Efficient Model Checking of Safety Properties

Size: px
Start display at page:

Download "Efficient Model Checking of Safety Properties"

Transcription

1 Efficient Model Checking of Safety Properties Timo Latvala Laboratory for Theoretical Computer Science Helsinki University of Technology Finland Spin 2003 p.1/16

2 Introduction Safety properties properties with finite counterexamples. Uses: Testing Program monitoring Model Checking Focus: LTL using the automata theoretic approach. Main problem: translating LTL formulas to finite automata. Spin 2003 p.2/16

3 Why safety properties? Treating safety properties as a special case has certain benefits. Safety properties an important subset. Spin 2003 p.3/16

4 Why safety properties? Treating safety properties as a special case has certain benefits. Safety properties an important subset. Explicit state model checking algorithms are somewhat simpler. Spin 2003 p.3/16

5 Why safety properties? Treating safety properties as a special case has certain benefits. Safety properties an important subset. Explicit state model checking algorithms are somewhat simpler. BDD-based algorithms are faster (linear vs quadratic). Spin 2003 p.3/16

6 Why safety properties? Treating safety properties as a special case has certain benefits. Safety properties an important subset. Explicit state model checking algorithms are somewhat simpler. BDD-based algorithms are faster (linear vs quadratic). For methods such as Petri net unfoldings, safety is much simpler. Spin 2003 p.3/16

7 Challenges Treating safety as a special case poses some challenges: Deciding if an LTL formula is a safety formula is PSPACE-complete. Spin 2003 p.4/16

8 Challenges Treating safety as a special case poses some challenges: Deciding if an LTL formula is a safety formula is PSPACE-complete. Translating a safety LTL formula to finite automaton doubly exponential. Spin 2003 p.4/16

9 Challenges Treating safety as a special case poses some challenges: Deciding if an LTL formula is a safety formula is PSPACE-complete. Translating a safety LTL formula to finite automaton doubly exponential. Non-pathological formulas have a singly exponential translation to finite automata. Spin 2003 p.4/16

10 Challenges Treating safety as a special case poses some challenges: Deciding if an LTL formula is a safety formula is PSPACE-complete. Translating a safety LTL formula to finite automaton doubly exponential. Non-pathological formulas have a singly exponential translation to finite automata. Deciding if a formula is pathological is PSPACE-complete. Spin 2003 p.4/16

11 Contributions A new translation algorithm based on an algorithm by Kupferman and Vardi. Spin 2003 p.5/16

12 Contributions A new translation algorithm based on an algorithm by Kupferman and Vardi. Extensive experimental testing of the implementation. Spin 2003 p.5/16

13 Contributions A new translation algorithm based on an algorithm by Kupferman and Vardi. Extensive experimental testing of the implementation. First(?) implementation of a algorithm checking if a formula is pathologic. Spin 2003 p.5/16

14 Contributions A new translation algorithm based on an algorithm by Kupferman and Vardi. Extensive experimental testing of the implementation. First(?) implementation of a algorithm checking if a formula is pathologic. The tool, scheck, can be used with Spin. Spin 2003 p.5/16

15 Related Work Kupferman and Vardi: Algorithms and complexity results. Spin 2003 p.6/16

16 Related Work Kupferman and Vardi: Algorithms and complexity results. Geilen: Forward version of KV-algorithm. Spin 2003 p.6/16

17 Related Work Kupferman and Vardi: Algorithms and complexity results. Geilen: Forward version of KV-algorithm. Berard et al: history variables methods for past TL Spin 2003 p.6/16

18 Related Work Kupferman and Vardi: Algorithms and complexity results. Geilen: Forward version of KV-algorithm. Berard et al: history variables methods for past TL Havelund and Rosu: model checking past TL for finite executions. Spin 2003 p.6/16

19 Translation Algorithm The algorithm creates the finite automaton backwards. Spin 2003 p.7/16

20 Translation Algorithm The algorithm creates the finite automaton backwards. We start from an empty set of requirements and analyse the satisfaction of subformulas. Spin 2003 p.7/16

21 Translation Algorithm The algorithm creates the finite automaton backwards. We start from an empty set of requirements and analyse the satisfaction of subformulas. We only add states for temporal operators (exception: X). Spin 2003 p.7/16

22 Translation Algorithm The algorithm creates the finite automaton backwards. We start from an empty set of requirements and analyse the satisfaction of subformulas. We only add states for temporal operators (exception: X). Resulting automaton accepts all informative prefixes. Spin 2003 p.7/16

23 Checking Pathologic Safety Construct A ψ. Spin 2003 p.8/16

24 Checking Pathologic Safety Construct A ψ. Construct deterministic finite automaton B ψ. Spin 2003 p.8/16

25 Checking Pathologic Safety Construct A ψ. Construct deterministic finite automaton B ψ. Interpret B ψ as a Büchi automaton and complement it. Spin 2003 p.8/16

26 Checking Pathologic Safety Construct A ψ. Construct deterministic finite automaton B ψ. Interpret B ψ as a Büchi automaton and complement it. If L(A ψ B ψ ) then ψ is pathologic. Spin 2003 p.8/16

27 Implementation The implementation uses BDDs to manage sets. Spin 2003 p.9/16

28 Implementation The implementation uses BDDs to manage sets. Produces deterministic or non-deterministic automata. Spin 2003 p.9/16

29 Implementation The implementation uses BDDs to manage sets. Produces deterministic or non-deterministic automata. Can be connected to Spin. Spin 2003 p.9/16

30 Implementation The implementation uses BDDs to manage sets. Produces deterministic or non-deterministic automata. Can be connected to Spin. Freely available licensed under the GNU GPL. Spin 2003 p.9/16

31 Experiments Randomly generated syntactically safe formulas Spin 2003 p.10/16

32 Experiments Randomly generated syntactically safe formulas Randomly generated formulas. Spin 2003 p.10/16

33 Experiments Randomly generated syntactically safe formulas Randomly generated formulas. Safety formulas from the specification pattern system. Spin 2003 p.10/16

34 Experiments Randomly generated syntactically safe formulas Randomly generated formulas. Safety formulas from the specification pattern system. Model checking tests with Spin. Spin 2003 p.10/16

35 Syntactically Safe Formulas State ratio lbt spin ltl2ba Transition ratio lbt spin ltl2ba Time ratio lbt spin Formula length Formula length Formula length Time ratio ltl2ba Productstate ratio lbt spin ltl2ba Producttransition ratio lbt spin ltl2ba Formula length Formula length Formula length Spin 2003 p.11/16

36 General Formulas Average generation time [s] Formula length Spin 2003 p.12/16

37 Specification Pattern Formulas 14 scheck states ltl2ba states scheck arcs ltl2ba arcs States or arcs 8 States or arcs states arcs time [s] product states product arcs ltl2ba lbt scheck Spin 2003 p.13/16

38 Practical Models model scheck spin states arcs t [s] states arcs t [s] peterson(3) peterson(4) sliding(1,1) sliding(1,2) sliding(2,1) erathostenes(50,1) erathostenes(60,2) erathostenes(70,3) erathostenes(80,4) erathostenes(80,5) iprot giop Spin 2003 p.14/16

39 Practical Models model scheck ltl2ba states arcs t [s] states arcs t [s] peterson(3) peterson(4) sliding(1,1) sliding(1,2) sliding(2,1) erathostenes(50,1) erathostenes(60,2) erathostenes(70,3) erathostenes(80,4) erathostenes(80,5) iprot giop Spin 2003 p.15/16

40 Conclusions scheck produces smaller automata is most cases. Spin 2003 p.16/16

41 Conclusions scheck produces smaller automata is most cases. Especially when debugging safety properties, the gain can be significant Spin 2003 p.16/16

42 Conclusions scheck produces smaller automata is most cases. Especially when debugging safety properties, the gain can be significant A model checker can gain by analysing the formula. Spin 2003 p.16/16

43 Conclusions scheck produces smaller automata is most cases. Especially when debugging safety properties, the gain can be significant A model checker can gain by analysing the formula. Using BDDs probably a bad design choice. Spin 2003 p.16/16

44 Conclusions scheck produces smaller automata is most cases. Especially when debugging safety properties, the gain can be significant A model checker can gain by analysing the formula. Using BDDs probably a bad design choice. scheck is available from Spin 2003 p.16/16

Efficient Model Checking of Safety Properties

Efficient Model Checking of Safety Properties Efficient Model Checking of Safety Properties Timo Latvala Laboratory for Theoretical Computer Science Helsinki University of Technology P.O. Box 9205 FIN-02015 HUT Finland Timo.Latvala@hut.fi Abstract.

More information

Timo Latvala. March 7, 2004

Timo Latvala. March 7, 2004 Reactive Systems: Safety, Liveness, and Fairness Timo Latvala March 7, 2004 Reactive Systems: Safety, Liveness, and Fairness 14-1 Safety Safety properties are a very useful subclass of specifications.

More information

Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 95

Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 95 Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 95 Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 95 Espoo 2005 HUT-TCS-A95

More information

Model Checking of Safety Properties

Model Checking of Safety Properties Model Checking of Safety Properties Orna Kupferman Hebrew University Moshe Y. Vardi Rice University October 15, 2010 Abstract Of special interest in formal verification are safety properties, which assert

More information

Büchi Automata and Linear Temporal Logic

Büchi Automata and Linear Temporal Logic Büchi Automata and Linear Temporal Logic Joshua D. Guttman Worcester Polytechnic Institute 18 February 2010 Guttman ( WPI ) Büchi & LTL 18 Feb 10 1 / 10 Büchi Automata Definition A Büchi automaton is a

More information

A Symbolic Approach to Safety LTL Synthesis

A Symbolic Approach to Safety LTL Synthesis A Symbolic Approach to Safety LTL Synthesis Shufang Zhu 1 Lucas M. Tabajara 2 Jianwen Li Geguang Pu 1 Moshe Y. Vardi 2 1 East China Normal University 2 Rice Lucas M. Tabajara (Rice University) 2 University

More information

From Liveness to Promptness

From Liveness to Promptness From Liveness to Promptness Orna Kupferman Hebrew University Nir Piterman EPFL Moshe Y. Vardi Rice University Abstract Liveness temporal properties state that something good eventually happens, e.g., every

More information

SAT-Based Explicit LTL Reasoning

SAT-Based Explicit LTL Reasoning SAT-Based Explicit LTL Reasoning Jianwen Li 1,2 Shufang Zhu 2 Geguang Pu 2 Moshe Y. Vardi 1 1. Rice University 2. East China Normal University August 22, 2016 Temporal Reasoning Church, 1957: Given a model

More information

CDS 270 (Fall 09) - Lecture Notes for Assignment 8.

CDS 270 (Fall 09) - Lecture Notes for Assignment 8. CDS 270 (Fall 09) - Lecture Notes for Assignment 8. ecause this part of the course has no slides or textbook, we will provide lecture supplements that include, hopefully, enough discussion to complete

More information

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège Temporal logics and explicit-state model checking Pierre Wolper Université de Liège 1 Topics to be covered Introducing explicit-state model checking Finite automata on infinite words Temporal Logics and

More information

Lecture 4 Model Checking and Logic Synthesis

Lecture 4 Model Checking and Logic Synthesis Lecture 4 Model Checking and Logic Synthesis Nok Wongpiromsarn Richard M. Murray Ufuk Topcu EECI, 18 March 2013 Outline Model checking: what it is, how it works, how it is used Computational complexity

More information

Bounded LTL Model Checking with Stable Models

Bounded LTL Model Checking with Stable Models Bounded LTL Model Checking with Stable Models Keijo Heljanko and Ilkka Niemelä Helsinki University of Technology Dept. of Computer Science and Engineering Laboratory for Theoretical Computer Science P.O.

More information

Tecniche di Specifica e di Verifica. Automata-based LTL Model-Checking

Tecniche di Specifica e di Verifica. Automata-based LTL Model-Checking Tecniche di Specifica e di Verifica Automata-based LTL Model-Checking Finite state automata A finite state automaton is a tuple A = (Σ,S,S 0,R,F) Σ: set of input symbols S: set of states -- S 0 : set of

More information

Formal Verification Techniques. Riccardo Sisto, Politecnico di Torino

Formal Verification Techniques. Riccardo Sisto, Politecnico di Torino Formal Verification Techniques Riccardo Sisto, Politecnico di Torino State exploration State Exploration and Theorem Proving Exhaustive exploration => result is certain (correctness or noncorrectness proof)

More information

Minimising Deterministic Büchi Automata Precisely using SAT Solving

Minimising Deterministic Büchi Automata Precisely using SAT Solving Minimising Deterministic Büchi Automata Precisely using SAT Solving Rüdiger Ehlers Saarland University, Reactive Systems Group SAT 2010 July 14, 2010 Rüdiger Ehlers (SB) DBA Minimization SAT 2010 July

More information

Automata-Theoretic Verification

Automata-Theoretic Verification Automata-Theoretic Verification Javier Esparza TU München Orna Kupferman The Hebrew University Moshe Y. Vardi Rice University 1 Introduction This chapter describes the automata-theoretic approach to the

More information

Computer-Aided Program Design

Computer-Aided Program Design Computer-Aided Program Design Spring 2015, Rice University Unit 3 Swarat Chaudhuri February 5, 2015 Temporal logic Propositional logic is a good language for describing properties of program states. However,

More information

Chapter 3: Linear temporal logic

Chapter 3: Linear temporal logic INFOF412 Formal verification of computer systems Chapter 3: Linear temporal logic Mickael Randour Formal Methods and Verification group Computer Science Department, ULB March 2017 1 LTL: a specification

More information

Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 66

Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 66 Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 66 Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 66 Espoo 2000 HUT-TCS-A66

More information

Tecniche di Specifica e di Verifica. Automata-based LTL Model-Checking

Tecniche di Specifica e di Verifica. Automata-based LTL Model-Checking Tecniche di Specifica e di Verifica Automata-based LTL Model-Checking Finite state automata A finite state automaton is a tuple A = (S,S,S 0,R,F) S: set of input symbols S: set of states -- S 0 : set of

More information

Techniques to solve computationally hard problems in automata theory

Techniques to solve computationally hard problems in automata theory Techniques to solve computationally hard problems in automata theory Richard Mayr University of Edinburgh, UK IST Vienna, 4. Nov. 2014 Resources: www.languageinclusion.org Mayr (Edinburgh) Hard Problems

More information

Efficient Monitoring of ω-languages

Efficient Monitoring of ω-languages Efficient Monitoring of ω-languages Marcelo d Amorim and Grigore Roşu Department of Computer Science University of Illinois at Urbana-Champaign 201 N. Goodwin, Urbana, IL, 61801, USA {damorim, grosu}@uiuc.edu

More information

Linear Temporal Logic and Büchi Automata

Linear Temporal Logic and Büchi Automata Linear Temporal Logic and Büchi Automata Yih-Kuen Tsay Department of Information Management National Taiwan University FLOLAC 2009 Yih-Kuen Tsay (SVVRL @ IM.NTU) Linear Temporal Logic and Büchi Automata

More information

A Hierarchy for Accellera s Property Specification Language

A Hierarchy for Accellera s Property Specification Language A Hierarchy for Accellera s Property Specification Language Thomas Türk May 1st, 2005 Diploma Thesis University of Kaiserslautern Supervisor: Prof. Dr. Klaus Schneider Vorliegende Diplomarbeit wurde von

More information

Sanjit A. Seshia EECS, UC Berkeley

Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Computer-Aided Verification Explicit-State Model Checking: Additional Material Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: G. Holzmann Checking if M satisfies : Steps 1. Compute Buchi

More information

CS256/Spring 2008 Lecture #11 Zohar Manna. Beyond Temporal Logics

CS256/Spring 2008 Lecture #11 Zohar Manna. Beyond Temporal Logics CS256/Spring 2008 Lecture #11 Zohar Manna Beyond Temporal Logics Temporal logic expresses properties of infinite sequences of states, but there are interesting properties that cannot be expressed, e.g.,

More information

Bounded Model Checking for Weak Alternating Büchi Automata

Bounded Model Checking for Weak Alternating Büchi Automata Bounded Model Checking for Weak Alternating Büchi Automata Keijo Heljanko,, Tommi Junttila,MisaKeinänen,, Martin Lange 2,andTimoLatvala 3, Laboratory for Theoretical Computer Science Helsinki University

More information

Deterministic ω-automata for LTL: A safraless, compositional, and mechanically verified construction

Deterministic ω-automata for LTL: A safraless, compositional, and mechanically verified construction Deterministic ω-automata for LTL: A safraless, compositional, and mechanically verified construction Javier Esparza 1 Jan Křetínský 2 Salomon Sickert 1 1 Fakultät für Informatik, Technische Universität

More information

A Canonical Contraction for Safe Petri Nets

A Canonical Contraction for Safe Petri Nets A Canonical Contraction for Safe Petri Nets Thomas Chatain and Stefan Haar INRIA & LSV (CNRS & ENS Cachan) 6, avenue du Président Wilson 935 CACHAN Cedex, France {chatain, haar}@lsvens-cachanfr Abstract

More information

Linear-time Temporal Logic

Linear-time Temporal Logic Linear-time Temporal Logic Pedro Cabalar Department of Computer Science University of Corunna, SPAIN cabalar@udc.es 2015/2016 P. Cabalar ( Department Linear oftemporal Computer Logic Science University

More information

Deciding Safety and Liveness in TPTL

Deciding Safety and Liveness in TPTL Deciding Safety and Liveness in TPTL David Basin a, Carlos Cotrini Jiménez a,, Felix Klaedtke b,1, Eugen Zălinescu a a Institute of Information Security, ETH Zurich, Switzerland b NEC Europe Ltd., Heidelberg,

More information

Weak Alternating Automata Are Not That Weak

Weak Alternating Automata Are Not That Weak Weak Alternating Automata Are Not That Weak Orna Kupferman Hebrew University Moshe Y. Vardi Rice University Abstract Automata on infinite words are used for specification and verification of nonterminating

More information

The Safety Simple Subset

The Safety Simple Subset The Safety Simple Subset Shoham Ben-David 1 Dana Fisman 2,3 Sitvanit Ruah 3 1 University of Waterloo 2 Weizmann Institute of Science 3 IBM Haifa Research Lab Abstract. Regular-LTL (RLTL), extends LTL with

More information

ENES 489p. Verification and Validation: Logic and Control Synthesis

ENES 489p. Verification and Validation: Logic and Control Synthesis 11/18/14 1 ENES 489p Verification and Validation: Logic and Control Synthesis Mumu Xu mumu@umd.edu November 18, 2014 Institute for Systems Research Aerospace Engineering University of Maryland, College

More information

Antichains: A New Algorithm for Checking Universality of Finite Automata

Antichains: A New Algorithm for Checking Universality of Finite Automata Antichains: A New Algorithm for Checking Universality of Finite Automata M. De Wulf 1, L. Doyen 1, T. A. Henzinger 2,3, and J.-F. Raskin 1 1 CS, Université Libre de Bruxelles, Belgium 2 I&C, Ecole Polytechnique

More information

Revisiting Synthesis of GR(1) Specifications

Revisiting Synthesis of GR(1) Specifications Revisiting Synthesis of GR(1) Specifications Uri Klein & Amir Pnueli Courant Institute of Mathematical Sciences, NYU Haifa Verification Conference, October 2010 What Is Synthesis? Rather than implement

More information

First-Order vs. Second-Order Encodings for

First-Order vs. Second-Order Encodings for First-Order vs. Second-Order Encodings for LTL f -to-automata Translation Shufang Zhu 1, Geguang Pu 1, and Moshe Y. Vardi 2 1 East China Normal University, Shanghai, China 2 Rice University, Texas, USA

More information

A Note on the Reduction of Two-Way Automata to One-Way Automata

A Note on the Reduction of Two-Way Automata to One-Way Automata A Note on the Reduction of Two-Way Automata to One-Way Automata Moshe Y. Vardi IBM Almaden Research Center Abstract We describe a new elementary reduction of two-way automata to one-way automata. The reduction

More information

The theory of regular cost functions.

The theory of regular cost functions. The theory of regular cost functions. Denis Kuperberg PhD under supervision of Thomas Colcombet Hebrew University of Jerusalem ERC Workshop on Quantitative Formal Methods Jerusalem, 10-05-2013 1 / 30 Introduction

More information

CTL Model checking. 1. finite number of processes, each having a finite number of finite-valued variables. Model-Checking

CTL Model checking. 1. finite number of processes, each having a finite number of finite-valued variables. Model-Checking CTL Model checking Assumptions:. finite number of processes, each having a finite number of finite-valued variables.. finite length of CTL formula Problem:Determine whether formula f 0 is true in a finite

More information

LTL is Closed Under Topological Closure

LTL is Closed Under Topological Closure LTL is Closed Under Topological Closure Grgur Petric Maretić, Mohammad Torabi Dashti, David Basin Department of Computer Science, ETH Universitätstrasse 6 Zürich, Switzerland Abstract We constructively

More information

Lattice Automata. Orna Kupferman and Yoad Lustig

Lattice Automata. Orna Kupferman and Yoad Lustig Lattice Automata Orna Kupferman and Yoad Lustig Hebrew University, School of Engineering and Computer Science, Jerusalem 91904, Israel Email: {orna,yoadl}@cs.huji.ac.il Abstract. Several verification methods

More information

Models for Efficient Timed Verification

Models for Efficient Timed Verification Models for Efficient Timed Verification François Laroussinie LSV / ENS de Cachan CNRS UMR 8643 Monterey Workshop - Composition of embedded systems Model checking System Properties Formalizing step? ϕ Model

More information

An On-the-fly Tableau Construction for a Real-Time Temporal Logic

An On-the-fly Tableau Construction for a Real-Time Temporal Logic #! & F $ F ' F " F % An On-the-fly Tableau Construction for a Real-Time Temporal Logic Marc Geilen and Dennis Dams Faculty of Electrical Engineering, Eindhoven University of Technology P.O.Box 513, 5600

More information

Mihaela Bobaru (née Gheorghiu)

Mihaela Bobaru (née Gheorghiu) APPROXIMATION AND REFINEMENT TECHNIQUES FOR HARD MODEL-CHECKING PROBLEMS by Mihaela Bobaru (née Gheorghiu) A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy

More information

Overview. overview / 357

Overview. overview / 357 Overview overview6.1 Introduction Modelling parallel systems Linear Time Properties Regular Properties Linear Temporal Logic (LTL) Computation Tree Logic syntax and semantics of CTL expressiveness of CTL

More information

Computation Tree Logic (CTL) & Basic Model Checking Algorithms

Computation Tree Logic (CTL) & Basic Model Checking Algorithms Computation Tree Logic (CTL) & Basic Model Checking Algorithms Martin Fränzle Carl von Ossietzky Universität Dpt. of Computing Science Res. Grp. Hybride Systeme Oldenburg, Germany 02917: CTL & Model Checking

More information

Automata on Infinite words and LTL Model Checking

Automata on Infinite words and LTL Model Checking Automata on Infinite words and LTL Model Checking Rodica Condurache Lecture 4 Lecture 4 Automata on Infinite words and LTL Model Checking 1 / 35 Labeled Transition Systems Let AP be the (finite) set of

More information

Simplification of finite automata

Simplification of finite automata Simplification of finite automata Lorenzo Clemente (University of Warsaw) based on joint work with Richard Mayr (University of Edinburgh) Warsaw, November 2016 Nondeterministic finite automata We consider

More information

Temporal Logic Model Checking

Temporal Logic Model Checking 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 1 Temporal Logic Model Checking Thomas Wahl Computing Laboratory, Oxford University 18 Feb, 2009 Thomas Wahl, Oxford University

More information

Temporal logics and model checking for fairly correct systems

Temporal logics and model checking for fairly correct systems Temporal logics and model checking for fairly correct systems Hagen Völzer 1 joint work with Daniele Varacca 2 1 Lübeck University, Germany 2 Imperial College London, UK LICS 2006 Introduction Five Philosophers

More information

On the Succinctness of Nondeterminizm

On the Succinctness of Nondeterminizm On the Succinctness of Nondeterminizm Benjamin Aminof and Orna Kupferman Hebrew University, School of Engineering and Computer Science, Jerusalem 91904, Israel Email: {benj,orna}@cs.huji.ac.il Abstract.

More information

Answer Set Programming and Bounded Model Checking Λ

Answer Set Programming and Bounded Model Checking Λ From: AAAI Technical Report SS-01-01. Compilation copyright 2001, AAAI (www.aaai.org). All rights reserved. Answer Set Programming and Bounded Model Checking Λ Keijo Heljanko and Ilkka Niemelä Helsinki

More information

Approved, Thesis Committee: Professor Moshe Y. Vardi, Chair Karen Ostrum George Professor Department of Computer Science

Approved, Thesis Committee: Professor Moshe Y. Vardi, Chair Karen Ostrum George Professor Department of Computer Science RICE UNIVERSITY Büchi Containment and Size-Change Termination by Seth Fogarty A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Master of Science Approved, Thesis Committee:

More information

Timo Latvala. February 4, 2004

Timo Latvala. February 4, 2004 Reactive Systems: Temporal Logic LT L Timo Latvala February 4, 2004 Reactive Systems: Temporal Logic LT L 8-1 Temporal Logics Temporal logics are currently the most widely used specification formalism

More information

Automata-Theoretic LTL Model-Checking

Automata-Theoretic LTL Model-Checking Automata-Theoretic LTL Model-Checking Arie Gurfinkel arie@cmu.edu SEI/CMU Automata-Theoretic LTL Model-Checking p.1 LTL - Linear Time Logic (Pn 77) Determines Patterns on Infinite Traces Atomic Propositions

More information

From Liveness to Promptness

From Liveness to Promptness From Liveness to Promptness Orna Kupferman 1, Nir Piterman 2, and Moshe Y. Vardi 3 1 Hebrew University 2 Ecole Polytechnique Fédéral de Lausanne (EPFL) 3 Rice University Abstract. Liveness temporal properties

More information

Logic Model Checking

Logic Model Checking Logic Model Checking Lecture Notes 10:18 Caltech 101b.2 January-March 2004 Course Text: The Spin Model Checker: Primer and Reference Manual Addison-Wesley 2003, ISBN 0-321-22862-6, 608 pgs. the assignment

More information

LTL Model Checking for Modular Petri Nets

LTL Model Checking for Modular Petri Nets LTL Model Checking for Modular Petri Nets Timo Latvala and Marko Mäkelä Laboratory for Theoretical Computer Science Helsinki University of Technology P.O. Box 5400 FIN-02015 HUT Finland {Timo.Latvala,

More information

Optimal Bounds in Parametric LTL Games

Optimal Bounds in Parametric LTL Games Optimal Bounds in Parametric LTL Games Martin Zimmermann 1 Institute of Informatics University of Warsaw Warsaw, Poland Abstract Parameterized linear temporal logics are extensions of Linear Temporal Logic

More information

Antichain Algorithms for Finite Automata

Antichain Algorithms for Finite Automata Antichain Algorithms for Finite Automata Laurent Doyen 1 and Jean-François Raskin 2 1 LSV, ENS Cachan & CNRS, France 2 U.L.B., Université Libre de Bruxelles, Belgium Abstract. We present a general theory

More information

Automatic Synthesis of Distributed Protocols

Automatic Synthesis of Distributed Protocols Automatic Synthesis of Distributed Protocols Rajeev Alur Stavros Tripakis 1 Introduction Protocols for coordination among concurrent processes are an essential component of modern multiprocessor and distributed

More information

Decision Procedures for CTL

Decision Procedures for CTL Decision Procedures for CTL Oliver Friedmann and Markus Latte Dept. of Computer Science, University of Munich, Germany Abstract. We give an overview over three serious attempts to devise an effective decision

More information

words) that accepts precisely all the models of the formula. The automatatheoretic approach to model checking ([10,13]) relies on tableau algorithms t

words) that accepts precisely all the models of the formula. The automatatheoretic approach to model checking ([10,13]) relies on tableau algorithms t URL: http://www.elsevier.nl/locate/entcs/volume55.html 19 pages On the Construction of Monitors for Temporal Logic Properties M.C.W. Geilen 1 Section of Information and Communication Systems Faculty of

More information

Runtime Verification. Grigore Roşu. University of Illinois at Urbana-Champaign

Runtime Verification. Grigore Roşu. University of Illinois at Urbana-Champaign Runtime Verification Grigore Roşu University of Illinois at Urbana-Champaign 2 Contents 1 Introduction 11 1.1 A Taxonomy of Runtime Analysis Techniques......... 22 1.1.1 Trace Storing versus Non-Storing

More information

Completeness and Complexity of Bounded Model Checking

Completeness and Complexity of Bounded Model Checking Completeness and Complexity of Bounded Model Checking Edmund Clarke 1, Daniel Kroening 1,Joël Ouaknine 1, and Ofer Strichman 2 1 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA,

More information

Compositional Reasoning

Compositional Reasoning EECS 219C: Computer-Aided Verification Compositional Reasoning and Learning for Model Generation Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: Avrim Blum Compositional Reasoning S. A. Seshia 2 1

More information

FROM NONDETERMINISTIC BÜCHI AND STREETT AUTOMATA TO DETERMINISTIC PARITY AUTOMATA

FROM NONDETERMINISTIC BÜCHI AND STREETT AUTOMATA TO DETERMINISTIC PARITY AUTOMATA Logical Methods in Computer Science Vol. 3 (3:5) 2007, pp. 1 21 www.lmcs-online.org Submitted Nov. 9, 2006 Published Aug. 14, 2007 FROM NONDETERMINISTIC BÜCHI AND STREETT AUTOMATA TO DETERMINISTIC PARITY

More information

Alternating nonzero automata

Alternating nonzero automata Alternating nonzero automata Application to the satisfiability of CTL [,, P >0, P =1 ] Hugo Gimbert, joint work with Paulin Fournier LaBRI, Université de Bordeaux ANR Stoch-MC 06/07/2017 Control and verification

More information

SETH FOGARTY AND MOSHE Y. VARDI

SETH FOGARTY AND MOSHE Y. VARDI BÜCHI COMPLEMENTATION AND SIZE-CHANGE TERMINATION SETH FOGARTY AND MOSHE Y. VARDI Department of Computer Science, Rice University, Houston, TX e-mail address: sfogarty@gmail.com Department of Computer

More information

Model checking the basic modalities of CTL with Description Logic

Model checking the basic modalities of CTL with Description Logic Model checking the basic modalities of CTL with Description Logic Shoham Ben-David Richard Trefler Grant Weddell David R. Cheriton School of Computer Science University of Waterloo Abstract. Model checking

More information

Quasi-Weak Cost Automata

Quasi-Weak Cost Automata Quasi-Weak Cost Automata A New Variant of Weakness Denis Kuperberg 1 Michael Vanden Boom 2 1 LIAFA/CNRS/Université Paris 7, Denis Diderot, France 2 Department of Computer Science, University of Oxford,

More information

a Hebrew University b Weizmann Institute c Rice University

a Hebrew University b Weizmann Institute c Rice University Once and For All Orna Kupferman a, Amir Pnueli b,1, Moshe Y. Vardi c a Hebrew University b Weizmann Institute c Rice University Abstract It has long been known that past-time operators add no expressive

More information

Probabilistic verification and approximation schemes

Probabilistic verification and approximation schemes Probabilistic verification and approximation schemes Richard Lassaigne Equipe de Logique mathématique, CNRS-Université Paris 7 Joint work with Sylvain Peyronnet (LRDE/EPITA & Equipe de Logique) Plan 1

More information

Synthesis via Sampling-Based Abstractions

Synthesis via Sampling-Based Abstractions Synthesis via Sampling-Based Abstractions Some Problems and Initial Ideas Matthias Rungger 2 Morteza Lahijanian 1 Lydia E Kavraki 1 Paulo Tabuada 2 Moshe Y Vardi 1 1 Department of Computer Science, Rice

More information

RICE UNIVERSITY. Büchi Containment and Size-Change Termination. Seth Fogarty

RICE UNIVERSITY. Büchi Containment and Size-Change Termination. Seth Fogarty RICE UNIVERSITY Büchi Containment and Size-Change Termination by Seth Fogarty A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Master of Science Approved, Thesis Committee:

More information

From MTL to Deterministic Timed Automata

From MTL to Deterministic Timed Automata From MTL to Deterministic Timed Automata Dejan Ničković 1 and Nir Piterman 1 IST, Klosterneuburg, Austria Imperial College London, London, UK Abstract. In this paper we propose a novel technique for constructing

More information

Bounded Model Checking with SAT/SMT. Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39

Bounded Model Checking with SAT/SMT. Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39 Bounded Model Checking with SAT/SMT Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39 Recap: Symbolic Model Checking with BDDs Method used by most industrial strength model checkers:

More information

Specifying and Verifying Systems of Communicating Agents in a Temporal Action Logic

Specifying and Verifying Systems of Communicating Agents in a Temporal Action Logic Specifying and Verifying Systems of Communicating Agents in a Temporal Action Logic Laura Giordano 1, Alberto Martelli 2, Camilla Schwind 3 1 Dipartimento di Informatica, Università del Piemonte Orientale,

More information

Weak ω-automata. Shaked Flur

Weak ω-automata. Shaked Flur Weak ω-automata Shaked Flur Weak ω-automata Research Thesis Submitted in partial fulllment of the requirements for the degree of Master of Science in Computer Science Shaked Flur Submitted to the Senate

More information

Binary Decision Diagrams

Binary Decision Diagrams Binary Decision Diagrams Literature Some pointers: H.R. Andersen, An Introduction to Binary Decision Diagrams, Lecture notes, Department of Information Technology, IT University of Copenhagen Tools: URL:

More information

Automata-based Verification - III

Automata-based Verification - III COMP30172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20: email: howard.barringer@manchester.ac.uk March 2009 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

Fast LTL to Büchi Automata Translation

Fast LTL to Büchi Automata Translation (LTL2BA) April 19, 2013 (LTL2BA) Table of contents 1 (LTL2BA) 2 Alternating Formula Improvements in LTL to VWAA Translation Improvements in VWAA to TGBA Translation Optimization of BA 3 (LTL2BA) (LTL2BA)

More information

Generating Deterministic ω-automata for most LTL Formulas by the Breakpoint Construction

Generating Deterministic ω-automata for most LTL Formulas by the Breakpoint Construction Generating Deterministic ω-automata for most LTL Formulas by the Breakpoint Construction Andreas Morgenstern, Klaus Schneider and Sven Lamberti Department of Computer Science, University of Kaiserslautern

More information

Lecture Notes on Emptiness Checking, LTL Büchi Automata

Lecture Notes on Emptiness Checking, LTL Büchi Automata 15-414: Bug Catching: Automated Program Verification Lecture Notes on Emptiness Checking, LTL Büchi Automata Matt Fredrikson André Platzer Carnegie Mellon University Lecture 18 1 Introduction We ve seen

More information

Comparison of LTL to Deterministic Rabin Automata Translators

Comparison of LTL to Deterministic Rabin Automata Translators Comparison of LTL to Deterministic Rabin Automata Translators František Blahoudek, Mojmír Křetínský, and Jan Strejček Faculty of Informatics, Masaryk University, Brno, Czech Republic {xblahoud, kretinsky,

More information

Introduction. Büchi Automata and Model Checking. Outline. Büchi Automata. The simplest computation model for infinite behaviors is the

Introduction. Büchi Automata and Model Checking. Outline. Büchi Automata. The simplest computation model for infinite behaviors is the Introduction Büchi Automata and Model Checking Yih-Kuen Tsay Department of Information Management National Taiwan University FLOLAC 2009 The simplest computation model for finite behaviors is the finite

More information

Logic in Automatic Verification

Logic in Automatic Verification Logic in Automatic Verification Javier Esparza Sofware Reliability and Security Group Institute for Formal Methods in Computer Science University of Stuttgart Many thanks to Abdelwaheb Ayari, David Basin,

More information

The State Explosion Problem

The State Explosion Problem The State Explosion Problem Martin Kot August 16, 2003 1 Introduction One from main approaches to checking correctness of a concurrent system are state space methods. They are suitable for automatic analysis

More information

A brief history of model checking. Ken McMillan Cadence Berkeley Labs

A brief history of model checking. Ken McMillan Cadence Berkeley Labs A brief history of model checking Ken McMillan Cadence Berkeley Labs mcmillan@cadence.com Outline Part I -- Introduction to model checking Automatic formal verification of finite-state systems Applications

More information

Alan Bundy. Automated Reasoning LTL Model Checking

Alan Bundy. Automated Reasoning LTL Model Checking Automated Reasoning LTL Model Checking Alan Bundy Lecture 9, page 1 Introduction So far we have looked at theorem proving Powerful, especially where good sets of rewrite rules or decision procedures have

More information

Prime Languages, Orna Kupferman, Jonathan Mosheiff. School of Engineering and Computer Science The Hebrew University, Jerusalem, Israel

Prime Languages, Orna Kupferman, Jonathan Mosheiff. School of Engineering and Computer Science The Hebrew University, Jerusalem, Israel Prime Languages, Orna Kupferman, Jonathan Mosheiff School of Engineering and Computer Science The Hebrew University, Jerusalem, Israel Abstract We say that a deterministic finite automaton (DFA) A is composite

More information

Model Checking & Program Analysis

Model Checking & Program Analysis Model Checking & Program Analysis Markus Müller-Olm Dortmund University Overview Introduction Model Checking Flow Analysis Some Links between MC and FA Conclusion Apology for not giving proper credit to

More information

Chapter 4: Computation tree logic

Chapter 4: Computation tree logic INFOF412 Formal verification of computer systems Chapter 4: Computation tree logic Mickael Randour Formal Methods and Verification group Computer Science Department, ULB March 2017 1 CTL: a specification

More information

arxiv: v1 [cs.sy] 26 Mar 2012

arxiv: v1 [cs.sy] 26 Mar 2012 Time-Constrained Temporal Logic Control of Multi-Affine Systems Ebru Aydin Gol Calin Belta Boston University, Boston, MA 02215, USA e-mail: {ebru,cbelta}@bu.edu arxiv:1203.5683v1 [cs.sy] 26 Mar 2012 Abstract:

More information

Modal and Temporal Logics

Modal and Temporal Logics Modal and Temporal Logics Colin Stirling School of Informatics University of Edinburgh July 23, 2003 Why modal and temporal logics? 1 Computational System Modal and temporal logics Operational semantics

More information

970 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL Conversion Algorithm of Linear-Time Temporal Logic to Büchi Automata

970 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL Conversion Algorithm of Linear-Time Temporal Logic to Büchi Automata 970 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 Conversion Algorithm of Linear-Time Temporal Logic to Büchi Automata Laixiang Shan a,c, Zheng Qin b,c, Shengnan Li a,c, Renwei Zhang b, Xiao Yang b a

More information

New Complexity Results for Some Linear Counting Problems Using Minimal Solutions to Linear Diophantine Equations

New Complexity Results for Some Linear Counting Problems Using Minimal Solutions to Linear Diophantine Equations New Complexity Results for Some Linear Counting Problems Using Minimal Solutions to Linear Diophantine Equations (Extended Abstract) Gaoyan Xie, Cheng Li and Zhe Dang School of Electrical Engineering and

More information

Monitoring the full range of ω-regular properties of Stochastic Systems

Monitoring the full range of ω-regular properties of Stochastic Systems Monitoring the full range of ω-regular properties of Stochastic Systems Kalpana Gondi, Yogesh K. Patel, A. Prasad Sistla University of Illinois at Chicago Outline of the talk Motivation Outline of the

More information

Impartial Anticipation in Runtime-Verification

Impartial Anticipation in Runtime-Verification Impartial Anticipation in Runtime-Verification Wei Dong 1, Martin Leucker 2, and Christian Schallhart 2 1 School of Computer, National University of Defense Technology, P.R.China 2 Institut für Informatik,

More information