UNSTEADY FREE CONVECTION BOUNDARY-LAYER FLOW PAST AN IMPULSIVELY STARTED VERTICAL SURFACE WITH NEWTONIAN HEATING

Size: px
Start display at page:

Download "UNSTEADY FREE CONVECTION BOUNDARY-LAYER FLOW PAST AN IMPULSIVELY STARTED VERTICAL SURFACE WITH NEWTONIAN HEATING"

Transcription

1 FLUID DYNAMICS UNSTEADY FREE CONVECTION BOUNDARY-LAYER FLOW PAST AN IMPULSIVELY STARTED VERTICAL SURFACE WITH NEWTONIAN HEATING R. C. CHAUDHARY, PREETI JAIN Department of Mathematics, University of Rajasthan Jaipur (INDIA) Received May 16, 006 An exact solution of the unsteady free convection boundary-layer flow of an incompressible fluid past an infinite vertical plate with the flow generated by Newtonian heating and impulsive motion of the plate is presented here. The resulting governing equations are non-dimensional zed and their solutions were obtained in closed form with the help of Laplace-transform technique. A parametric study of all involved parameters is conducted and a representative set of numerical results for the velocity, temperature and skin-friction is illustrated graphically and physical aspects of the problem are discussed. Key words: natural convection, incompressible fluid, heat transfer, Newtonian heating. INTRODUCTION The study of unsteady boundary layer is useful in several physical problems such as flow over a helicopter in translation motion, flow over blades of turbines and compressors, flow over the aerodynamic surfaces of vehicles in manned flight, etc. The unsteadiness in the flow field is caused either by time dependent motion of the external stream (or the surface of the body) or by impulsive motion of the external stream (or the body surface). When the fluid motion over a body is created impulsively, the inviscid flow over the body is developed instantaneously but the viscous layer near the body is developed slowly and it becomes fully developed steady state viscous flow after certain instant of time. Unsteady laminar free convection past an infinite vertical plate for Prandtl number Pr = 1.0 in case of a step change in wall temperature with time was derived by Illingworth [1] and for Pr 1.0, he derived the solution in integral form. Siegel [] studied the unsteady free convection flow past a semi-infinite vertical plate under step-change in wall temperature or surface heat flux by employing the momentum integral method. He first pointed out that the initial behavior of the temperature and velocity fields for a semi-infinite vertical Rom. Journ. Phys., Vol. 51, Nos. 9 10, P , Bucharest, 006

2 91 R. C. Chaudhary, Preeti Jain flat plate is the same for the doubly infinite vertical flat plate i.e. in the case of a temperature field it is the same as a solution of an unsteady one-dimensional heat conduction problem. Soundalgekar [3] first presented an exact solution to the flow of a viscous incompressible fluid past an impulsively started infinite vertical plate by Laplace-transform technique. An excellent review of existing theoretical and experimental work can be found in books by Stuart [4], Telionis [5] and Pop [6]. Theoretical studies on the laminar natural convection heat transfer from a vertical plate continue to receive attention in the literature due to their industrial and technological applications. Martynenko et al. [7] investigated the laminar free convection from a vertical plate maintained at a constant temperature, which is also the temperature of the surrounding stationary fluid. Perdikis [8] studied free convection effects on flow past a moving plate. Camargo et al. [9] presented a numerical study of the natural convective cooling. Recently Raptis et al. [10] studied the free convection flow of water near a moving plate. The unsteady free convection flow with heat flux and accelerated boundary condition was investigated by Chandran et al. [11]. Das et al. [1] analysed the flow problem with periodic temperature variation and Muthucumaraswamy [13] considered the natural convection with variable surface heat flux. Recently, Chandran [14] presented natural convection with ramped wall temperature. In all the studies cited above the flow is driven either by a prescribed surface temperature or by a prescribed surface heat flux. Here a some-what different driving mechanism for unsteady free convection along a vertical surface is considered in that it is assumed that the flow is also set up by Newtonian heating from the surface. Heat transfer characteristic are dependent on the thermal boundary conditions. In general there are four common heating processes specifying the wall-to-ambient temperature distributions, prescribed surface heat flux distributions, conjugate conditions where heat is specified through a bounding surface of finite thickness and finite heat capacity. The interface temperature is not known a priori but depends on the intrinsic properties of the system, namely the thermal conductivity of the fluid and solid respectively. Newtonian heating, where the heat transfer rate from the bounding surface with a finite heat capacity is proportional to the local surface temperature and is usually termed conjugate convective flow. This configuration occurs in many important engineering devices, for example: (i) In heat exchangers where the conduction in solid tube wall is greatly (ii) influenced by the convection in the fluid flowing over it. For conjugate heat transfer around fins where the conduction within the fin and the convection in the fluid surrounding it must be simultaneously analyzed in order to obtain the vital design information. (iii) In convective flows set up when the bounding surfaces absorbs heat by solar radiation.

3 3 Unsteady free convection boundary-layer flow 913 Therefore we conclude that the conventional assumption of no interaction of conduction-convection coupled effects is not always realistic and it must be considered when evaluating the conjugate heat transfer processes in many practical engineering applications. The Newtonian heating condition has been only recently used in convective heat transfer. Merkin [15] was the first to consider the free-convection boundarylayer over a vertical flat plate immersed in a viscous fluid whilst [16, 17, 18] considered the cases of vertical and horizontal surfaces embedded in a porous medium. The studies mentioned in [15 18] deal with steady free convection. Therefore, in the present paper it is proposed to study the unsteady free convection boundary-layer flow from a flat vertical plate with Newtonian heating and the solution is obtained in closed form using Laplace transform technique [19]. Literature concerning this subject can be found in books by Slattery [1] and Carslaw et al. [1]. MATHEMATICAL ANALYSIS The unsteady free convective flow of a viscous incompressible fluid past an impulsively started infinite vertical plate with Newtonian heating is considered. The x -axis is taken along the plate in the vertically upward direction and y -axis is chosen normal to the plate. Initially, for time t 0, the plate and fluid are at the same temperature T in a stationary condition. At time t > 0, the plate is given an impulsive motion in the vertically upward direction against gravitational field with a characteristic velocity U c. It is assumed that rate of heat transfer from the surface is proportional to the local surface temperature T. Since the plate is considered infinite in the x direction, hence all physical variables will be independent of x. Therefore, the physical variables are functions of y and t only. Applying the Boussinesq approximation, the flow is governed by the following equation: u t u =ν + gβ( T T ) y k T ρ C T p = t y with the following initial and boundary conditions: t 0: u = 0 T = T for ally 0: T h at t > u = U c = T y = 0 y k : u = 0 T = T as y (1) () (3)

4 914 R. C. Chaudhary, Preeti Jain 4 On introducing the following non-dimensional quantities: u t Uc yu μc c p u=, t =, y =, Pr= Uc ν ν k g T T T ν β Gr =, θ = U3 c T According to the above non-dimensionalisation process, the characteristic velocity U c can be defined as U h c = ν k Substituting the transformation (4) in equations (1) (3) leads to the following non-dimensional equations: (4) u t = u + Gr θ y (6) θ = 1 θ t Pr y The initial and boundary conditions in non-dimensional form are: t 0 : u= 0, θ = 0 for all y t > 0 : u = 1, θ = (1 +θ ) at y = 0 y : u 0 θ 0 as y (7) (8) All the physical variables are defined in Nomenclature. The energy equation (7) is uncoupled from the momentum equation (6). One can therefore solve for the temperature variable θ(y, t) whereupon the solution of u(y, t) can also be obtained, using Laplace transform technique. The solutions are derived as: y + t y Pr Pr (, ) e Pr erfc t y θ yt = erfc t Pr t (9) y t y y + Pr Pr y uyt (, ) erfc apr erfc e erfc t = t t t Pr y y a t erfc y t e t π y /4t +

5 5 Unsteady free convection boundary-layer flow 915 where Pr t e y /4t y a y erfc t + π y Pr y + t y Pr apr erfc e Pr erfc t + t t Pr y Pr y Pr + a t erfc y Pr t + e t π + a t y Pr/ 4t y π Pr e Pr erfc y Pr/ 4t y Pr t a = Gr, erfc(x) being the complementary error function defined by Pr 1 erfc( x) = 1 erf( x), erf( x) = exp ( η )dη π 0 erfc(0) = 1, erfc( ) = 0. x (10) Solution when Pr = 1 We observe that the solution for the velocity variable given by equation (10) is not valid for fluids for Prandtl number unity. As the Prandtl number is a measure of the relative importance of the viscosity and thermal conductivity of the fluid, the case Pr = 1 corresponds to those fluids whose momentum and thermal boundary layer thickness are of the same order of magnitude. The exact solution of the free convection problem when Pr = 1 is given below. It may be noted that the solution for the temperature θ(y, t) follows from equation (9) by putting Pr = 1 in that equation. However, in the case of u(y, t), the solution has to be rederived starting from equations (6) and (7). The solution obtained is given below: y Gr y (, ) erfc e y /4t y u y t t = + ( y 1)erfc t + + π t e y+ t y + erfc t t (11) Knowing the velocity field, we now study the changes in the skin-friction. It is given by: τ = μ u y y = 0 (1)

6 916 R. C. Chaudhary, Preeti Jain 6 and in virtue of equation (4) the above equation (1) reduces to τ= τ = du ρu dy c y = 0 (13) Case I: Pr 1 1 Gr Pr e t /Pr (1 erf t τ= Gr t Gr Pr + t Pr 1 Pr + + π + Pr + 1 π Pr + 1 (14) Case II: Pr = 1 1 Gr t 1 e t τ= + + (1 + erf( t ). π t π (15) Another phenomenon in this study is to understand the effects of t and Pr on Nusselt number. In the non-dimensional form, the rate of heat transfer is given by: Nu = = θ(0) et /Pr 1 erf t + 1 Pr DISCUSSION AND CONCLUSION In order to discuss the effect of various physical parameters on the velocity field, thermal boundary layer, shearing stress and coefficient of rate of heat on the wall, the numerical computation of the solutions, obtained in the preceding section, have been carried out and they are represented in Figs. (1) (6). The values of Prandtl number (Pr) are taken as 0.71, 1.0 and 7.0, which physically corresponds to air, electrolyte solution and water, respectively. The effect of Prandtl number on heat temperature may be analysed from the Fig. 1. It is inferred that the thickness of thermal boundary layer is greater for air (Pr = 0.71) and there is more uniform temperature distribution across the thermal boundary layer as compared to water (Pr = 7.0) and electrolyte solution (Pr = 1.0). It is observed that the increase of Prandtl number results in the decrease of temperature distribution. The reason is that smaller values of Prandtl number are equivalent to increasing thermal conductivity and therefore heat is able to diffuse away from the heated surface more rapidly than for higher values of Prandtl number. Thus temperature falls more rapidly for water than air and electrolyte solution. The maximum of the temperature occur in the vicinity of the plate and asymptotically approaches to zero in the free stream region. Further-

7 7 Unsteady free convection boundary-layer flow 917 more it is found that the thermal boundary layer thickness with increasing values of the time. Fig. represents the dimensionless velocity profiles u(y, t) for electrolyte solution (Pr = 1) inside the boundary layer vs. distance y for different times and Grashof number Gr. The effect of increasing Grashof number is to raise the values of the velocity profiles. It is also noticed that as time passes, the velocity Fig. 1. Temperature profile.

8 918 R. C. Chaudhary, Preeti Jain 8 Fig.. Velocity profile for electrolyte solution (Pr = 1.0). increases for positive values of Gr while for negative values of Gr a reverse phenomena is observed. Figs. 3 and 4 depict the velocity profiles for Pr = 7.0 (Prandtl number for water at 0 C and 1 atmosphere pressure) and Pr = 0.71 (Prandtl number for air at 0 C and 1 atmosphere pressure), taking arbitrary values of Grashof number and time. It is revealed that for both the fluids (air and water) an increase in Gr leads to a fall in the values of velocity, which is contrary to what happened for the electrolyte solution. The velocity remains positive for

9 9 Unsteady free convection boundary-layer flow 919 Fig. 3. Velocity profile for water (Pr = 7.0). Gr < 0 and negative for Gr > 0. Further, it is investigated that in case of water, the velocity first decreases and thereafter increases with the rise in time parameter and the point of maxima on the curves gets shifted towards right for Gr < 0 while a reverse behavior is noticed for Gr > 0 i.e., the velocity first increases than decreases with the rise in t and the point of minima on the curves

10 90 R. C. Chaudhary, Preeti Jain 10 Fig. 4. Velocity profile for air (Pr = 0.71). gets shifted to the right. In case of air, a similar phenomenon is observed as in case of electrolyte solution for rising time parameter. Further, it is noticed that there are kinks in the flow field for Pr = 7.0. In Figs. 5 and 6 skin friction is plotted against time parameter for Pr = 0.71, 1.0 and Pr = 7.0, respectively. A comparative study of both the graphs shows

11 11 Unsteady free convection boundary-layer flow 91 Fig. 5. Skin friction profile for air (Pr = 0.71) & electroyte solution (Pr = 1.0). that for Gr < 0 skin-friction is more for smaller Prandtl number, showing the inverse variation of shearing stress τ with Pr. Physically, this is true because the increase in the Prandtl number is due to increase in the viscosity of the fluid, which makes the fluid thick and hence a decrease in the velocity of the fluid. The effect of increasing Grashof number is to decrease the shearing stress on the surface. It is also noticed that as the time passes the skin friction rises for Gr < 0 while it falls for Gr > 0. The value of skin friction shows that there always remains a phase lead.

12 9 R. C. Chaudhary, Preeti Jain 1 Fig. 6. Skin friction profile for water (Pr = 7.0). Fig. 7 shows dimensionless rate of heat transfer Nu (Nusselt number). It is observed that increasing Prandtl number enhances the heat transfer coefficient. The positive values of Nusselt number show that the heat is transferred from the surface to the medium, which results in positive heat transfer coefficient. Further, is noticed that the increase in time t leads to a decrease in Nu.

13 13 Unsteady free convection boundary-layer flow 93 Fig. 7. Nusselt number. REFERENCES 1. C. R. Illingworth, Unsteady laminar flow of gas near an infinite plate, Proc. Camb. Phil. Soc., vol. 46, pp (1950).. R. Siegel, Transient free convection from a vertical flat plate, Transactions of the American Societies of Mechanical Engineers, vol. 80, pp (1958).

14 94 R. C. Chaudhary, Preeti Jain V. M. Soundalgekar, Free convection effects on Stokes problem for a vertical plate, J. Heat Transfer, ASME, vol. 99c, pp (1977). 4. J. T. Stuart, Recent Research on Unsteady Boundary Layers, Lavel University Press, Quibec (197). 5. D. P. Telionis, Unsteady Viscous Flows, Springer-Verlag, New York (1981). 6. I. Pop, Theory of Unsteady Boundary Layers, Romanian Academy of Sciences, Bucharest (1983). 7. O. G. Martynenko, A. A. Berezovsky and Yu. A. Sakovishin, Laminar free convection from a vertical plate. Int. J. Heat Mass Transfer, vol. 7, pp (1984). 8. C. P. Perdikis and H. S. Takhar, Free convection effects on flow past a moving vertical infinite porous plate, Astrophys. Space Science, vol. 15(1), pp (1986). 9. R. Camargo, E. Luna, and C. Trevino, Numerical study of the natural convective cooling of a vertical plate, Heat and Mass Transfer, vol. 3, pp (1996). 10. A. Raptis and C. Perdikis, Free convection flow of water near 4 C past a moving plate, Forschung in Ingeneiurwesen, vol. 67 (5), pp (00). 11. P. Chandran, N. C. Sacheti and A. K. Singh, Unsteady hydromagnetic free convection flow with heat flux and accelerated boundary motion, J. Phys. Soc. Jpn. vol. 67, pp (1998). 1. U. N. Das, R. K. Deka and V. M. Soundalgekar, Transient free convection flow past an infinite vertical plate with periodic temperature variation, Journal of Heat Transfer, vol. 11, pp (1999). 13. R. Muthukumaraswamy, Natural convection on flow past an impulsively started vertical plate with variable surface heat flux, Far East Journal of Applied Mathematics, vol. 14, pp (004). 14. Pallath Chandran, N. C. Sacheti and A. K. Singh, Natural convection near a vertical plate with ramped wall temperature, Heat and Mass Transfer, vol. 41, pp (005). 15. J. H. Merkin, Natural convection boundary-layer flow on a vertical surface with Newtonian heating, Int. J. Heat Fluid Flow, vol. 15, pp (1994). 16. D. Lesnic, D. B. Ingham and I. Pop, Free convection boundary layer flow along a vertical surface in a porous medium with Newtonian heating, Int. J. Heat Mass Transfer, vol. 4, pp (1999). 17. Ibid, Free convection from a horizontal surface in porous medium with Newtonian heating, J. Porous Media, vol. 3, pp (000). 18. D. Lesnic, D. B. Ingham, I. Pop and C. Storr, Free convection boundary layer flow above a nearly horizontal surface in porous medium with Newtonian heating, Heat and Mass Transfer, vol. 40 (4), pp (003). 19. B. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publication, Inc., New York (1970). 0. J. C. Slattery, Advanced Transport Phenomena, Cambridge University Press (1999). 1. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids ( nd eds.), Oxford, University Press, London (1959). NOMENCLATURE C p g Gr h k Specific heat at constant pressure Magnitude of the acceleration due to gravity Grashof number Heat transfer coefficient Thermal conductivity

15 15 Unsteady free convection boundary-layer flow 95 Pr T T t u x y Prandtl number Temperature Ambient temperature Dimensional time Dimensional velocity x -direction Cartesian coordinate along the plate Cartesian coordinate normal to the plate GREEK SYMBOLS β ρ θ μ ν τ Coefficient of volumetric expansion Density of the fluid Dimensionless temperature Coefficient of viscosity Kinematic viscosity Dimensionless skin friction

Numerical Solution of Mass Transfer Effects on Unsteady Flow Past an Accelerated Vertical Porous Plate with Suction

Numerical Solution of Mass Transfer Effects on Unsteady Flow Past an Accelerated Vertical Porous Plate with Suction BULLETIN of the Malaysian Mathematical Sciences Society http://math.usm.my/bulletin Bull. Malays. Math. Sci. Soc. (2) 29(1) (2006), 33 42 Numerical Solution of Mass Transfer Effects on Unsteady Flow Past

More information

International ejournals

International ejournals Available online at www.internationalejournals.com ISSN 0976 1411 International ejournals International ejournal of Mathematics and Engineering 30 (013) 4 55 RADIATION EFFECTS ON UNSTEADY FLOW PAST AN

More information

MHD FLOW PAST AN IMPULSIVELY STARTED INFINITE VERTICAL PLATE IN PRESENCE OF THERMAL RADIATION

MHD FLOW PAST AN IMPULSIVELY STARTED INFINITE VERTICAL PLATE IN PRESENCE OF THERMAL RADIATION FLUID DYNAMICS MHD FLOW PAST AN IMPULSIVELY STARTED INFINITE VERTICAL PLATE IN PRESENCE OF THERMAL RADIATION M. K. MAZUMDAR, R. K. DEKA Department of Mathematics, Gauhati University Guwahat-781 014, Assam,

More information

Free convection effects on mhd flow past an infinite vertical accelerated plate embedded in porous media with constant heat flux

Free convection effects on mhd flow past an infinite vertical accelerated plate embedded in porous media with constant heat flux Vol. XVII, N o 2, Diciembre (29) Matemáticas: 73 82 Matemáticas: Enseñanza Universitaria c Escuela Regional de Matemáticas Universidad del Valle - Colombia Free convection effects on mhd flow past an infinite

More information

Futures and Trends Research Group, Faculty of Industrial Science & Technology, Universiti Malaysia Pahang, UMP Kuantan, Pahang, Malaysia

Futures and Trends Research Group, Faculty of Industrial Science & Technology, Universiti Malaysia Pahang, UMP Kuantan, Pahang, Malaysia Effect of adiation on Magnetohydrodynamic Free Convection Boundary Layer Flow Near The Lower Stagnation Point of A Solid Sphere with Newtonian Heating EFFECT OF ADIATION ON MAGNETOHYDODYNAMIC FEE CONVECTION

More information

MHD Flow Past an Impulsively Started Vertical Plate with Variable Temperature and Mass Diffusion

MHD Flow Past an Impulsively Started Vertical Plate with Variable Temperature and Mass Diffusion Applied Mathematical Sciences, Vol. 5, 2011, no. 3, 149-157 MHD Flow Past an Impulsively Started Vertical Plate with Variable Temperature and Mass Diffusion U. S. Rajput and Surendra Kumar Department of

More information

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface International Journal of Engineering and Technology Volume 2 No. 4, April, 2012 Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface 1 Sahin

More information

NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER

NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER Int. J. Chem. Sci.: 1(4), 14, 1487-1499 ISSN 97-768X www.sadgurupublications.com NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER R. LAKSHMI a, K. JAYARAMI

More information

Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4,

Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4, Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4, 513 524 Effects of Temperature Dependent Thermal Conductivity on Magnetohydrodynamic (MHD) Free Convection Flow along a Vertical Flat Plate

More information

UNSTEADY MHD FREE CONVECTIVE FLOW PAST A MOVING VERTICAL PLATE IN PRESENCE OF HEAT SINK

UNSTEADY MHD FREE CONVECTIVE FLOW PAST A MOVING VERTICAL PLATE IN PRESENCE OF HEAT SINK Journal of Rajasthan Academy of Physical Sciences ISSN : 097-6306; URL : http:raops.org.in Vol.16, No.1&, March-June, 017, 1-39 UNSTEADY MHD FREE CONVECTIVE FLOW PAST A MOVING VERTICAL PLATE IN PRESENCE

More information

[Lakshmi* et al., 5.(6): June, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Lakshmi* et al., 5.(6): June, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 [Lakshmi* et al., 5.(6): June, 6] ISSN: 77-9655 IC Value: 3. Impact Factor: 4.6 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY THERMAL RADIATION AND CHEMICAL REACTION EFFECTS

More information

A new approach for local similarity solutions of an unsteady hydromagnetic free convective heat transfer flow along a permeable flat surface

A new approach for local similarity solutions of an unsteady hydromagnetic free convective heat transfer flow along a permeable flat surface International Journal of Advances in Applied Mathematics and Mechanics Volume, Issue : (3) pp. 39-5 Available online at www.ijaamm.com IJAAMM ISSN: 347-59 A new approach for local similarity solutions

More information

SLIP EFFECTS ON UNSTEADY FREE CONVECTIVE HEAT AND MASS TRANSFER FLOW WITH NEWTONIAN HEATING

SLIP EFFECTS ON UNSTEADY FREE CONVECTIVE HEAT AND MASS TRANSFER FLOW WITH NEWTONIAN HEATING THERMAL SCIENCE, Year 016, Vol. 0, No. 6, pp. 1939-195 1939 SLIP EFFECTS ON UNSTEADY FREE CONVECTIVE HEAT AND MASS TRANSFER FLOW WITH NEWTONIAN HEATING by Abid HUSSANAN a, Ilyas KHAN b, Mohd Z. SALLEH

More information

THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE

THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE 1 AHMAD QUSHAIRI MOHAMAD, ILYAS KHAN, 3 ZULKHIBRI ISMAIL AND 4* SHARIDAN SHAFIE

More information

Joule Heating Effect on the Coupling of Conduction with Magnetohydrodynamic Free Convection Flow from a Vertical Flat Plate

Joule Heating Effect on the Coupling of Conduction with Magnetohydrodynamic Free Convection Flow from a Vertical Flat Plate Nonlinear Analysis: Modelling and Control, 27, Vol. 12, No. 3, 37 316 Joule Heating Effect on the Coupling of Conduction with Magnetohydrodynamic Free Convection Flow from a Vertical Flat Plate M. A. Alim

More information

Analytical Solution Of Unsteady Flow Past An Accelerated Vertical Plate With Constant Temperature and Variable Mass Transfer

Analytical Solution Of Unsteady Flow Past An Accelerated Vertical Plate With Constant Temperature and Variable Mass Transfer International Journal of Computational Engineering Research Vol, 4 Issue, Analytical Solution Of Unsteady Flow Past An Accelerated Vertical Plate With Constant Temperature and Variable Mass Transfer 1

More information

International ejournals

International ejournals ISSN 49 546 Available online at www.internationalejournals.com International ejournals International Journal of Mathematical Sciences, Technology and Humanities 11 (11) 111 117 FLOW PAST AN ACCELERATED

More information

Steady MHD Natural Convection Flow with Variable Electrical Conductivity and Heat Generation along an Isothermal Vertical Plate

Steady MHD Natural Convection Flow with Variable Electrical Conductivity and Heat Generation along an Isothermal Vertical Plate Tamkang Journal of Science and Engineering, Vol. 13, No. 3, pp. 235242 (2010) 235 Steady MHD Natural Convection Flow with Variable Electrical Conductivity and Heat Generation along an Isothermal Vertical

More information

The University of the West Indies, St. Augustine, Trinidad and Tobago. The University of the West Indies, St. Augustine, Trinidad and Tobago

The University of the West Indies, St. Augustine, Trinidad and Tobago. The University of the West Indies, St. Augustine, Trinidad and Tobago Unsteady MHD Free Convection Couette Flow Through a Vertical Channel in the Presence of Thermal Radiation With Viscous and Joule Dissipation Effects Using Galerkin's Finite Element Method Victor M. Job

More information

Kabita Nath Department of Mathematics Dibrugarh University Dibrugarh, Assam, India

Kabita Nath Department of Mathematics Dibrugarh University Dibrugarh, Assam, India Influence of Chemical Reaction, Heat Source, Soret and Dufour Effects on Separation of a Binary Fluid Mixture in MHD Natural Convection Flow in Porous Media B.R.Sharma Department of Mathematics Dibrugarh

More information

COMBINED EFFECTS OF RADIATION AND JOULE HEATING WITH VISCOUS DISSIPATION ON MAGNETOHYDRODYNAMIC FREE CONVECTION FLOW AROUND A SPHERE

COMBINED EFFECTS OF RADIATION AND JOULE HEATING WITH VISCOUS DISSIPATION ON MAGNETOHYDRODYNAMIC FREE CONVECTION FLOW AROUND A SPHERE Suranaree J. Sci. Technol. Vol. 20 No. 4; October - December 2013 257 COMBINED EFFECTS OF RADIATION AND JOULE HEATING WITH VISCOUS DISSIPATION ON MAGNETOHYDRODYNAMIC FREE CONVECTION FLOW AROUND A SPHERE

More information

INFLUENCE OF VARIABLE PERMEABILITY ON FREE CONVECTION OVER VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM

INFLUENCE OF VARIABLE PERMEABILITY ON FREE CONVECTION OVER VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM INFLUENCE OF VARIABLE PERMEABILITY ON FREE CONVECTION OVER VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM S. M. M. EL-Kabeir and A. M. Rashad Department of Mathematics, South Valley University, Faculty

More information

Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium

Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium Transport in Porous Media (2006) 64: 1 14 Springer 2006 DOI 10.1007/s11242-005-1126-6 Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium

More information

Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet

Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet Meccanica (2006) 41:509 518 DOI 10.1007/s11012-006-0009-4 Mied convection boundary layers in the stagnation-point flow toward a stretching vertical sheet A. Ishak R. Nazar I. Pop Received: 17 June 2005

More information

GENERAL PHYSICS MAGNETOHYDRODYNAMICS

GENERAL PHYSICS MAGNETOHYDRODYNAMICS GENERAL PHYSICS MAGNETOHYDRODYNAMICS HALL EFFECT ON MHD MIXED CONVECTIVE FLOW OF A VISCOUS INCOMPRESSIBLE FLUID PAST A VERTICAL POROUS PLATE IMMERSED IN POROUS MEDIUM WITH HEAT SOURCE/SINK BHUPENDRA KUMAR

More information

Radiation Effects on Free Convection MHD Couette Flow Started Exponentially with Variable Wall Temperature in Presence of Heat Generation

Radiation Effects on Free Convection MHD Couette Flow Started Exponentially with Variable Wall Temperature in Presence of Heat Generation Open Journal of Fluid Dynamics,,, 4-7 http://dx.doi.org/.436/ojfd.. Published Online March (http://www.scirp.org/journal/ojfd) Radiation Effects on Free Convection MHD Couette Flow Started Exponentially

More information

Unsteady Laminar Free Convection from a Vertical Cone with Uniform Surface Heat Flux

Unsteady Laminar Free Convection from a Vertical Cone with Uniform Surface Heat Flux Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 1, 47 60 Unsteady Laminar Free Convection from a Vertical Cone with Uniform Surface Heat Flux Bapuji Pullepu 1, K. Ekambavanan 1, A. J. Chamkha

More information

Finite Element Analysis of Heat and Mass Transfer past an Impulsively Moving Vertical Plate with Ramped Temperature

Finite Element Analysis of Heat and Mass Transfer past an Impulsively Moving Vertical Plate with Ramped Temperature Journal of Applied Science and Engineering, Vol. 19, No. 4, pp. 385392 (2016) DOI: 10.6180/jase.2016.19.4.01 Finite Element Analysis of Heat and Mass Transfer past an Impulsively Moving Vertical Plate

More information

Conceptual Study of the Effect of Radiation on Free Convective Flow of Mass and Heat Transfer over a Vertical Plate

Conceptual Study of the Effect of Radiation on Free Convective Flow of Mass and Heat Transfer over a Vertical Plate Applied Mathematics 014, 4(): 56-63 DOI: 10.593/j.am.014040.03 Conceptual Study of the Effect of Radiation on Free Convective Flow of Mass and Heat Transfer over a Vertical Plate Abah Sunday Ojima 1,*,

More information

Effect of Radiation on Dusty Viscous Fluid through Porous Medium overa Moving Infinite Vertical Plate with Heat Source

Effect of Radiation on Dusty Viscous Fluid through Porous Medium overa Moving Infinite Vertical Plate with Heat Source International Archive of Applied Sciences and Technology Int. Arch. App. Sci. Technol; Vol 4 [4]Decemebr 3: - 3 Society of Education, India [ISO9: 8 Certified Organization] www.soeagra.com/iaast.html CODEN:

More information

Unsteady MHD Free Convection Flow past an Accelerated Vertical Plate with Chemical Reaction and Ohmic Heating

Unsteady MHD Free Convection Flow past an Accelerated Vertical Plate with Chemical Reaction and Ohmic Heating nsteady MHD Free Convection Flow past an Accelerated Vertical Plate with Chemical Reaction and Ohmic Heating M. Rajaiah 1, Dr. A. Sudhakaraiah 1 Research Scholar Department of Mathematics, Rayalaseema

More information

Finite Difference Solution of Unsteady Free Convection Heat and Mass Transfer Flow past a Vertical Plate

Finite Difference Solution of Unsteady Free Convection Heat and Mass Transfer Flow past a Vertical Plate Daffodil International University Institutional Repository DIU Journal of Science and Technology Volume 1, Issue 1, January 17 17-1 Finite Difference Solution of Unsteady Free Convection Heat and Mass

More information

On steady hydromagnetic flow of a radiating viscous fluid through a horizontal channel in a porous medium

On steady hydromagnetic flow of a radiating viscous fluid through a horizontal channel in a porous medium AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 1, Science Huβ, http://www.scihub.org/ajsir ISSN: 153-649X doi:1.551/ajsir.1.1..33.38 On steady hydromagnetic flow of a radiating viscous fluid through

More information

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds. Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,

More information

VOL., NO., JLY 5 ISSN 89-668 6-5 Asian Research Publishing Network (ARPN). All rights reserved. FIRST ORDER CHEMICAL REACTION EFFECTS ON A PARABOLIC FLOW PAST AN INFINITE VERTICAL PLATE WITH VARIABLE TEMPERATRE

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Study on MHD Free Convection Heat and Mass Transfer Flow past a Vertical Plate in the Presence of Hall Current

Study on MHD Free Convection Heat and Mass Transfer Flow past a Vertical Plate in the Presence of Hall Current American Journal of Engineering Research (AJER) Research Paper American Journal of Engineering Research (AJER) e-issn : 3-87 p-issn : 3-93 Volume-3 Issue- pp-7- www.ajer.org Open Access Study on MHD Free

More information

Pressure Effects on Unsteady Free Convection. and Heat Transfer Flow of an Incompressible. Fluid Past a Semi-Infinite Inclined Plate with

Pressure Effects on Unsteady Free Convection. and Heat Transfer Flow of an Incompressible. Fluid Past a Semi-Infinite Inclined Plate with Applied Mathematical Sciences, Vol. 6,, no. 68, 47-65 Pressure Effects on Unsteady Free Convection and Heat Transfer Flow of an Incompressible Fluid Past a Semi-Infinite Inclined Plate with Impulsive and

More information

Pallavaram, Chennai, Tamil Nadu. Pallavaram, Chennai, Tamil Nadu, India. Abstract

Pallavaram, Chennai, Tamil Nadu. Pallavaram, Chennai, Tamil Nadu, India. Abstract Volume 116 No. 24 2017, 81-92 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Skin Friction Analysis of Parabolic Started Infinite Vertical Plate

More information

FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES

FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES Proceedings of the International Conference on Mechanical Engineering 2 (ICME2) 8-2 December 2, Dhaka, Bangladesh ICME-TH-6 FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES

More information

Radiation and Heat Absorption Effects on Unsteady MHD Flow Through Porous Medium in The Presence of Chemical Reaction of First Order

Radiation and Heat Absorption Effects on Unsteady MHD Flow Through Porous Medium in The Presence of Chemical Reaction of First Order ISBN 978-93-5156-38-0 International Conference of Advance Research and Innovation (-014) Radiation and Heat Absorption Effects on Unsteady MHD Flow Through Porous Medium in The Presence of Chemical Reaction

More information

Influence of the Order of Chemical Reaction and Soret Effect on Mass Transfer of a Binary Fluid Mixture in Porous Media

Influence of the Order of Chemical Reaction and Soret Effect on Mass Transfer of a Binary Fluid Mixture in Porous Media Influence of the Order of Chemical Reaction and Soret Effect on Mass Transfer of a Binary Fluid Mixture in Porous Media B.R.Sharma, Debozani Borgohain Department of Mathematics, Dibrugarh University, Dibrugarh-786004,

More information

Effect of Mass Transfer And Hall Current On Unsteady Mhd Flow Of A Viscoelastic Fluid In A Porous Medium.

Effect of Mass Transfer And Hall Current On Unsteady Mhd Flow Of A Viscoelastic Fluid In A Porous Medium. IOSR Journal of Engineering (IOSRJEN) e-issn: 50-301, p-issn: 78-8719, Volume, Issue 9 (September 01), PP 50-59 Effect of Mass Transfer And Hall Current On Unsteady Mhd Flow Of A Viscoelastic Fluid In

More information

MIXED CONVECTION SLIP FLOW WITH TEMPERATURE JUMP ALONG A MOVING PLATE IN PRESENCE OF FREE STREAM

MIXED CONVECTION SLIP FLOW WITH TEMPERATURE JUMP ALONG A MOVING PLATE IN PRESENCE OF FREE STREAM THERMAL SCIENCE, Year 015, Vol. 19, No. 1, pp. 119-18 119 MIXED CONVECTION SLIP FLOW WITH TEMPERATURE JUMP ALONG A MOVING PLATE IN PRESENCE OF FREE STREAM by Gurminder SINGH *a and Oluwole Daniel MAKINDE

More information

Riyadh 11451, Saudi Arabia. ( a b,c Abstract

Riyadh 11451, Saudi Arabia. ( a b,c Abstract Effects of internal heat generation, thermal radiation, and buoyancy force on boundary layer over a vertical plate with a convective boundary condition a Olanrewaju, P. O., a Gbadeyan, J.A. and b,c Hayat

More information

Heat and mass transfer effects on unsteady MHD free convection flow near a moving vertical plate in porous medium

Heat and mass transfer effects on unsteady MHD free convection flow near a moving vertical plate in porous medium Bull. Soc. Math. Banja Luka Vol. 17 (1), 15-3 ISSN 354-579 (p), ISSN 1986-51X (o) Heat and mass transfer effects on unsteady MHD free convection flow near a moving vertical plate in porous medium K. DAS

More information

Flow Past an Exponentially Accelerated Infinite Vertical Plate and Temperature with Variable Mass Diffusion

Flow Past an Exponentially Accelerated Infinite Vertical Plate and Temperature with Variable Mass Diffusion Internional Journal of Computer Applicions (97 8887) Volume No, May Flow Past an Exponentially Accelered Infinite Vertical Ple and Temperure with Variable Mass Diffusion KK Asogwa Department of Mhemics

More information

MHD Flow and Heat Transfer over an. Exponentially Stretching Sheet with Viscous. Dissipation and Radiation Effects

MHD Flow and Heat Transfer over an. Exponentially Stretching Sheet with Viscous. Dissipation and Radiation Effects Applied Mathematical Sciences, Vol. 7, 3, no. 4, 67-8 MHD Flow and Heat Transfer over an Exponentially Stretching Sheet with Viscous Dissipation and Radiation Effects R. N. Jat and Gopi Chand Department

More information

Chapter 7: Natural Convection

Chapter 7: Natural Convection 7-1 Introduction 7- The Grashof Number 7-3 Natural Convection over Surfaces 7-4 Natural Convection Inside Enclosures 7-5 Similarity Solution 7-6 Integral Method 7-7 Combined Natural and Forced Convection

More information

Analysis of Transient Natural Convection flow past an Accelerated Infinite Vertical Plate

Analysis of Transient Natural Convection flow past an Accelerated Infinite Vertical Plate From the SelectedWorks of Innovative Research Publications IRP India Winter February 1, 015 Analysis of ransient Natural Convection flow past an Accelerated Infinite Vertical Plate Innovative Research

More information

N. SENAPATI 1 & R. K. DHAL 2

N. SENAPATI 1 & R. K. DHAL 2 IMPACT: International Journal of Research in Humanities, Arts and Literature (IMPACT: IJRHAL) ISSN(E): 2321-8878; ISSN(P): 2347-4564 Vol. 2, Issue 1, Jan 2014, 19-28 Impact Journals MAGNETIC EFFECTS OF

More information

Transient free convective MHD flow through porous medium in slip flow regime

Transient free convective MHD flow through porous medium in slip flow regime IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 11, Issue 5 Ver. 5 (Sep. - Oct. 2015), PP 52-58 www.iosrjournals.org Transient free convective MHD flow through porous

More information

Unsteady Magnetohydrodynamic Free Convective Flow Past a Vertical Porous Plate

Unsteady Magnetohydrodynamic Free Convective Flow Past a Vertical Porous Plate International Journal of Applied Science and Engineering 2013. 11, 3: 267-275 Unsteady Magnetohydrodynamic Free Convective Flow Past a Vertical Porous Plate Murali Gundagania,*, Sivaiah Sheria, Ajit Paulb,

More information

Finite difference solution of the mixed convection flow of MHD micropolar fluid past a moving surface with radiation effect

Finite difference solution of the mixed convection flow of MHD micropolar fluid past a moving surface with radiation effect Finite difference solution of the mixed convection flo of MHD micropolar fluid past a moving surface ith radiation effect LOKENDRA KUMAR, G. SWAPNA, BANI SINGH Department of Mathematics Jaypee Institute

More information

Numerical Study on Unsteady Free Convection and Mass Transfer Flow past a Vertical Porous Plate

Numerical Study on Unsteady Free Convection and Mass Transfer Flow past a Vertical Porous Plate Numerical Study on Unsteady Free Convection and Mass Transfer Flow past a Vertical Porous Plate S. F. Ahmmed Mathematics Discipline Khulna University, Bangladesh.. R. Ahmed Mathematics Discipline Khulna

More information

Numerical Solutions of Unsteady Laminar Free Convection from a Vertical Cone with Non-Uniform Surface Heat Flux

Numerical Solutions of Unsteady Laminar Free Convection from a Vertical Cone with Non-Uniform Surface Heat Flux Journal of Applied Fluid Mechanics, Vol. 6, No. 3, pp. 357-367, 213. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. Numerical Solutions of Unsteady aminar Free Convection from

More information

SIMILARITY SOLUTION FOR MHD FLOW THROUGH VERTICAL POROUS PLATE WITH SUCTION

SIMILARITY SOLUTION FOR MHD FLOW THROUGH VERTICAL POROUS PLATE WITH SUCTION Journal of Computational and Applied Mechanics, Vol. 6., No. 1., (2005), pp. 15 25 SIMILARITY SOLUTION FOR MHD FLOW THROUGH VERTICAL POROUS PLATE WITH SUCTION Mohammad Ferdows, Masahiro Ota Department

More information

Radiation Effects on Mixed Convection Flow and Viscous Heating in a Vertical Channel Partially Filled with a Porous Medium

Radiation Effects on Mixed Convection Flow and Viscous Heating in a Vertical Channel Partially Filled with a Porous Medium Tamkang Journal of Science and Engineering, Vol. 14, No. 2, pp. 97 106 (2011) 97 Radiation Effects on Mixed Convection Flow and Viscous Heating in a Vertical Channel Partially Filled with a Porous Medium

More information

Unsteady Magnetopolar free Convection flow embedded in a Porous Medium with Radiation and variable Suction in a Slip flow Regime

Unsteady Magnetopolar free Convection flow embedded in a Porous Medium with Radiation and variable Suction in a Slip flow Regime International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 4767 P-ISSN: 2321-4759 Volume 1 Issue 1 ǁ Aug. 2013ǁ PP-01-11 Unsteady Magnetopolar free Convection flow embedded in a

More information

Heat source/sink and thermal conductivity effects on micropolar nanofluid flow over a MHD radiative stretching surface

Heat source/sink and thermal conductivity effects on micropolar nanofluid flow over a MHD radiative stretching surface Heat source/sink and thermal conductivity effects on micropolar nanofluid flow over a MHD radiative stretching surface Srinivas Maripala 1 and Kishan Naikoti 2 1Department of mathematics, Sreenidhi Institute

More information

Dhaka University of Engineering and Technology, (DUET), Gazipur-1700, Bangladesh 2 Department of Mathematics

Dhaka University of Engineering and Technology, (DUET), Gazipur-1700, Bangladesh 2 Department of Mathematics ANALYSIS OF MHD FREE CONVECTION FLOW ALONG A VERTICAL POROUS PLATE EMBEDDED IN A POROUS MEDIUM WITH MAGNETIC FIELD AND HEAT GENERATION M. U. Ahammad, Md. Obayedullah and M. M. Rahman Department of Mathematics

More information

T Fluid temperature in the free stream. T m Mean fluid temperature. α Thermal diffusivity. β * Coefficient of concentration expansion

T Fluid temperature in the free stream. T m Mean fluid temperature. α Thermal diffusivity. β * Coefficient of concentration expansion International Journal of Engineering & Technology IJET-IJENS Vol: No: 5 3 Numerical Study of MHD Free Convection Flo and Mass Transfer Over a Stretching Sheet Considering Dufour & Soret Effects in the

More information

Free convection on an inclined plate with variable viscosity and thermal diffusivity

Free convection on an inclined plate with variable viscosity and thermal diffusivity Free convection on an inclined plate with variable viscosity and thermal diffusivity G. Palani 1, J.D. Kirubavathi 1, and Kwang Yong Kim 2 1 Dr. Ambedkar Govt. Arts College, Chennai, Tamil Nadu, India

More information

Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Vertical Surface in Porous Medium

Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Vertical Surface in Porous Medium Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Vertical Surface in Porous Medium M.B.K.MOORTHY, K.SENTHILVADIVU Department of Mathematics, Institute of Road

More information

RADIATION ABSORPTION AND ALIGNED MAGNETIC FIELD EFFECTS ON UNSTEADY CONVECTIVE FLOW ALONG A VERTICAL POROUS PLATE

RADIATION ABSORPTION AND ALIGNED MAGNETIC FIELD EFFECTS ON UNSTEADY CONVECTIVE FLOW ALONG A VERTICAL POROUS PLATE Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 5(7): 8-87 Journal Scholarlink of Emerging Research Trends Institute in Engineering Journals, 4 and (ISSN: Applied 4-76) Sciences

More information

Unsteady MHD Free Convection Past an Impulsively Started Isothermal Vertical Plate with Radiation and Viscous Dissipation

Unsteady MHD Free Convection Past an Impulsively Started Isothermal Vertical Plate with Radiation and Viscous Dissipation Copyright 2014 Tech Science Press FDMP, vol.10, no.4, pp.521-550, 2014 Unsteady MHD Free Convection Past an Impulsively Started Isothermal Vertical Plate with Radiation and Viscous Dissipation Hawa Singh

More information

ON VARIABLE LAMINAR CONVECTIVE FLOW PROPERTIES DUE TO A POROUS ROTATING DISK IN A MAGNETIC FIELD

ON VARIABLE LAMINAR CONVECTIVE FLOW PROPERTIES DUE TO A POROUS ROTATING DISK IN A MAGNETIC FIELD ON VARIABLE LAMINAR CONVECTIVE FLOW PROPERTIES DUE TO A POROUS ROTATING DISK IN A MAGNETIC FIELD EMMANUEL OSALUSI, PRECIOUS SIBANDA School of Mathematics, University of KwaZulu-Natal Private Bag X0, Scottsville

More information

Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with Heat Generation

Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with Heat Generation ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.7(2009) No.1,pp.50-56 Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with

More information

INDIAN INSTITUTE OF TECHNOOGY, KHARAGPUR Date: -- AN No. of Students: 5 Sub. No.: ME64/ME64 Time: Hours Full Marks: 6 Mid Autumn Semester Examination Sub. Name: Convective Heat and Mass Transfer Instructions:

More information

G. C. Hazarika 2 Department of Mathematics Dibrugarh University, Dibrugarh

G. C. Hazarika 2 Department of Mathematics Dibrugarh University, Dibrugarh Effects of Variable Viscosity and Thermal Conductivity on Heat and Mass Transfer Flow of Micropolar Fluid along a Vertical Plate in Presence of Magnetic Field Parash Moni Thakur 1 Department of Mathematics

More information

SORET EFFECT ON A STEADY MIXED CONVECTIVE HEAT AND MASS TRANSFER FLOW WITH INDUCED MAGNETIC FIELD

SORET EFFECT ON A STEADY MIXED CONVECTIVE HEAT AND MASS TRANSFER FLOW WITH INDUCED MAGNETIC FIELD SORET EFFECT ON A STEADY MIXED CONVECTIVE HEAT AND MASS TRANSFER FLOW WITH INDUCED MAGNETIC FIELD C. S. Sravanthi 1, N.Bhuvanesh Abstract This paper is focuses on the soret effect on a two dimensional,

More information

Numerical Analysis of Laminar flow of Viscous Fluid Between Two Porous Bounding walls

Numerical Analysis of Laminar flow of Viscous Fluid Between Two Porous Bounding walls Numerical Analysis of Laminar flow of Viscous Fluid Between Two Porous Bounding walls Ramesh Yadav Department of Mathematics Babu Banarasi Das National Institute of Technology & Management Lucknow Uttar

More information

A new numerical approach for Soret effect on mixed convective boundary layer flow of a nanofluid over vertical frustum of a cone

A new numerical approach for Soret effect on mixed convective boundary layer flow of a nanofluid over vertical frustum of a cone Inter national Journal of Pure and Applied Mathematics Volume 113 No. 8 2017, 73 81 ISSN: 1311-8080 printed version); ISSN: 1314-3395 on-line version) url: http://www.ijpam.eu ijpam.eu A new numerical

More information

Exact Solution of an MHD Natural Convection Flow in Vertical Concentric Annulus with Heat Absorption

Exact Solution of an MHD Natural Convection Flow in Vertical Concentric Annulus with Heat Absorption International Journal of Fluid Mechanics & Thermal Sciences 217; 3(5): 52-61 http://www.sciencepublishinggroup.com/j/ijfmts doi: 1.11648/j.ijfmts.21735.12 ISSN: 2469-815 (Print); ISSN: 2469-8113 (Online)

More information

MHD OSCILLATORY SLIP FLOW AND HEAT TRANSFER IN A CHANNEL FILLED WITH POROUS MEDIA

MHD OSCILLATORY SLIP FLOW AND HEAT TRANSFER IN A CHANNEL FILLED WITH POROUS MEDIA U.P.B. Sci. Bull., Series A, Vol. 76, Iss., 04 ISSN 3-707 MHD OSCILLATORY SLIP FLOW AND HEAT TRANSFER IN A CHANNEL FILLED WITH POROUS MEDIA Samuel Olumide ADESANYA, Oluwole Daniel MAKINDE This paper deals

More information

Unsteady MHD Flow over an Infinite Porous Plate Subjected to Convective Surface Boundary Conditions

Unsteady MHD Flow over an Infinite Porous Plate Subjected to Convective Surface Boundary Conditions International Journal of Contemporary Mathematical Sciences Vol. 1, 017, no. 1, 1-1 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/ijcms.017.6849 Unsteady MHD Flow over an Infinite Porous Plate Subjected

More information

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization) ISSN(Online): 239-8753 Influence of Chemical Reaction, Heat Source, Soret and Dufour Effects on Heat And Mass Transfer in Boundary Layer Flow Over a Stretching Cylinder Embedded in a Porous Medium using

More information

Influence of chemical reaction, Soret and Dufour effects on heat and mass transfer of a binary fluid mixture in porous medium over a rotating disk

Influence of chemical reaction, Soret and Dufour effects on heat and mass transfer of a binary fluid mixture in porous medium over a rotating disk IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 10, Issue 6 Ver. III (Nov - Dec. 2014), PP 73-78 Influence of chemical reaction, Soret and Dufour effects on heat and

More information

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE Proceedings of the International Conference on Mechanical Engineering 2011 (ICME2011) 18-20 December 2011, Dhaka, Bangladesh ICME11-TH-014 FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

Non-Newtonian Natural Convection Flow along an Isothermal Horizontal Circular Cylinder Using Modified Power-law Model

Non-Newtonian Natural Convection Flow along an Isothermal Horizontal Circular Cylinder Using Modified Power-law Model American Journal of Fluid ynamics 3, 3(): -3 OI:.593/j.ajfd.33. Non-Newtonian Natural Convection Flow along an Isothermal Horizontal Circular Cylinder sing Modified Power-law Model Sidhartha Bhowmick,

More information

Numerical Study of Steady MHD Plane Poiseuille Flow and Heat Transfer in an Inclined Channel

Numerical Study of Steady MHD Plane Poiseuille Flow and Heat Transfer in an Inclined Channel Numerical Study of Steady MHD Plane Poiseuille Flow and Heat Transfer in an Inclined Channel Muhim Chutia Department of Mathematics, Mariani College, Assam-785634, India ABSTRACT: In this paper, a numerical

More information

Thermal diffusion effect on MHD free convection flow of stratified viscous fluid with heat and mass transfer

Thermal diffusion effect on MHD free convection flow of stratified viscous fluid with heat and mass transfer Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 03, 4():-9 ISSN: 0976-860 CODEN (USA): AASRFC Thermal diffusion effect on MHD free convection flow of stratified

More information

The Effect Of MHD On Laminar Mixed Convection Of Newtonian Fluid Between Vertical Parallel Plates Channel

The Effect Of MHD On Laminar Mixed Convection Of Newtonian Fluid Between Vertical Parallel Plates Channel The Effect Of MH On Laminar Mixed Convection Of Newtonian Fluid Between Vertical Parallel Plates Channel Rasul alizadeh,alireza darvish behanbar epartment of Mechanic, Faculty of Engineering Science &

More information

Available online at ScienceDirect. Procedia Engineering 90 (2014 )

Available online at   ScienceDirect. Procedia Engineering 90 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 9 (4 ) 37 376 th International Conference on Mechanical Engineering, ICME 3 Free Convective Heat Transfer Flow of Temperature

More information

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1 HEAT TRANSFER BY CONVECTION Dr. Şaziye Balku 1 CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in the

More information

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D. Fundamental Concepts of Convection : Flow and Thermal Considerations Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.3 6.1 Boundary Layers: Physical Features Velocity Boundary Layer

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 3 LAMINAR BOUNDARY LAYER FLOW LAMINAR BOUNDARY LAYER FLOW Boundary

More information

Ramasamy Kandasamy Department of Mathematics, Institute of Road and Transport Technology Erode , India kandan

Ramasamy Kandasamy Department of Mathematics, Institute of Road and Transport Technology Erode , India kandan Journal of Computational and Applied Mechanics, Vol. 6., No. 1., (2005), pp. 27 37 NONLINEAR HYDROMAGNETIC FLOW, HEAT AND MASS TRANSFER OVER AN ACCELERATING VERTICAL SURFACE WITH INTERNAL HEAT GENERATION

More information

MHD Free Convective Heat and Mass Transfer of a Chemically-Reacting Fluid from Radiate Stretching Surface Embedded in a Saturated Porous Medium

MHD Free Convective Heat and Mass Transfer of a Chemically-Reacting Fluid from Radiate Stretching Surface Embedded in a Saturated Porous Medium INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING Volume 9 011 Article A66 MHD Free Convective Heat and Mass Transfer of a Chemically-Reacting Fluid from Radiate Stretching Surface Embedded in a Saturated

More information

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic

More information

Heat Generation/Absorption, Chemical Reaction, MHD, Thermal Radiation, Thermal Diffusion, Heat and Mass Transfer, Semi-Infinite Vertical Plate

Heat Generation/Absorption, Chemical Reaction, MHD, Thermal Radiation, Thermal Diffusion, Heat and Mass Transfer, Semi-Infinite Vertical Plate pplied Mathematics, 6, 7, 638-649 Published Online pril 6 in SciRes. http://www.scirp.org/journal/am http://dx.doi.org/.436/am.6.7759 Thermal Diffusion Effect on MHD Heat and Mass Transfer Flow past a

More information

FREE CONVECTION AROUND A SLENDER PARABOLOID OF NON- NEWTONIAN FLUID IN A POROUS MEDIUM

FREE CONVECTION AROUND A SLENDER PARABOLOID OF NON- NEWTONIAN FLUID IN A POROUS MEDIUM FREE CONVECTION AROUND A SLENDER PARABOLOID OF NON- NEWTONIAN FLUID IN A POROUS MEDIUM Rishi Raj KAIRI, Department of Mathematics, Islampur College, Uttar Dinajpur, West Bengal, India. Email: rishirajkairi@gmail.com

More information

Heat and Mass Transfer

Heat and Mass Transfer 1 Comments on six papers published by S.P. Anjali Devi and R. Kandasamy in Heat and Mass Transfer, ZAMM, Mechanics Research Communications, International Communications in Heat and Mass Transfer, Communications

More information

Dissipation, MHD and Radiation Effects on an Unsteady Convective Heat and Mass Transfer in a Darcy-Forcheimer Porous Medium

Dissipation, MHD and Radiation Effects on an Unsteady Convective Heat and Mass Transfer in a Darcy-Forcheimer Porous Medium Dissipation, MHD and Radiation Effects on an Unsteady Convective Heat and Mass Transfer in a Darcy-Forcheimer Porous Medium Moses S. Dada (Corresponding author) Department of Mathematics, University of

More information

Effect of Heat Absorption on MHD Flow Over a Plate with Variable Wall Temperature

Effect of Heat Absorption on MHD Flow Over a Plate with Variable Wall Temperature Journal of Applied Science and Engineering, Vol. 20, No. 3, pp. 277 282 (2017) DOI: 10.6180/jase.2017.20.3.01 Effect of Heat Absorption on MHD Flow Over a Plate with Variable Wall Temperature U S Rajput*

More information

First International Conference on Emerging Trends in Engineering, Management and Scineces December 28-30, 2014 (ICETEMS-2014) Peshawar, Pakistan

First International Conference on Emerging Trends in Engineering, Management and Scineces December 28-30, 2014 (ICETEMS-2014) Peshawar, Pakistan First International Conference on Emerging Trends in Engineering, Management and Scineces December 8-30, 014 (ICETEMS-014) Peshawar, Pakistan Heat and Mass Transfer Analysis due to Mixed Convection in

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

Oscillatory MHD Mixed Convection Boundary Layer Flow of Finite Dimension with Induced Pressure Gradient

Oscillatory MHD Mixed Convection Boundary Layer Flow of Finite Dimension with Induced Pressure Gradient Journal of Applied Fluid Mechanics, Vol. 9, No., pp. 75-75, 6. Available online at www.jafmonline.net, ISSN 75-57, EISSN 75-65. DOI:.8869/acadpub.jafm.68.5.876 Oscillatory MHD Mixed Convection Boundary

More information

Influence of Chemical Reaction and Radiation on. Unsteady MHD Free Convective Flow and Mass. Transfer through Viscous Incompressible Fluid

Influence of Chemical Reaction and Radiation on. Unsteady MHD Free Convective Flow and Mass. Transfer through Viscous Incompressible Fluid Applied Mathematical Sciences, Vol. 5,, no. 46, 49-6 Influence of Chemical Reaction and Radiation on Unsteady MHD Free Convective Flow and Mass Transfer through Viscous Incompressible Fluid Past a Heated

More information