions (1) What are the
More informationTransient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017
Transient Heat Transfer Experiment ME 331 Introduction to Heat Transfer June 1 st, 2017 Abstract The lumped capacitance assumption for transient conduction was tested for three heated spheres; a gold plated
More informationSummary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer
1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic
More informationNatural Convection from a Long Horizontal Cylinder
Natural Convection from a Long Horizontal Cylinder Hussein Awad Kurdi Saad Engineering Technical College of Al Najaf, AlFurat AlAwsat Technical University, Iraq ABSTRACT: Natural convection from a Long
More informationIntroduction to Heat Transfer
FIFTH EDITION Introduction to Heat Transfer FRANK P. INCROPERA College of Engineering University ofnotre Dame DAVID P. DEWITT School of Mechanical Purdue University Engineering THEODORE L. BERGMAN Department
More informationFREE CONVECTIVE HEAT TRANSFER FROM AN OBJECT AT LOW RAYLEIGH NUMBER
Free Convective Heat Transfer From an Object at Low Rayleigh Number FREE CONVECTIVE HEAT TRANSFER FROM AN OBJECT AT LOW RAYLEIGH NUMBER Md. Golam Kader and Khandkar Aftab Hossain * Department of Mechanical
More informationc. The Grashof number is the ratio of buoyant forces to viscous forces acting on a fluid.
QUESTION 1. (0 pts) With respect to free convection: a. What is an extensive, quiescent fluid? (4 points) b. What are the two major physical considerations or forces for free convection? (4 points) c.
More informationTHERMAL PERFORMANCE EVALUATION OF AN INNOVATIVE DOUBLE GLAZING WINDOW
THERMAL PERFORMANCE EVALUATION OF AN INNOVATIVE DOUBLE GLAZING WINDOW Luigi De Giorgi, Carlo Cima, Emilio Cafaro Dipartimento di Energetica, Politecnico di Torino, Torino, Italy Volfango Bertola School
More informationCONVECTIVE HEAT TRANSFER
CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 5 NATURAL CONVECTION HEAT TRANSFER BASIC CONCEPTS MECHANISM OF NATURAL
More informationTable of Contents. Foreword... xiii. Preface... xv
Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...
More information( )( ) PROBLEM 9.5 (1) (2) 3 (3) Ra g TL. h L (4) L L. q ( ) 0.10/1m ( C /L ) Ra 0.59/0.6m L2
PROBEM 9.5 KNOWN: Heat transfer rate by convection from a vertical surface, 1m high by 0.m wide, to quiescent air that is 0K cooler. FIND: Ratio of the heat transfer rate for the above case to that for
More informationConvection Workshop. Academic Resource Center
Convection Workshop Academic Resource Center Presentation Outline Understanding the concepts Correlations External Convection (Chapter 7) Internal Convection (Chapter 8) Free Convection (Chapter 9) Solving
More informationIntroduction to Heat and Mass Transfer. Week 14
Introduction to Heat and Mass Transfer Week 14 Next Topic Internal Flow» Velocity Boundary Layer Development» Thermal Boundary Layer Development» Energy Balance Velocity Boundary Layer Development Velocity
More informationLAMINAR NATURAL CONVECTION IN VERTICAL 2D GLAZING CAVITIES
Mechanical and Industrial Engineering University of Massachusetts, Amherst AMINAR NATURA CONVECTION IN VERTICA 2D GAZING CAVITIES Bhaskar Adusumalli ABSTRACT Finite element predictions of natural convection
More informationCHME 302 CHEMICAL ENGINEERING LABOATORYI EXPERIMENT 302V FREE AND FORCED CONVECTION
CHME 302 CHEMICAL ENGINEERING LABOATORYI EXPERIMENT 302V FREE AND FORCED CONVECTION OBJECTIVE The objective of the experiment is to compare the heat transfer characteristics of free and forced convection.
More informationMaximum Heat Transfer Density From Finned Tubes Cooled By Natural Convection
Maximum Heat Transfer Density From Finned Tubes Cooled By Natural Convection Ahmed Waheed Mustafa 1 Mays Munir Ismael 2 ALNahrain University College of Engineering Mechanical Engineering Department ahmedwah@eng.nahrainuniv.edu.iq
More informationFINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LIDDRIVEN RECTANGULAR ENCLOSURE
Proceedings of the International Conference on Mechanical Engineering 2011 (ICME2011) 1820 December 2011, Dhaka, Bangladesh ICME11TH014 FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT
More informationELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment
ELEC9712 High Voltage Systems 1.2 Heat transfer from electrical equipment The basic equation governing heat transfer in an item of electrical equipment is the following incremental balance equation, with
More informationOn the influence of tube row number for mixed convection around micro tubes
Thessaloniki, Greece, 2224 August 211 On the influence of tube row number for mixed convection around micro tubes Chuanshan DAI, Qiuxiang WANG, Biao LI * Corresponding author: Tel.: +8622274183; Fax:
More informationChapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI.
Chapter 10: Boiling and Condensation 1 1 Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Objectives When you finish studying this chapter, you should be able to: Differentiate between evaporation
More informationNatural convection heat transfer around a horizontal circular cylinder near an isothermal vertical wall
Natural convection heat transfer around a horizontal circular cylinder near an isothermal vertical wall Marcel Novomestský 1, Richard Lenhard 1, and Ján Siažik 1 1 University of Žilina, Faculty of Mechanical
More informationModule 6: Free Convections Lecture 25: Buoyancy Driven Flows. The Lecture Contains: Free Convection. Objectives_template
The Lecture Contains: Free Convection file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20gautam%20biswas/Final/convective_heat_and_mass_transfer/lecture25/25_1.html[12/24/2014 6:07:31 PM] Introduction Now
More informationEntropy 2011, 13, ; doi: /e OPEN ACCESS. Entropy Generation at Natural Convection in an Inclined Rectangular Cavity
Entropy 011, 13, 1001033; doi:10.3390/e1305100 OPEN ACCESS entropy ISSN 10994300 www.mdpi.com/journal/entropy Article Entropy Generation at Natural Convection in an Inclined Rectangular Cavity Mounir
More informationFundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.
Fundamental Concepts of Convection : Flow and Thermal Considerations Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.3 6.1 Boundary Layers: Physical Features Velocity Boundary Layer
More informationECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 10 August 2005
ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 0 August 2005 Final Examination R. Culham & M. Bahrami This is a 2  /2 hour, closedbook examination. You are permitted to use one 8.5 in. in. crib
More informationFORMULA SHEET. General formulas:
FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to
More informationENGR Heat Transfer II
ENGR 7901  Heat Transfer II External Flows 1 Introduction In this chapter we will consider several fundamental flows, namely: the flat plate, the cylinder, the sphere, several other body shapes, and banks
More informationNATURAL CONVECTION FLOW IN A SQUARE CAVITY WITH INTERNAL HEAT GENERATION AND A FLUSH MOUNTED HEATER ON A SIDE WALL
Journal of Naval Architecture and Marine Engineering December, 2010 DOI: 10.3329/jname.v7i2.3292 http://www.banglajol.info NATURAL CONVECTION FLOW IN A SQUARE CAVITY WITH INTERNAL HEAT GENERATION AND A
More informationEffect of an adiabatic fin on natural convection heat transfer in a triangular enclosure
American Journal of Applied Mathematics 2013; 1(4): 7883 Published online November 10, 2013 (http://www.sciencepublishinggroup.com/j/ajam) doi: 10.11648/j.ajam.20130104.16 Effect of an adiabatic fin on
More informationIterative calculation of the heat transfer coefficient
Iterative calculation of the heat transfer coefficient D.Roncati Progettazione Ottica Roncati, Ferrara  Italy Aim The plate temperature of a cooling heat sink is an important parameter that has to be
More informationINFLUENCE OF VARIABLE PERMEABILITY ON FREE CONVECTION OVER VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM
INFLUENCE OF VARIABLE PERMEABILITY ON FREE CONVECTION OVER VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM S. M. M. ELKabeir and A. M. Rashad Department of Mathematics, South Valley University, Faculty
More informationFree Convective Heat Transfer From A Vertical Surface For The Case Of Linearly Varying Thermal Potential
American Journal of Engineering Research (AJER) eissn : 232847 pissn : 232936 Volume2, Issue9, pp7175 www.ajer.org Research Paper Open Access Free Convective Heat Transfer From A Vertical Surface
More informationNumerical Heat and Mass Transfer
Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis
More informationNatural Convection Heat Transfer inside a Narrow Triangular Enclosure with Rectangular Staggered Finned Base Plate: An Empirical Correlation
CPUHResearch Journal: 2015, 1(2), 0813 ISSN (Online): 24556076 http://www.cpuh.in/academics/academic_journals.php Natural Convection Heat Transfer inside a Narrow Triangular Enclosure with Rectangular
More informationCOMBINED EFFECTS OF RADIATION AND JOULE HEATING WITH VISCOUS DISSIPATION ON MAGNETOHYDRODYNAMIC FREE CONVECTION FLOW AROUND A SPHERE
Suranaree J. Sci. Technol. Vol. 20 No. 4; October  December 2013 257 COMBINED EFFECTS OF RADIATION AND JOULE HEATING WITH VISCOUS DISSIPATION ON MAGNETOHYDRODYNAMIC FREE CONVECTION FLOW AROUND A SPHERE
More informationAbstract. Introduction
Combined forced and natural convection in a square cavity  numerical solution and scale analysis A.T. Franco/ M.M. Ganzarolli'' "DAMEC, CEFET, PR 80230901, Curitiba, PR Brasil >>DE, FEM, UNICAMP 13081970,
More informationNUMERICAL STUDIES OF TRANSITION FROM STEADY TO UNSTEADY COUPLED THERMAL BOUNDARY LAYERS
International Journal of Computational Methods Vol. 11, Suppl. 1 (214) 13442 (15 pages) c World Scientific Publishing Company DOI: 1.1142/S2198762134427 NUMERICAL STUDIES OF TRANSITION FROM STEADY TO UNSTEADY
More informationSIMULATION OF MIXED CONVECTIVE HEAT TRANSFER USING LATTICE BOLTZMANN METHOD
International Journal of Automotive and Mechanical Engineering (IJAME) ISSN: 22298649 (Print); ISSN: 21801606 (Online); Volume 2, pp. 130143, JulyDecember 2010 Universiti Malaysia Pahang DOI: http://dx.doi.org/10.15282/ijame.2.2010.3.0011
More informationProblem 4.3. Problem 4.4
Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re
More information5th WSEAS Int. Conf. on Heat and Mass transfer (HMT'08), Acapulco, Mexico, January 2527, 2008
Numerical Determination of Temperature and Velocity Profiles for Forced and Mixed Convection Flow through Narrow Vertical Rectangular Channels ABDALLA S. HANAFI Mechanical power department Cairo university
More informationLecture 28. Key words: Heat transfer, conduction, convection, radiation, furnace, heat transfer coefficient
Lecture 28 Contents Heat transfer importance Conduction Convection Free Convection Forced convection Radiation Radiation coefficient Illustration on heat transfer coefficient 1 Illustration on heat transfer
More information6. Laminar and turbulent boundary layers
6. Laminar and turbulent boundary layers John Richard Thome 8 avril 2008 John Richard Thome (LTCM  SGM  EPFL) Heat transfer  Convection 8 avril 2008 1 / 34 6.1 Some introductory ideas Figure 6.1 A boundary
More informationBuoyancyinduced Flow:
Buoyancyinduced Flow: Natural Convection in a Unconfined Space If we examine the flow induced by heat transfer from a single vertical flat plat, we observe that the flow resembles that of a boundary layer.
More informationNatural Heat Transfer Convection in a Square Cavity Including a Square Heater
2 ème Congrès Français de Mécanique Bordeaux, 26 au 3 août 23 Natural eat Transfer Convection in a Square Cavity Including a Square eater K. RAGUI, Y.K. BENKALA, N. LABSI, A. BOUTRA University of Science
More informationRiyadh 11451, Saudi Arabia. ( a b,c Abstract
Effects of internal heat generation, thermal radiation, and buoyancy force on boundary layer over a vertical plate with a convective boundary condition a Olanrewaju, P. O., a Gbadeyan, J.A. and b,c Hayat
More informationConvective Mass Transfer
Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface
More informationNonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4,
Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4, 513 524 Effects of Temperature Dependent Thermal Conductivity on Magnetohydrodynamic (MHD) Free Convection Flow along a Vertical Flat Plate
More informationENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD
HEFAT 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 6 8 July Malta ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD Nawaf
More informationNATURAL CONVECTION OF AIR IN TILTED SQUARE CAVITIES WITH DIFFERENTIALLY HEATED OPPOSITE WALLS
Proceedings of the International onference on Mechanical Engineering 0 (IME0 80 December 0, Dhaka, Bangladesh IME NATURAL ONVETION OF AIR IN TILTED SQUARE AVITIES WIT DIFFERENTIALLY EATED OPPOSITE WALLS
More informationNumerical investigation of the buoyancyinduced flow field and heat transfer inside solar chimneys
Numerical investigation of the buoyancyinduced flow field and heat transfer inside solar chimneys E. BACHAROUDIS, M.GR. VRACHOPOULOS, M.K. KOUKOU, A.E. FILIOS Mechanical Engineering Department, Environmental
More informationModule 6: Free Convections Lecture 26: Evaluation of Nusselt Number. The Lecture Contains: Heat transfer coefficient. Objectives_template
The Lecture Contains: Heat transfer coefficient file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20gautam%20biswas/Final/convective_heat_and_mass_transfer/lecture26/26_1.html[12/24/2014 6:08:23 PM] Heat transfer
More informationDimensionless Numbers
1 06.10.2017, 09:49 Dimensionless Numbers A. Salih Dept. of Aerospace Engineering IIST, Thiruvananthapuram The nondimensionalization of the governing equations of fluid flow is important for both theoretical
More informationNumerical Investigation of Fluid and Thermal Flow in a Differentially Heated Side Enclosure walls at Various Inclination Angles
Numerical Investigation of Fluid and Thermal Flow in a Differentially Heated Side Enclosure walls at Various Inclination Angles O. A. SHAHRUL Faculty of Mechanical & Manufacturing Engineering Universiti
More informationHEAT EXCHANGER. Objectives
HEAT EXCHANGER Heat exchange is an important unit operation that contributes to efficiency and safety of many processes. In this project you will evaluate performance of three different types of heat exchangers
More informationNATURAL CONVECTIVE HEAT TRANSFER FROM A RECESSED NARROW VERTICAL FLAT PLATE WITH A UNIFORM HEAT FLUX AT THE SURFACE
HEFAT2007 5 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics Sun City, South Africa Paper number: OP2 NATURAL CONVECTIVE HEAT TRANSFER FROM A RECESSED NARROW VERTICAL FLAT
More informationENG Heat Transfer II 1. 1 Forced Convection: External Flows Flow Over Flat Surfaces... 4
ENG7901  Heat Transfer II 1 Contents 1 Forced Convection: External Flows 4 1.1 Flow Over Flat Surfaces............................. 4 1.1.1 NonDimensional form of the Equations of Motion.......... 4
More informationTHE CHARACTERISTIC LENGTH ON NATURAL CONVECTION FROM A HORIZONTAL HEATED PLATE FACING DOWNWARDS
THERMAL SCIENCE, Year 2014, Vol. 18, No. 2, pp. 555561 555 THE CHARACTERISTIC LENGTH ON NATURAL CONVECTION FROM A HORIZONTAL HEATED PLATE FACING DOWNWARDS by Bulent KOZANOGLU * and Francisco RUBIO Mechanical
More informationConvective Heat and Mass Transfer Prof. A. W. Date Department of Mechanical Engineering Indian Institute of Technology, Bombay
Convective Heat and Mass Transfer Prof. A. W. Date Department of Mechanical Engineering Indian Institute of Technology, Bombay Module No.# 01 Lecture No. # 41 Natural Convection BLs So far we have considered
More informationMIXED CONVECTION SLIP FLOW WITH TEMPERATURE JUMP ALONG A MOVING PLATE IN PRESENCE OF FREE STREAM
THERMAL SCIENCE, Year 015, Vol. 19, No. 1, pp. 11918 119 MIXED CONVECTION SLIP FLOW WITH TEMPERATURE JUMP ALONG A MOVING PLATE IN PRESENCE OF FREE STREAM by Gurminder SINGH *a and Oluwole Daniel MAKINDE
More informationHEAT TRANSFER THERMAL MANAGEMENT OF ELECTRONICS YOUNES SHABANY. C\ CRC Press W / Taylor Si Francis Group Boca Raton London New York
HEAT TRANSFER THERMAL MANAGEMENT OF ELECTRONICS YOUNES SHABANY C\ CRC Press W / Taylor Si Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business
More informationPHYSICAL MECHANISM OF CONVECTION
Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter
More informationNumerical Investigation of Conjugate Natural Convection Heat Transfer from Discrete Heat Sources in Rectangular Enclosure
Proceedings of the World Congress on Engineering 4 Vol II, WCE 4, July  4, 4, London, U.K. Numerical Investigation of Conjugate Natural Convection Heat Transfer from Discrete Heat Sources in Rectangular
More informationNumerical Analysis of Laminar Natural Convection in a Quadrantal Cavity with a Solid Adiabatic Fin Attached to the Hot Vertical Wall
Journal of Applied Fluid Mechanics, Vol., No., pp. 0110, 2013. Available online at www.jafmonline.net, ISSN 1332, EISSN 133. Numerical Analysis of Laminar Natural Convection in a Quadrantal Cavity with
More informationHeat transfer increase with thin fins in three dimensional enclosures
157 Heat transfer increase with thin fins in three dimensional enclosures R. L. Frederick & S. Samper Universidad de Chile, Departamento de Ingeniería Mecánica, Santiago, Chile Abstract Heat transfer enhancement
More informationCONVECTION HEAT TRANSFER
CONVECTION HEAT TRANSFER THIRD EDITION Adrian Bejan J. A. Jones Professor of Mechanical Engineering Duke University Durham, North Carolina WILEY JOHN WILEY & SONS, INC. CONTENTS Preface Preface to the
More informationA Finite Element Analysis on MHD Free Convection Flow in Open Square Cavity Containing Heated Circular Cylinder
American Journal of Computational Mathematics, 2015, 5, 4154 Published Online March 2015 in SciRes. http://www.scirp.org/journal/ajcm http://dx.doi.org/10.4236/ajcm.2015.51003 A Finite Element Analysis
More informationExternal Forced Convection. Copyright The McGrawHill Companies, Inc. Permission required for reproduction or display.
External Forced Convection Copyright The McGrawHill Companies, Inc. Permission required for reproduction or display. Drag and Heat Transfer in External flow Fluid flow over solid bodies is responsible
More informationConvection. U y. U u(y) T s. T y
Convection Heat transfer in the presence of a fluid motion on a solid surface Various mechanisms at play in the fluid:  advection physical transport of the fluid  diffusion conduction in the fluid 
More informationDepartment of Mechanical Engineering ME 96. Free and Forced Convection Experiment. Revised: 25 April Introduction
CALIFORNIA INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering ME 96 Free and Forced Convection Experiment Revised: 25 April 1994 1. Introduction The term forced convection refers to heat transport
More informationThe Effect Of MHD On Laminar Mixed Convection Of Newtonian Fluid Between Vertical Parallel Plates Channel
The Effect Of MH On Laminar Mixed Convection Of Newtonian Fluid Between Vertical Parallel Plates Channel Rasul alizadeh,alireza darvish behanbar epartment of Mechanic, Faculty of Engineering Science &
More informationAnalysis of the flow and heat transfer characteristics for MHD free convection in an enclosure with a heated obstacle
Nonlinear Analysis: Modelling and Control, 2011, Vol. 16, No. 1, 89 99 89 Analysis of the flow and heat transfer characteristics for MHD free convection in an enclosure with a heated obstacle S. Parvin,
More informationNUMERICAL STUDY OF HEAT TRANSFER IN A FLAT PLAT THERMAL SOLAR COLLECTOR WITH PARTITIONS ATTACHED TO ITS GLAZING. Adel LAARABA.
NUMERICAL STUDY OF HEAT TRANSFER IN A FLAT PLAT THERMAL SOLAR COLLECTOR WITH PARTITIONS ATTACHED TO ITS GLAZING Adel LAARABA. Department of physics. University of BATNA. (05000) Batna, Algeria Ccorresponding
More informationMIXED CONVECTION HEAT TRANSFER FROM A PARTICLE IN SUPERCRITICAL WATER
THERMAL SCIENCE, Year 2016, Vol. 20, No. 2, pp. 483492 483 MIXED CONVECTION HEAT TRANSFER FROM A PARTICLE IN SUPERCRITICAL WATER by Liping WEI, Youjun LU*, and Jinjia WEI State Key Laboratory of Multiphase
More informationNumerical Study of Steady MHD Plane Poiseuille Flow and Heat Transfer in an Inclined Channel
Numerical Study of Steady MHD Plane Poiseuille Flow and Heat Transfer in an Inclined Channel Muhim Chutia Department of Mathematics, Mariani College, Assam785634, India ABSTRACT: In this paper, a numerical
More informationENTROPY GENERATION ANALYSIS OF FREE CONVECTION FROM A CONSTANT TEMPERATURE VERTICAL PLATE USING SIMILARITY SOLUTION
THERMAL SCIENCE, Year 016, Vol. 0, No. 6, pp. 18551866 1855 ENTROPY GENERATION ANALYSIS OF FREE CONVECTION FROM A CONSTANT TEMPERATURE VERTICAL PLATE USING SIMILARITY SOLUTION by Mohammad Reza MOHAGHEGH
More informationENERGY PERFORMANCE IMPROVEMENT, FLOW BEHAVIOR AND HEAT TRANSFER INVESTIGATION IN A CIRCULAR TUBE WITH VDOWNSTREAM DISCRETE BAFFLES
Journal of Mathematics and Statistics 9 (4): 339348, 2013 ISSN: 15493644 2013 doi:10.3844/jmssp.2013.339.348 Published Online 9 (4) 2013 (http://www.thescipub.com/jmss.toc) ENERGY PERFORMANCE IMPROVEMENT,
More informationINDIAN INSTITUTE OF TECHNOOGY, KHARAGPUR Date:  AN No. of Students: 5 Sub. No.: ME64/ME64 Time: Hours Full Marks: 6 Mid Autumn Semester Examination Sub. Name: Convective Heat and Mass Transfer Instructions:
More informationNatural convection adjacent to a sidewall with three fins in a differentially heated cavity
ANZIAM J. 48 (CTAC2006) pp.c806 C819, 2007 C806 Natural convection adjacent to a sidewall with three fins in a differentially heated cavity F. Xu 1 J. C. Patterson 2 C. Lei 3 (Received 31 August 2006;
More information