Transition Probabilities for the Dipole Allowed Fine Structure Transitions in S II

Size: px
Start display at page:

Download "Transition Probabilities for the Dipole Allowed Fine Structure Transitions in S II"

Transcription

1 Physica Scripta. Vol. 55,00-3, 1997 Transition Probabilities for the Dipole Allowed Fine Structure Transitions in S II Sultana N. Nahar Department of Astronomy, The Ohio State University, Columbus, Ohio, U.S.A. 3 Received December 1,1995; accepted in revisedform March,199 Abstract The atomic quantities for bound-bound transitions such as the oscillator strengths, the line strengths, and the Einstein A-coefficients are obtained for a large number of dipole allowed (AS = 0) transitions for the astrophysically important ion SII. The oscillator strengths in LS coupling are obtained in an ab initio manner in the close coupling approximation using R-matrix method. The quantities for the fine structure transitions are obtained through an algebraic transformation of the LS values. The spectroscopic energies of the fine structure levels are used instead of the calculated energies to improve the accuracy of these values. Present calculations employs a 17-state eigenfunction expansion of the SI11 core states. Results are presented for 1 h e structure dipole allowed transitions in S I1 corresponding to 350 transitions in LS coupling. This work reports the rst extensive tabulation of S I1 radiative transitions including fine structure. Comparison is made with the available experimental and theoretical data and good agreement is found with the observed values and other accurate theoretical works. 1. Introduction SI1 is an astrophysically important ion [l], but like most other comparatively larger ions, theoretical studies for the radiative transition probabilities of this ion were carried out only in a small limited scale. However, accurate as well as extensive data are needed for the interpretation of observations being made, such as sulfur emission spectra of the plasma torus of Jupiter s satellite Io by Voyager I and I1 []. Furthermore, collisional rate coefficients have recently been computed for a large number of transitions in SI1 [3] and it is desirable to complement the atomic datasets for astrophysical modeling with radiative data. The first extensive work on S I1 was carried out by Butler et al. [] under the Opacity Project (OP) [5]. Like all OP calculations, their work was also carried out in LS coupling. But for laboratory plasma experiments and for a variety of astrophysical model applications, it is often the fine structure transitions that are required, rather than the LS values. The purpose of the present work is to provide a reasonably complete set of oscillator strengths ($values), line strengths (S-values) and the transition rates (A-values) for the dipole allowed fine structure transitions in SII. The method has been applied to several other ions [, 71, and is briefly summerized below.. Summary of the theoretical work and computations The calculations for the atomic parameters of the fine structure transitions are based on obtaining the line strength, S, in an ab initio manner in the close coupling (CC) approximation. In the CC approximation the core ion, termed as the target, is represented by an N electron system. The wavefunction expansion, Y(E), for any symmetry, SLx, of the total (N + 1) electron system is represented in terms of the target states as : i j where xi is the target ion wave function in a speci ic state Si Li xi and Oi is the wave function for the (N + 1)th electron in a channel labeled as SiLi xi k: li(slx); k? being its incident kinetic are the correlation wavefunctions of the (N + 1) electron system that compensates the orthogonality condition of the total wavefunction. The CC sums imply extensive configuration interactions in the coupled wavefunctions for each SLx. Therefore, provided the relativistic effects are small, the ab initio computations for the derived transition matrix elements should be accurate. The line strength, S, for transition between the initial i and the final f states is obtained as S I<yfIIDIIYi)I, () where the operator D is It in length form, the sum going over total number of electrons in the ion, and Yi, Yf are the initial and final wavefunc- tions respectively. The line strength depend on the wavefunctions, not on the energies, of these states. As we expect the present CC wavefunctions to be very accurate, it is possible to obtain improved oscillator strengths by using observed, rather than calculated, energy differences. Using the energy difference, Efi, of the initial and final states, the oscillator strength, fif, for the transition can be obtained from S as and the Einstein s A-coefficient, AJi, as where tl is the fine structure constant, and gi, gf are the statistical weight factors of the initial and final states, respectively. In terms of c.g.s. unit of time, Afi(a.u.) Afi(K1) = 9 70 where zo =.191- s is the atomic unit of time. For the present work, the values of Efi are used from the observed energies. (3) () (5)

2 Transition Probabilities for the Dipole Allowed Fine Structure Transitions in S II 01 Table I. The 17 states of S III employed in the close coupling eigenfunction expansion of S II 3s3pz 3s3pz 3s3p3 3s3p3 3s3p3 3s3p3d 3s3p3d 3s3p3d 3s3p3d 3p= 'S' 3Do ' Do ' Po P" 3Do 'D" 'PO 3s3p 3s3p3 3s3p3 3s3p3d 3s3p3 3s3ps 3s3ps 3s3p3d 'D' so 3P" 3F0 3 so 3P0 'PO ' F" Spectroscopic configurations: 3s3p, 3s3p3, 3s3p3d, 3s3ps Correlation congurations: 3s3p3d, 3s3dZ, 3p, 3p33d, 3s3p3dZ, 3p3s The fine structure line strengths, SJJ, are obtained from the LS multiplet strength, SLs, through the algebraic transformation as Sjj = C,r(Ji, Jf)S,s/[(Si + 1)(Li + 1)(L, + I)], (7) for the allowed transitions (AJ = 0, k 1). Si is the spin multiplicity which remains the same (Si = S,) during the transitions. The values of the coefficients CAl(J,, J,) are obtained from Allen []. The SJJ values satisfy the condition The fine structure f-values, fjj, can also be obtained directly from the LS oscillator strengths, fls, as [9] fjj(nf Si L, J,, ni Si Li Ji) = fls(ns Si L,, ni Si Li)(J, + 1) x (Li + l)wz(l,lij,ji; lsj, where W(L, Li J, Ji; lsi) is a Racah coefficient. The above values also satisfy sum 1 (51 + l)fjj(nf JiJf Si L, J, 3 ni Si Li Ji) (9) = (Si + 1)(Li + l)fls(nf S,L,, ni Si Li). () Both algebraic transformations yield fine structure components with about the same accuracy. In the first case the fine structure splitting is carried out for the LS line strengths whereas in the latter case for the LSfvalues. The first transformation is more convenient to use when observed levels are available. The direct transformation of fvalues is used Table 11. Absolute measured (expt) and calculated (calc) energies (in Rydberg unit) of S II. The negative sign of the energies are not shown. The degeneracy of the states are assinged in ascending order for the even parity and descending order for the odd parity states belonging to the same symmetry. An ast erisk next to a state indicates incomplete set of observed energy levels for the state. Term E (expt) E (calc) Term E (expt) E (calc) s" z Po a 'Dm b Pe b 'Pe a 'Fe b 'D' a 'G' z P" y 'Do y ' PO b 'SC c 'PC x 'Do d 'De e ZD' e Pc b Fc e Pc w zpo y P" W 'D" f 'De b 'G' f P' h 'Po c Dc gpc d 'Se i 'Pc h Pr d "D; i Pn c 'GC j Pc s3p3 3s3p 3~'3p'(~P)3d 3~'3p~(~P)3d 3~'3p'(~P)3d 3s3p 3s'3p'(3P)p 3s3p'(3P)p 3~'3p'(~P)3d 3s'3p'(("P)p 3s3p('P)3d 3s3pZ('D)3d 3s3p('D)p 3s3pZ('D)p 3s3p 3s'3p(3P)5s 3s'3p('D)3d 3~'3p'(~P)d 3~'3p'(~P)d 3s3p'('P)5p 3s3p'(3P)5p 3~'3p'(~P)d 3s3p'('D)5s 3s3p('D)d 3s3p'('D)d 3~'3p'(~P)Sd 3s3p( ' D)d 3s'3pZ('D)5p 3~'3p'(~P)Sd 3~'3p~(~P)Sd 3s3p(3P)7s 3~'3p'(~P)d 3s3p( 'D)s 3~'3p'(~P)7d 3s3~'('D)7s -. I Z'D" a Pe a 'Po a Fs a Dc a 'Se z 'so z Do c P' y s0 c 'De b 'Fe Z 'F" x 'PO d 'P' d Pe c 'se b Dc c 'Fe y D0 x so f 'PO g 'De d 'Fe g P' c Fs h 'De y 'FO e 'Fe i 'De j 'Pc d F: j 'De e D' k 'De

3 0 S. A. Nahar for the LS multiplets where a complete set of observed fine structure levels is unavailable for one or both the terms, and for transitions between high angular momentum states (transitions higher than H tt I). Calculated energies are used for these cases. The lifetime of a state can be obtained easily once the A-values of the state are known as 1 ~ 7, = -, A, where A, is the total radiative transition probability for the statej; i.e., A, = c AYi (1) i The present work on LS oscillator strengths for SI1 is carried out in a similar manner to the OP work [], but employing a 17-state eigenfunction expansion which inclues the s orbital (the OP expansion with 15-states does not include the s orbital); the relevant data for SI11 are given in Table I. The 17 states, dominated by configurations 3s3p, 3s3p3, 3s3p3d, and 3s3ps, of the core ion S 111, are optimized using the atomic structure code SUPER- STRUCTURE [lo]. The theoretical details of the close coupling approximation using the R-matrix method are described in Ref. [5]. The computations are carried out using the R-matrix codes [11] as developed for the OP [5]. The number of radiative transitions in S I1 in the present work exceeds that of the previous OP calculations [], and includes 31 LS bound states below the first ionization threshold and 500 LS multiplets. A comparison is made of the present calculated energies with the observed ones in Table 11. The observed LS energies are obtained through statistical average of the observed fine structure level energies. An asterisk next to a state in the table indicates incomplete set of observed energy levels for the state. The number of observed bound states of S I1 is smaller, 70 LS terms in total [1], than the number of calculated bound states, 31. The calculated energies are within 5% difference of the 5 observed LS energies; the other 5 are within %. For the fine structure transitions the algebraic transformations of the LS values are carried out as described above, with improved accuracy using spectroscopically observed energies, and employing the computer code JJTOLS [7]. Results are obtained for transitions between only those LS states that have been observed, with either complete or incomplete set of observed fine structure levels. Each observed LS term has been designated by a degeneracy symbol, as shown in Table 11, and is employed in representing the transitions in this work. This degeneracy assignment may not necessarily match the observed one; an ascending order of alphabets is chosen for the observed even parity states of a symmetry, while a descending order is chosen for the observed odd parity states. In order to ascertain the accuracy of the present results, comparison is made with available theoretical and experimental values on SI1 in Table 111. Present f-value for the transition 3s3p3(z 'Do)-+ 3s3ps(bDe) agrees very well with the $value obtained from the beam-foil experiment by Ryan et al. [ 11 in comparison to other calculations such as by Butler et al. [] and Ojha and Hibbert [13]. Among the available theoretical calculations, the works of Butler et al. [] and Ojha and Hibbert [13] are the most elaborate ones, the former using the R-matrix close coupling method and the latter from an optimised configuration-interaction type atomic structure calculation. For the other transition 3s3p3(z P0) --f 3s3ps@ 'De) the present f-value is signscantly lower than that by Ryan et al. [1]. This experimental f-value is much higher than the calculated value by Butler et al. [] as well indicating a possible overestimation in the measured value. Thef-value of both Butler et al. [] and Ojha and Hibbert [13] agree very well with the measured value of Lawrence [15] in pulsed-beam experiment for the transition z S0 -+ a Pe, whereas the present f-value is about 1% higher. This difference is reflected in the lifetime comparison as well, presented in the lower part of the table, for the fine structure components 3s3p(a Pe)5/, 3/, of the same multiplet obtained from the same measurement by Lawrence [15]. The calculated f-value by Cai and Pradhan [3] is lower than the measured value; their calculations were primarily intended for collisional data for S I1 and not particularly optimized for radiative quantities. The present $values are compared for a few more transitions with the other calculations, and all theoretical values are found to be in reasonable agreement with each other for the strong transitions. However, Ojha and Hibbert [13] obtain a higher value for the transition z S0 -+ b Pe compared to the other calculations. For the relatively weak transition z 'Po + a 'Se the present f-value agrees with Ojha and Hibbert, while for z 'Po --f a 'De they agree better with Table 111. Comparison of the present $values and lifetimes (7). fir Transition Present Expt. The0 z'd" + a 'De 'D" + b 'De z'd" + c 'De zp" + a 'se z'p" + a 'D' z'p" + b 'De Z'P" -9 C'D' zs0 -, ap' zs0 -, by s" -, C~P' b, O.OllC, 0.01' 0.1 (0.0)g 0.15b, 0.151' 0.1b, 0.15', 0.1' 0.00", 0.00' O.OO1lb, c, 0.001' 0.0 (0.1). 0.01b 0.3b, 0.33' 0.03 (0.00)d 0.03b, 0.039", 0.0' 0.3b, 0.0', 0.33'.3b.."..' 7 (ns) State Present Expt. Theo. 3. Results and discussion ap' ()d apc ()d ape 1/ ()d The$, S, and A-values are obtained for a large number of fine structure transitions in SII. These results Drovide the first extensive set of fine structure transitions in S 11. The earlier calculations are mainly for LS transitions and are limited to a small number of transitions except the work by Butler et al. []. aryan et (199). Butler et al. (OP). E ojha and Hibbert (199), Lawrence (199). 'Cai and Pradhan (1993).

4 Transition Probabilities for the Dipole Allowed Fine Structure Transitions in S II 03 the CC calculations of Butler et al.; the present f-value is higher than the other calculations. The complete set of f-, S- and A-values for the dipole allowed fine structure transitions in SI1 obtained in the present work is presented in Table IV. The first line of each subset of data in the table corresponds to the LS transition, followed by the fine structure components. The degeneracy labels of the LS terms in the table correspond to those assigned in Table I1 for the energies. The energies of the initial and final levels in the fine structure set are given in unit of cm-, while the initial and the final LS states and the transitional energy differences are given in Rydberg units. The A-values are given in s-l, An asterisk () below an LS term in Table IV indicates an incomplete set of observed energy levels, and an asterisk for the energy corresponding to a transition indicates one or both of the levels missing from the set of observed energies. The table contains 1 fine structure transitions corresponding to 350 in LS coupling. The results obtained in the present work correspond to the 1 fine structure transitions among the 70 observed LS bound states of SII. This is comparatively a small fraction of the total number of possible fine structure transitions that can be processed among 31 calculated LS bound states. Based on accuracy of the calculated energies and comparison with other works, the accuracy of the present f-, S- and A-values should be within 15-0% for most of the transitions. It should however be noted that the present method obtains the fine structure components through pure algebraic transformation and does not consider any relativistic mixing of LS terms explicitly in the wavefunctions. This may result in higher uncertainty for transitions between highly excited levels where LSJ-mixing is significant. In that case the intercombination line could be strong enough to reduce the strengths of some of the dipole allowed lines, or shift the strengths among some fine structure components.. Conclusion Radiative transition probabilities for a large number of transitions in S I1 are presented. Observed energies are used in the transformation of the LS coupled transition matrix elements to fine structure for improved accuracy. As there are only a few experimental oscillator strengths available, a comprehensive evaluation of the theoretical data is difficult ; however there is good agreement with previous accurate theoretical calculations. The overall uncertainty due to relativistic effects for the dipole transitions should be small. However the transitions among highly excited levels may have higher uncertainty due to neglected mixing effects. Present results should provide a reasonably complete set of data for a large number of fine structure transitions in S 11. The entire table of transition probabilities and energies, Table IV, is available in electronic form from the author at: nahar@seaton.mps.ohio-state.edu, (a FORTRAN77 code is attached to the table to read the A-values and calculate the lifetimes). Acknowledgements I would like to thank Professor Anil K. Pradhan for comments and suggestions. This work was supported by NASA grants NAGW-3315 and NAS- 33. The computational work was carried out on the Cray YMP at the Ohio Supercomputer Center. References Osterbrock, D. E., Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (University Science Books, Mill Valley, CA 199). Moos, W. et al., Astrophys. J. 3, L5 (1991). Wei Cai and Pradhan, A. K., Astrophys. J. Suppl.,39 (1993). Butler, K., Mendoza, C. and Zeippen, C.J., (to be published); data is. presently stored in the Opacity Project database, TOPbase, at CDS. Seaton, M. J., J. Phys. BU), 33 (197). Nahar, S. N., Physica Scripta,97 (1993). Nahar, S. N., Astron. Astrophys. 93, 33 (1995). Allen, C. W., Astrophysical Quantities (3rd Edition) (Athlone Press, London 197). Seaton, M. J., Yu, Y., Mihalas, D. and Pradhan, A. K., Mon. Not. R. Astron. Soc., 05 (199). Eissner, W., Jones, M. and Nussbaumer, H., Comput. Phys. Commun.,70 (197). Benington, K. A. et al., J. Phys. BZO, 379 (197). Martin, W. C., Zalubas, R., and Musgrove, A., J. Phys. Chem. Ref. Data 19, 1 (1990); Kaufman, V. and Martin, W. C., J. Phys. Chem. Ref. Data, 79 (1993). Ojha, P. C. and Hibbert, A., J. Phys. B, 1153 (199). Ryan, L. J., Rayburn, L. A. and Cunningham, A. J., J. Quant. Spectrosc. Radiat. Transfer,95 (199). Lawrence, G. M., Phys. Rev. 179,13 (199).

5 0 S. A. Nahar Table IV. The$, S- and A-vulues for transitions in S II E Ef Efi Transition cm-' cm-' RY S zs0-+ape B E -0.3B E O.Oo0 O.Oo B-01 7.E E E E B E E E-01 5.E E B+ 07 zso+b P' E E-01.0E E O.Oo E E B E-01 1.E-01.E -0.01E E B E+ 0 9.E E E E B E+09 O.Oo0 O.Oo0 O.Oo E E E E E E E E ES E ES E+ 09 zs0+d P" B E E-01.57B + 0 O.Oo0 O.Oo0 O.Oo E -0 1.E -0 7.B E E-01.50E-0.70B + 0.9E zs0+epc E E-01.E E E E E+00.5E E-01.3B-0.131E E E E E+09.70E + 09 z S0+f Pe E E E E+07 O.Oo0 O.Oo0 O.Oo E E E E B E B B E-0.1E+ 07.7E E +07 zs"-+gp' E E E E O.OO E E E+00.01E E -0.9E E-01.07E-01.E E E E+ 09 zso-+hp' B E E E-03.7E E E E-0.75B-03.3E E E E E E-01.5E O.Oo B E E E-0.37E E -0.79B E E- 0.39E+ 0.50E+0.55E E E -0.79B E+0 O.Oo0 O.Oo0 O.Oo E E E B-0 1.5B-0.E E E-0.5 1E- 0.55E + 0.5B + 0.0E + 0 y S0-+d Pc E E E+ 01.5E E E E E E E E E B E E + 07.E + 07 y s0+e Pc E E-01.1E E E- 01.7B-01.9B E - 01.E E B E E E B+0 1.9E + 0

6 Transition Probabilities for the Dipole Allowed Fine Structure Transitions in S II 05 Ei Er Efi ; Transition cm-1 cm-1 RY 9f 9, fir S S- ys"+fp' E E E E E E E E-0.57E -03.9E E E E E Ef0.93E+0 ys"-gpc E E E E ,39E E-01 3,1E E E-0 1.0E E E + 00.E E E E+07 y S"+h pc E E E E E E E E-03.0E E E-01.E-0.05E E+0 3.1E E+0 yso+ip' E E-0 1.0E + Do 1.70E E E E E E E E E E-01 1.E E E+07 yso+j p' E E E E E-01.3E E E E-03.51E-03.07E E E E E E+0 x S0-f Pc E E E E E E E E E-01.1E E+01.13E E E+0 5.1E E + 0 x S"+g P' E E E E E E E -0.59E E E E E E E E E +07 xs"+hp' E E E + 00.E E E E E E- 0.5E E le E E+ 0.13E+0.0 1E + 0 xso+ip' E E E E E E E-01.13E-0 5.E-0.73E E E+00.19E E E E + 07 xso+jpe E E E E E E E E E E E E E E E+0 a pc+ys E E E-01.7E E E E E-0 1.1E E E E E E E E+07 apc+xp E E-03.07E E s E E-01 A 9.57E E s E E E E E+07

7 0 S. A. Nahar Ei E, EJi Transition cm-' cm-' RY 9i gj fij a p0+z P E E -0 ap'+y P0 ape+zdo E E E-01.5E E-01.57E E E E E E E E E E-01.3E -01.E E-01.7E-01.17E E E E-01.31E E - 0.7E E E E E-0.5E E E E E E E E E-0.5E E E-07.NE E-05.35E-0.3E-05.5E-05 S 1.1E E E E E E E E E-01.E E -0.77E - 0.E-03.5E - 0.5E E E E E E E E E E E-0.3E E E E E E E + 07.E E E E E E E+07.05E Ec0.9E + 0.3E E+0.133Bf03.97E + 0.5E + 0.7E E E+0 ap'+yd" E E-0.997E E E E E E E E E E-01.7E E E E E-0.93E E E E -0.97E E-0.93E E E -0.97E-03.97E E + 0.E E E E+05.31E E E + 0 b Pe+ySo E E E E+0, E E E E E E E E E E E E+07 b pc+x s E E E E E-01.00E -01.5E E E E E E-0.099E E E E + 0 b Pe+zp E E E+01.E E E E E E E E E E E E E E E-0.53E E Ef00.1E+00.90E E E E E+07.7E E E E -k E + 07 bp"+ypo E E E-01.0E E E E E-01.30E E E E-03.3E E-0.0E E E - 03.E -0.51E E E E E-0 1.E-0 3.0E E E E E E E+0.0E + 05

8 Transition Probabilities for the Dipole Allowed Fine Structure Transitions in S II E E E E E E E E E E E-01 1.E E E E-0 3.MlE E-01.71E E-01.71E-01.93E E E + 00.E E E E E E+07.07E E E E E E E+07 b Pc+yDo E E-0.905E-0 3.E OE-01.75E E E-01.9E - 01.E E E- 01.7E-0.09E E E -0 1.E E E E-0 1.1E -0.1E E - 0. l00e E-03.1E -0.1E -03.1E E E E+0.15E E E E+05.59ESO5 cp'+ys" E E - 03.E E E E E E E E-0 1.3E+01 9.E+00.73E E+0.355Ei E+00 c PC+X s E E - 03.E-01.95E E-01.E E-01.57E-03.0E E E-01.E E E+0.97E E+ 0 cp"yp" E E E - 01.E E E-01.1E-01.39E-01.ME -01.7E E E E-03.3E E - 0.1E E E-0.735E E E E E E E E E E E E E+0.00E + 05 cp'+yd E E-03.1E E E - 01.E E-01.0E-01.30E E E E-01.30E E E E E-0 1.3E E E E E - 0.1E-03.53E-0.97E E E E-0.371Ef05.0E E E E E E+05.1E+05 dp'+xs" ME E E+ 0.E E E E E-01.0E E E E E ES 0.0E+0.3E + 0 d P'+ y P E E E+0 1.7E E E E-0.30E -0.50E -0.70E E E E-01.3E-01.30E - 0.1E E E-0 9.7E+01.17E E E E E E E+07.03E E+0.0E E E E+0

9 0 S. A. Nahar Ei E/ Eft, Transition cm-' cm-' RY 9i gf A/ S d P'+y Do E E E+0 1.3E E E E-0.00E OE E -0.00E E -0.75E E E-0 5.3E-01.37E E - 0.9OE-01.OE-01.03E E E+00 l.07e E+ 01.E E+Ol.3E E E E+05 1.WE E+ 0.1E+0.39E+0 1.1E E E-0 1.0E E E E E-0.E E -0 7.E E E+01.37E+01.03E E +OS 9.E E E Ef0 1.33E E E E-0 1.0E E OE E-0.33E-0.17E E- 0.57E -03.9E -0.9E E E+01.5E+01.5E E+00.E+01.E E E E +0.79E E+0 1M3E E E+ 0 ep"+ydo E E-05.99E-0 1.E E-0 1.0E E E-0.300E E E E E E- 0.0E E E E-07.99E - 0.1E E-0.5E E E E-03.E -0.1E E-03.3E E E E E E E E+ 00 a 'Da-a P E E-0 3.E+01.E E E E E E E E-01 1.E E-0.51E-0.19E E-0.39E E E - 0.5E-0 1.3E ES00 3.E E E E E+00.7E+00 1.E+ 07.E E E E E E E + 07 ad'-+ypo E E E E E E E E E E E E E E E E - 03.E E-0.09E E E E E E-01.09E-0 1.5E E-0.37E-0.595E E + 0.E E E+0 5.Et-05 5.E E+0 adc+zdo E E E E E E E E E E E E E E E E-03.E E E E E E E-0 1.1E E+ 00.1E- 01.1E E E E E E E E E+ 05.3E E+0 9.9E E E E+0 7.3E E+ 0

10 Transition Probabilities for the Dipole Allowed Fine Structure Transitions in S II 09 Transition E, an-' a De+y D E -01 Bi gr 0 0 ftr 3.0E -0 ; S S-.907E E E E E E E E E-01 3.E E-01 3.E-01.7E-0.55E E E-0 7.E E-0 1.7E-0 7.9E E E-0 1.3E E E -03.1E E E E -03.5E E E E E E+ 0.5E E E E E E E+ 05 b D'+yP" E E E +0.33E E-0.30E-0.E E E-0.00E -0.00E E E-01.3E E E E E E E E E E E E E E E+0 9.3E E E+0 1.7E E E+ 0.E+0 b D'+y Do E E E + 0.E E E E E E E E E E E E -0.70E E-0 3.E E -0.71E -0.37E E E E-0 3.E+01.19E E E E E E E E E+00.7E E+O5 1.17E E E E+05.3E E E E + 05 afe+zdo E E E E E E E E E E-01 1.E-01 1.E E E E E E -0.0E-0.351E-03.30E -0 3.E-0.05E-0.1E+01.E E E E E-01 9.E E E E E E+05.75E E E E E E+07 a F"+y D E E E E E-01.E E-01.53E-01.71E-01.3E-01.9E -01.1E-01.51E E E-0.05E E E E-0 5.E E-03.5E E E -0.5E E-01 7.E E-03.07E E E E E Ef E +07.9E E E+07.E E+07 bfe+ydo E E-01.9E UE E OE-0.90E -0.0E -0.30E E - 0.E E-0.30E E E - 0.7E-03.19E-01.77E -0 5.E E E E E E E E+0.51E E E E+01.9E E E E+ 0.1E E+0.599E + 0.5E E+0 5.1E+0

11 S. A. Nahar Transition Ei cm-' ZP0+Cpe 0.53 E f cm-' gf E E E+01.99E + 03 S E-03.00E E E E E E - 0.0E E-03.77E E E E E-03 1.E+Ol.5E+00.5E E t 00.53E+00.53E E E E+0.30E E E E + 03 z P"-.d Pe E E E E E E E E E E-01 1.E E E-0.999E-0.07E -0.0E E E ES E E E t E t E E f00.011es07.07e t E+07 7.E + 0.5E E E E E E E , E E-01.35E-01.3E E E E E E -0.70E-0.503E-0 1.9E E E E+00.01E E+00.0E E E-01.13E E E E E E le+ 07 zp"+fp' E E -0.71Et00.9E E E E E E E E E E E E E-0.1E-0.1E E-01.17E E E E E E E E t 0.91E+0.95E E E E+0 zp"+gp' E E E E E E E E E E E E E E-0.35E E-0.7E E E E E-01 1.E E E E-0.15E E t E Et0.7 15E E t E + 0 z P"+h P' E E-03.37E E E E E E E E E E E E E E E E E E E E-0 1.1E E -01.E-0.70E E Et E E E E E E E E E E E E-01.11E-01.1E -01.1E E E-03.79E E-03.39E-03.79E E E E E-01.09E E E-01.51E E E + 0.3E E E t 07.00E t 0.1E+0

12 Transition Probabilities for the Dipole Allowed Fine Structure Transitions in S II 11 Transition zpo,. JP c Ei cm-' E E E - 01.E E E E-01.E E E E E E E E-03 7.E E-01 1.E E E E E E E E E E+0.1E E E E E + 0 zpo+bd' E E E Ef E-01.9E -01.E-01.13E E E E E E E E-0.91E-01.51E E E E E E E E E E E E E E Ef0 1.E E+07.3E E E+0 z P0-x Da E E E E E E E E E E E E E E E-03.E-0.1E E E E-0.55E+ 00.E E E E E E E E ES E+0.9E E E E E + 07 zp"+dd' E E E E E E E E E E E E E E E E+00.5E E E E E E E E E E E E E Bf0.51Ef0.03E E + 07 z P0+e Dc E E E E E E-03 1 SE E E E E E-03.37E E E -0.37E E-01.1E E-0 5.3E E E E+0.175E E E E+M 1.0E E E+0 y P0-+f Pc E E E E yp"+gp' E-0 7.0E E E E E E E-0 9.7OE-0 9.0E E E E E E E E-0 1.0E E E-01.90E E -0.5E E E E E E-01.17E E E ES01.131E E E E E E E E E+01.5E E E E E E E E E E +0.07E E E E E+0.73E E E E + 0

13 1 S. A. Nahar Transition Ei an-' Efi RY 9i gf S y P"+h Pe E E E E E E E E E E E E l00e E E E E-0.1E E E E+00.11E E E E E+ 0.1E+0.1E + 0.0E+05 5.E + 0.1E E E E E E E E E E E E-01.9E E E E E E E E+00 1.E+00 1.E E E E E E+0 3.7E E E E E E+0 ypo+j pe E E - 0.7E E E E E E E E E E-0.1E E-03.00E E-03 1.E-0.503E E E E E E E E - 0.9E Ef0 1.35Ef0.090E E E E+05 yp"+c Dc E E E +O 3.539E E -0.90E -0.30E -0.9E-0.50E-0.E-0.70E -0.70E E E E-0.11E-01 3.E E-0.07E E ES E E E+01.55Et E E E E+0 1.5E+0. 19E E+07.0E E E + 07 ypo+dd' E E E E E E E E-0 1.5E-0.05E-03. 1E E E E-0 5.1E-0.97E E+00.7E +bo.97e E300.3E E-01.01E ES E E E E E E + 0.E E + 0 ypo+ed' E E E E - 0.1E E E - 0.0E E-0 1.3E E-0 1.3E-0.301E+00.51E E E E+00.7E E E E E E E+0.757E E+0.91E E+ 05.9E+0.59E+0 z D'+C Pc E E E Ef E-0.E E-0.30E E E-0.7E E E E E E E-0.37E E -0.5E-0.309E E E E-01.15E-0 9.E-03.11E-0.11E-0.1E E E E E E E E + 03

14 Transition Probabilities for the Dipole Allowed Fine Structure Transitions in S Transition Ei an-' Ef an-' zd"+dp' Eli RY.0E i gf fif Af; S S E E E E E-01.03E E E E E-01.1E -01.E E E E E E -0 1.E -01.5E E E E+ 01.9E E E E E+07.30E + 07.E E E+ 07.3E+0.001E+07.1E +07 zdo+epe QE E E E E E E E-01.55E E E-01.51E E E E - 0.1E E E E E E E E E E-01.E -0 1.E E E E+05 3.E E + 0.7E E+0 zd"+fp" E E - 0.7E E E-01 3.E E E-01 3.E E E E E -0.3E E E - 0.5E E -0.7E E E E E E E E E Et0 9.11E E E E+0.1E E + 07 zdo+gp' E E E E E E E-01 3.E E E E-01 1.E E -0.3E-05.71E-0.3E-0.09E E E-03.13E E -0.01E-03.E-0.177E E E E E $0 3.9E E E+0 7.5E E E E+0 zd"+hp E E E+ 00.3E E-01.10E E-01.13E E E E E E E E E-03 5.E E E-03.01E E E E E E E E E E+07.WE + 0.E E E E E+07 l.lloe + 07 z "Do+i Pc E E-0.53E -0 1.E E- 01.5E-01.75E-01.E E E-01.93E E E E -0.3E E-0.E E E E-0.09E E-03.53E E- 0.95E E E E-03.73E E E+ 0 7.E E E E E+05

15 1 S. A. Nahar A Ei El Eli S s-f; Transition cm-' cm-' RY Bi gr fir z~~+.j ~ c zdo+b Dc z ~o-c ~ e z~d"-+~~d~ Do' e De z D"+ b Fe E E E E - 01.E E -01.7E -01.1E -01.0E -01.1E -01.9E E-01.3E-01.7E-01.30E-01.99E E E-01.30E E E E E E E E E E E E E E-01.0E-01.01E-01.7E - 01.E-01.3E-01.5E E-01.57E-01.59OE E -01.1E -01.E E-01.19E E E E-01.1E E E - 0.3E E E E E-0 3.7E-05 9.ME E-0 1.7E E-01.07E - 0.7E-0.7E E E E E -0 7.E E E -0.09E E E E E E E E E OE E E -0.E-0.E E E E E-03.1E-03.15E E E-03.57E E E E -0.07E E E E E-0.1E E E-0.E E E-01.97E E E-01.1E E - 0 l.171e-0.3e E E E-03.79E-0.39E E E E+01.1E+00.1E ES00.73E E ES E E E+00.9E+00.50E E E E E E E E-01 1.E-01 1.E E E E-0 3.5E E E E-0.95E E E E -0.E -01.E E E - 0.E E E E E-0 1.3E-0 1.3E -0.17E+0.31E E E E E E E E E+01.0E E Ef E E E E E E E E Ef07.971E E+07.19E E E E E E E+07 1.E E E+0.E+0 5.7E+0 3.0E E E+0 3.7E E E+0 5.E E E E E E + 0.9E E E+0 3.0E E + 0.5E E E E E E E+0 1.5E+0 7.3E E + 0.E + 0.1E E E+0.093E+0 5.7Ef07.77E E+0.759E E+0

Transition Probabilities for the Dipole Allowed Fine Structure Transitions in Sll

Transition Probabilities for the Dipole Allowed Fine Structure Transitions in Sll Physica Scripta., Vol.55, 200-238, 1997 ISSN: 1402-4896/55/2/012 (print) doi: 10.1088/0031-8949/55/2/012 IOP Publishing http://journals.iop.org/ http://www.iop.org/ej/journal/physscr Transition Probabilities

More information

Astronomy and Astrophysics Supplement Series, Vol. 119, November I 1996, DOI: /aas:

Astronomy and Astrophysics Supplement Series, Vol. 119, November I 1996, DOI: /aas: Astronomy and Astrophysics Supplement Series, Vol. 119, November I 1996, 509-522. DOI: 10.1051/aas:1996263 http://aas.aanda.org/10.1051/aas:1996263 ASTRONOMY & ASTROPHYSICS NOVEMBER I 1996, PAGE 509 SUPPLEMENT

More information

Photoionization of Fe

Photoionization of Fe J. Phys. B: At Mol. Opt. Phys. 26 (1993) LlLL6. Printed in the UK LETIXR TO THE EDITOR Photoionization of Fe Maryvonne Le Doumeuf?, Sultana N NaharS and Ani1 K F radhans t Laboratoire de ThCorie des Processus

More information

Transition Probabilities for Dipole Allowed Fine Structure Transitions in Silike Ions: Si I, S III, Ar V and Ca VII

Transition Probabilities for Dipole Allowed Fine Structure Transitions in Silike Ions: Si I, S III, Ar V and Ca VII Physica Scripta., Vol 48, 297-325, 1993 ISSN (print): 1402-4896/48/3/008 doi; 0T10.1088/0031-8949/48/3/008 The Royal Swedish Academy of Sciences This is an un-copyedited version of an article accepted

More information

FINE STRUCTURE RADIATIVE TRANSITIONS IN C II AND C III USING THE BREIT PAULI R-MATRIX METHOD SULTANA N. NAHAR

FINE STRUCTURE RADIATIVE TRANSITIONS IN C II AND C III USING THE BREIT PAULI R-MATRIX METHOD SULTANA N. NAHAR Atomic Data and Nuclear Data Tables, 80, (2002) p.205-234. ISSN: 0092-640x ISSN (electronic): 1090-2090 doi:10.1006/adnd.2002.0879 2002 Elsevier Inc. All rights reserved. http://www.elsevier.com/wps/find/homepage.cws_home

More information

Atomic data from the Iron Project

Atomic data from the Iron Project ASTRONOMY & ASTROPHYSICS JUNE II 999, PAGE 59 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 37, 59 535 (999) Atomic data from the Iron Project XXXIX. Photoionization cross sections and oscillator strengths

More information

Oscillator strengths and transition probabilities of O II

Oscillator strengths and transition probabilities of O II At. Data Nucl. Data Tables Vol. 96(6):863-877 (2010) ISSN: (print 0092-640X)(online 1090-2090) doi: 10.1016/j.adt.2010.07.002 This is a peer reviewed pre-print version of the following article: Oscillator

More information

Atomic data for opacity calculations: XVIII. Photoionization and oscillator strengths of Si-like ions Si o, S 2+, Ar 4+, Ca 6+

Atomic data for opacity calculations: XVIII. Photoionization and oscillator strengths of Si-like ions Si o, S 2+, Ar 4+, Ca 6+ J. Phys. B: At. Mol. Opt. Phys., 26, (1993), p.1109-1127. ISSN: 0953-4075/93/061109+ 19 ISSN (Online): 1361-6455 doi: 10.1088/0953-4075/26/6/012 IOP Publishing Ltd This is an un-copyedited version of an

More information

Atomic data for opacity calculations: XX. Photoionization cross sections and oscillator strengths for Fe II

Atomic data for opacity calculations: XX. Photoionization cross sections and oscillator strengths for Fe II J. Phys. B: At. Mol. Opt. Phys., 27, (1994) p.429-446. ISSN: 0953-4075/94/030429 + 18 ISSN (Online): 1361-6455 doi:10.1008/0953-4075/27/3/010 IOP Publishing Ltd This is an un-copyedited version of an article

More information

Workshop on: ATOMIC STRUCTURE AND TRANSITIONS: COMPUTATION USING SUPERSTRUCTURE PRO- GRAM

Workshop on: ATOMIC STRUCTURE AND TRANSITIONS: COMPUTATION USING SUPERSTRUCTURE PRO- GRAM Workshop on: ATOMIC STRUCTURE AND TRANSITIONS: COMPUTATION USING SUPERSTRUCTURE PRO- GRAM PROF. SULTANA N. NAHAR Astronomy, Ohio State U, Columbus, Ohio, USA Email: nahar.1@osu.edu http://www.astronomy.ohio-state.edu/

More information

Allowed and forbidden transition parameters for Fe XXII Sultana N. Nahar *

Allowed and forbidden transition parameters for Fe XXII Sultana N. Nahar * Atomic Data and Nuclear Data Tables, 96, (2010), p.26 51. ISSN: 0092-640x/0092-640X doi:10.1016/j.adt.2009.09.001 2009 Elsevier Inc. All rights reserved. http://www.elsevier.com/wps/find/homepage.cws_home

More information

ABSTRACT Electron collision excitation strengths of inelastic transitions among the 52 Ðne-structure levels of the

ABSTRACT Electron collision excitation strengths of inelastic transitions among the 52 Ðne-structure levels of the THE ASTROPHYSICAL JOURNAL, 530:1091È1104, 2000 February 20 ( 2000. The American Astronomical Society. All rights reserved. Printed in U.S.A. ELECTRON COLLISION EXCITATION OF FINE-STRUCTURE LEVELS IN S

More information

Atomic data from the Iron Project

Atomic data from the Iron Project ASTRONOMY & ASTROPHYSICS APRIL II 1999, PAGE 395 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 136, 395 43 (1999) Atomic data from the Iron Project XXXVII. Electron impact excitation collision strengths

More information

Astron. Astrophys. Suppl. Ser. 135, p DOI: /aas:

Astron. Astrophys. Suppl. Ser. 135, p DOI: /aas: Astron. Astrophys. Suppl. Ser. 135, p.347-357. DOI: 10.1051/aas:1999447 http://aas.aanda.org/10.1051/aas:1999447 ASTRONOMY & ASTROPHYSICS MARCH I 1999, PAGE 347 SUPPLEMENT SERIES Astron. Astrophys. Suppl.

More information

Atomic data from the Iron Project. LIX. New radiative transition probabilities for Fe IV including fine structure. S. N. Nahar and A. K.

Atomic data from the Iron Project. LIX. New radiative transition probabilities for Fe IV including fine structure. S. N. Nahar and A. K. A&A 437, 345 354 (2005) DOI: 10.1051/0004-6361:20041885 c ESO 2005 Astronomy & Astrophysics Atomic data from the Iron Project LIX. New radiative transition probabilities for Fe IV including fine structure

More information

Astron. Astrophys. Suppl. Ser. 144, p DOI: /aas:

Astron. Astrophys. Suppl. Ser. 144, p DOI: /aas: Astron. Astrophys. Suppl. Ser. 144, p.141-155. DOI: 10.1051/aas:2000339 http://aas.aanda.org/10.1051/aas:2000339 ASTRONOMY & ASTROPHYSICS MAY II 2000, PAGE 141 SUPPLEMENT SERIES Astron. Astrophys. Suppl.

More information

Relativistic close-coupling calculations for photoionization and recombination of Ne-like Fe XVII

Relativistic close-coupling calculations for photoionization and recombination of Ne-like Fe XVII PHYSICAL REVIEW A, VOLUME 64, 032719 Relativistic close-coupling calculations for photoionization and recombination of Ne-like Fe XVII Hong Lin Zhang Applied Theoretical and Computational Physics Division,

More information

arxiv:astro-ph/ v1 10 Jul 2002

arxiv:astro-ph/ v1 10 Jul 2002 1 arxiv:astro-ph/0207225v1 10 Jul 2002 Abstract. Ab initio calculations including relativistic effects employing the Breit-Pauli R-matrix (BPRM) method are reported for fine structure energy levels and

More information

Atomic Data for Astrophysics. II. New Analytic Fits for Photoionization Cross Sections of Atoms and Ions

Atomic Data for Astrophysics. II. New Analytic Fits for Photoionization Cross Sections of Atoms and Ions Atomic Data for Astrophysics. II. New Analytic Fits for Photoionization Cross Sections of Atoms and Ions D. A. Verner 1, G. J. Ferland, and K. T. Korista Department of Physics and Astronomy, University

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Atomic data from the IRON Project

Atomic data from the IRON Project ASTRONOMY & ASTROPHYSICS JANUARY II 1999, PAGE 369 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 134, 369 375 (1999) Atomic data from the IRON Project XXX. Collision data for the 2 P o 1 2 P o 3 2 2

More information

HIGH ACCURACY RADIATIVE DATA FOR PLASMA OPACITIES. Sultana N. Nahar The Ohio State University Columbus, Ohio, USA

HIGH ACCURACY RADIATIVE DATA FOR PLASMA OPACITIES. Sultana N. Nahar The Ohio State University Columbus, Ohio, USA HIGH ACCURACY RADIATIVE DATA FOR PLASMA OPACITIES Sultana N. Nahar The Ohio State University Columbus, Ohio, USA 10th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical

More information

Electron ion recombination and photoionization of Fe XXI

Electron ion recombination and photoionization of Fe XXI Journal of Quantitative Spectroscopy and Radiative Transfer 109, 2008, 2731-2742 ISSN: 0022-4073 doi:10.1016/j.jqsrt.2008.07.007 2008 Elseiver Ltd. All rights reserved. 1TUhttp://www.elsevier.com/wps/find/homepage.cws_homeU1T

More information

Oscillator strengths and E1 radiative rates for Ca-like titanium, Ti III

Oscillator strengths and E1 radiative rates for Ca-like titanium, Ti III Int. J. New. Hor. Phys. 2, No. 1, 25-31 (2015) 25 International Journal of New Horizons in Physics http://dx.doi.org/10.12785/ijnhp/020105 Oscillator strengths and E1 radiative rates for Ca-like titanium,

More information

Workshop on: ATOMIC STRUCTURE AND TRANSITIONS: THEORY IN USING SUPERSTRUCTURE PROGRAM

Workshop on: ATOMIC STRUCTURE AND TRANSITIONS: THEORY IN USING SUPERSTRUCTURE PROGRAM Workshop on: ATOMIC STRUCTURE AND TRANSITIONS: THEORY IN USING SUPERSTRUCTURE PROGRAM PROF. SULTANA N. NAHAR Astronomy, Ohio State U, Columbus, Ohio, USA Email: nahar.1@osu.edu http://www.astronomy.ohio-state.edu/

More information

Photoionization of excited states of neon-like Mg III

Photoionization of excited states of neon-like Mg III PRAMANA cfl Indian Academy of Sciences Vol. 58, No. 4 journal of April 2002 physics pp. 639 646 Photoionization of excited states of neon-like Mg III NARENDRA SINGH and MAN MOHAN Department of Physics

More information

Atomic data from the IRON Project

Atomic data from the IRON Project A&A 372, 083 087 (200) DOI: 05/0004-636:2000562 c ESO 200 Astronomy & Astrophysics Atomic data from the IRON Project L. Electron impact excitation of Fe XIX K. Butler and C. J. Zeippen 2 Institut für Astronomie

More information

Atomic data from the IRON Project

Atomic data from the IRON Project ASTRONOMY & ASTROPHYSICS JANUARY II 000, PAGE 85 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 141, 85 96 (000) Atomic data from the IRON Project XL. Electron impact excitation of the Fe XIV EUV transitions

More information

Photoionization and electron ion recombination of Cr I

Photoionization and electron ion recombination of Cr I Journal of Quantitative Spectroscopy and Radiative Transfer 110, (2009), 2148-2161 ISSN: 0022-4073 doi: 10.1016/j.jqsrt.2009.04.015 Elsevier Ltd. All Rights reserved. 0TUhttp://www.elsevier.com/wps/find/homepage.cws_homeU0T

More information

Photoionization and electron ion recombination of P II

Photoionization and electron ion recombination of P II doi:10.1093/mnras/stx939 Photoionization and electron ion recombination of P II Sultana N. Nahar Department of Astronomy, Ohio State University, Columbus, OH 43210, USA Accepted 2017 April 18. Received

More information

Effective collision strengths for fine-structure transitions for the electron impact excitation of N II. C. E. Hudson and K. L.

Effective collision strengths for fine-structure transitions for the electron impact excitation of N II. C. E. Hudson and K. L. A&A 43, 725 729 (25) DOI: 1.151/4-6361:241969 c ESO 25 Astronomy & Astrophysics Effective collision strengths for fine-structure transitions for the electron impact excitation of N II C. E. Hudson and

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Energy levels and radiative rates for Ne-like ions from Cu to Ga

Energy levels and radiative rates for Ne-like ions from Cu to Ga Pramana J. Phys. (2017) 89:79 DOI 10.1007/s12043-017-1469-x Indian Academy of Sciences Energy levels and radiative rates for Ne-like ions from Cu to Ga NARENDRA SINGH and SUNNY AGGARWAL Department of Physics,

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

Relativistic Calculations for Be-like Iron

Relativistic Calculations for Be-like Iron Commun. Theor. Phys. (Beijing, China) 50 (2008) pp. 468 472 Chinese Physical Society Vol. 50, No. 2, August 15, 2008 Relativistic Calculations for Be-like Iron YANG Jian-Hui, 1 LI Ping, 2, ZHANG Jian-Ping,

More information

Predicted term energies, wavelengths and oscillator strengths for transitions involving high-nl Rydberg states in C II, C III and C IV

Predicted term energies, wavelengths and oscillator strengths for transitions involving high-nl Rydberg states in C II, C III and C IV ASTRONOMY & ASTROPHYSICS MAY I 1998, PAGE 603 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 129, 603-608 (1998) Predicted term energies, wavelengths and oscillator strengths for transitions involving

More information

Executive Committee and Officers ( )

Executive Committee and Officers ( ) Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

More information

Effective collision strengths for electron impact excitation of Xe III, Xe IV, Xe VI and Ba II, Ba IV

Effective collision strengths for electron impact excitation of Xe III, Xe IV, Xe VI and Ba II, Ba IV ASTRONOMY & ASTROPHYSICS MARCH II 1998, PAGE 581 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 128, 581-588 (1998) Effective collision strengths for electron impact excitation of Xe III, Xe IV, Xe VI

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

CORE-POLARIZATION EFFECTS FOR THE STARK BROADENING OF PB III SPECTRAL LINES: PREDICTIONS AND REGULARITIES

CORE-POLARIZATION EFFECTS FOR THE STARK BROADENING OF PB III SPECTRAL LINES: PREDICTIONS AND REGULARITIES International Core-polarization Science Press, Effects ISSN: 2229-3159 for the Stark Broadening of Pb III Spectral Lines: Predictions and Regularities RESEARCH ARTICLE CORE-POLARIZATION EFFECTS FOR THE

More information

Atomic Data for Lowly-Charged Tungsten Ions

Atomic Data for Lowly-Charged Tungsten Ions Atomic Data for Lowly-Charged Tungsten Ions Patrick Palmeri patrick.palmeri@umons.ac.be ADAS 2012 (Cadarache, France) 1 Outline Introduction HFR+CPOL Method Results: W 0, W 3-5+ Conclusions & Perspectives

More information

Ab-initio Calculations for Forbidden M1/E2 Decay Rates in Ti XIX ion

Ab-initio Calculations for Forbidden M1/E2 Decay Rates in Ti XIX ion EJTP 3, No. 11 (2006) 111 122 Electronic Journal of Theoretical Physics Ab-initio Calculations for Forbidden M1/E2 Decay Rates in Ti XIX ion A. Farrag Physics Department,Faculty of Science, Cairo University,

More information

Radiative Transition Probabilities of the 1s2p 22 P and 1s2p 22 D States of the Lithium Isoelectronic Sequence

Radiative Transition Probabilities of the 1s2p 22 P and 1s2p 22 D States of the Lithium Isoelectronic Sequence Wright State University CORE Scholar Physics Faculty Publications Physics 1977 Radiative Transition Probabilities of the 1s2p 22 P and 1s2p 22 D States of the Lithium Isoelectronic Sequence Jane L. Fox

More information

Computational Workshop: Running R-matrix Codes for Atomic Processes

Computational Workshop: Running R-matrix Codes for Atomic Processes Computational Workshop: Running R-matrix Codes for Atomic Processes - Prof. Sultana N. Nahar Astronomy, Ohio State U, Columbus, Ohio, USA Emails, Web: nahar.1@osu.edu http://www.astronomy.ohio-state.edu/

More information

Sultana N. Nahar 1. INTRODUCTION

Sultana N. Nahar 1. INTRODUCTION The Astrophysical Journal Supplement Series, 164:280 296, 2006 May # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. ELECTRON-ION RECOMBINATION RATE COEFFICIENTS AND PHOTOIONIZATION

More information

Spin-mixed doubly excited resonances in Ca and Sr spectra

Spin-mixed doubly excited resonances in Ca and Sr spectra Spin-mixed doubly excited resonances in Ca and Sr spectra J. H. Chen, 1 T. K. Fang, 2, * C. C. Chu, 3 T. S. Yih, 3 and T. N. Chang 4 1 Graduate Institute of Applied Science and Engineering, Fu Jen Catholic

More information

Fine Structure Calculations of Atomic Data for Ar XVI

Fine Structure Calculations of Atomic Data for Ar XVI Journal of Modern Physics, 2015, 6, 1609-1630 Published Online September 2015 in SciRes. http://www.scirp.org/journal/jmp http://dx.doi.org/10.4236/jmp.2015.611163 Fine Structure Calculations of Atomic

More information

One and Two Photon Ionization along the Fe Isonuclear Sequence

One and Two Photon Ionization along the Fe Isonuclear Sequence I R A M P 8(), December 017, pp. 81-91 One and Two Photon Ionization along the Fe Isonuclear Sequence International Science Press ISSN: 9-3159 One and Two Photon Ionization along the Fe Isonuclear Sequence

More information

JOURNAL OFPHYSICSB: ATOMIC, MOLECULAR AND OPTICAL PHYSICS J. Phys. B: At. Mol. Opt. Phys. 36 (2003) PII: S (03)

JOURNAL OFPHYSICSB: ATOMIC, MOLECULAR AND OPTICAL PHYSICS J. Phys. B: At. Mol. Opt. Phys. 36 (2003) PII: S (03) INSTITUTE OF PHYSICSPUBLISHING JOURNAL OFPHYSICSB: ATOMIC, MOLECULAR AND OPTICAL PHYSICS J. Phys. B: At. Mol. Opt. Phys. 36 (2003) 3457 3465 PII: S0953-4075(03)60551-1 The influence of core valence electron

More information

Use of intermediate coupling relationships to test measured branching fraction data

Use of intermediate coupling relationships to test measured branching fraction data J. Phys. B: At. Mol. Opt. Phys. 31 (1998) L769 L774. Printed in the UK PII: S0953-4075(98)95845-X LETTER TO THE EDITOR Use of intermediate coupling relationships to test measured branching fraction data

More information

Close-coupling R-matrix calculations for electron ion recombination cross sections

Close-coupling R-matrix calculations for electron ion recombination cross sections J. Phys. B: At. Mol. Opt. Phys. 32 (1999) 1459 1479. Printed in the UK PII: S0953-4075(99)99518-4 Close-coupling R-matrix calculations for electron ion recombination cross sections Hong Lin Zhang, Sultana

More information

New Astronomy 13 (2008) Contents lists available at ScienceDirect. New Astronomy. journal homepage:

New Astronomy 13 (2008) Contents lists available at ScienceDirect. New Astronomy. journal homepage: New Astronomy 13 (2008) 619 638 Contents lists available at ScienceDirect New Astronomy journal homepage: www.elsevier.com/locate/newast Electron-ion recombination rate coefficients and photoionization

More information

A comparison of Rosseland-mean opacities from OP and OPAL

A comparison of Rosseland-mean opacities from OP and OPAL Mon. Not. R. Astron. Soc. 5, 57 65 () doi:./j.65966..85.x A comparison of Rosseland-mean opacities from and AL M. J. Seaton and N. R. Badnell Department of Physics and Astronomy, University College London,

More information

Atomic structure and dynamics

Atomic structure and dynamics Atomic structure and dynamics -- need and requirements for accurate atomic calculations Analysis and interpretation of optical and x-ray spectra (astro physics) Isotope shifts and hyperfine structures

More information

arxiv: v1 [physics.atom-ph] 2 Dec 2015

arxiv: v1 [physics.atom-ph] 2 Dec 2015 J. Phys. B: At. Mol. Opt. Phys. arxiv:1512.657v1 [physics.atom-ph] 2 Dec 215 Theoretical investigation of spectroscopic properties of W 26+ in EBIT plasma V. Jonauskas, A. Kynienė, P. Rynkun, S. Kučas,

More information

R. Clark, D. Humbert, K. Sheikh Nuclear Data Section

R. Clark, D. Humbert, K. Sheikh Nuclear Data Section Calculation of Atomic Data for Plasma Modeling: Introduction and Atomic Structure Part 1 R. Clark, D. Humbert, K. Sheikh Nuclear Data Section Overview Plasmas in fusion research Data needs for plasma modeling

More information

I N A C O M P L E X W O R L D

I N A C O M P L E X W O R L D IS L A M I C E C O N O M I C S I N A C O M P L E X W O R L D E x p l o r a t i o n s i n A g-b eanste d S i m u l a t i o n S a m i A l-s u w a i l e m 1 4 2 9 H 2 0 0 8 I s l a m i c D e v e l o p m e

More information

Lines of O iv and S iv in the Goddard High-Resolution Spectrograph spectrum of RR Tel: constraints on atomic data

Lines of O iv and S iv in the Goddard High-Resolution Spectrograph spectrum of RR Tel: constraints on atomic data Mon. Not. R. Astron. Soc. 303, L41±L46 (1999) Lines of O iv and S iv in the Goddard High-Resolution Spectrograph spectrum of RR Tel: constraints on atomic data G. M. Harper, 1 * C. Jordan, 2 P. G. Judge,

More information

Lecture 7: Electronic Spectra of Diatomics

Lecture 7: Electronic Spectra of Diatomics Lecture 7: Electronic Spectra of Diatomics. Term symbols for diatomic molecules Fortrat parabola, (Symmetric Top). Common molecular models for diatomics 3. Improved treatments 4. Quantitative absorption

More information

Atomic Physics 3 rd year B1

Atomic Physics 3 rd year B1 Atomic Physics 3 rd year B1 P. Ewart Lecture notes Lecture slides Problem sets All available on Physics web site: http:www.physics.ox.ac.uk/users/ewart/index.htm Atomic Physics: Astrophysics Plasma Physics

More information

Optimum values are found to be j \ , j \ , and j \ The spin-orbit interaction, which gives Ðne

Optimum values are found to be j \ , j \ , and j \ The spin-orbit interaction, which gives Ðne THE ASTROPHYSICAL JOURNAL, 497:483È492, 1998 April 10 Copyright is not claimed for this article. All rights reserved. Printed in U.S.A. ATOMIC DATA AND SPECTRAL LINE INTENSITIES FOR Mg VIII A. K. BHATIA

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

arxiv:astro-ph/ v1 22 Apr 2004

arxiv:astro-ph/ v1 22 Apr 2004 Mon. Not. R. Astron. Soc., 4 (4) Printed 4 May 7 (MN LATEX style file v.) A comparison of Rosseland-mean opacities from and arxiv:astro-ph/44437v Apr 4 M. J. Seaton and N. R. Badnell Department of Physics

More information

LECTURE NOTES. Ay/Ge 132 ATOMIC AND MOLECULAR PROCESSES IN ASTRONOMY AND PLANETARY SCIENCE. Geoffrey A. Blake. Fall term 2016 Caltech

LECTURE NOTES. Ay/Ge 132 ATOMIC AND MOLECULAR PROCESSES IN ASTRONOMY AND PLANETARY SCIENCE. Geoffrey A. Blake. Fall term 2016 Caltech LECTURE NOTES Ay/Ge 132 ATOMIC AND MOLECULAR PROCESSES IN ASTRONOMY AND PLANETARY SCIENCE Geoffrey A. Blake Fall term 2016 Caltech Acknowledgment Part of these notes are based on lecture notes from the

More information

Gain Coefficient Calculation for Short Wave Laser Emission from Sodium like Co

Gain Coefficient Calculation for Short Wave Laser Emission from Sodium like Co Optics and Photonics Journal, 2013, 3, 369-378 Published Online December 2013 (http://www.scirp.org/journal/opj) http://dx.doi.org/10.4236/opj.2013.38058 Gain Coefficient Calculation for Short Wave Laser

More information

Radiative rates of transitions from the 2s2p 3 5 S 2 level of neutral carbon

Radiative rates of transitions from the 2s2p 3 5 S 2 level of neutral carbon Radiative rates of transitions from the 2s2p 3 5 S 2 level of neutral carbon K Haris 1 and A Kramida National Institute of Standards and Technology, Gaithersburg, MD 20899, USA E-mail: haris.kunari@nist.gov

More information

Dielectronic recombination data for dynamic finite-density plasmas. IV. The carbon isoelectronic sequence

Dielectronic recombination data for dynamic finite-density plasmas. IV. The carbon isoelectronic sequence A&A 417, 1173 1181 (2004) DOI: 10.1051/0004-6361:20034174 c ESO 2004 Astronomy & Astrophysics Dielectronic recombination data for dynamic finite-density plasmas IV. The carbon isoelectronic sequence O.

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

in i in a self-consistent, uniðed manner, as explained in the Ðrst channel i

in i in a self-consistent, uniðed manner, as explained in the Ðrst channel i THE ASTOPHYSICAL JOUNAL SUPPLEMENT SEIES, 37:È7, November (. The American Astronomical Society. All rights reserved. Printed in U.S.A. ELECTON-ION ECOMBINATION ATE COEFFICIENTS AND PHOTOIONIZATION COSS

More information

Energy Levels, Oscillator Strengths, and Transition Probabilities of Ni XIX and Cu XX

Energy Levels, Oscillator Strengths, and Transition Probabilities of Ni XIX and Cu XX Optics and Photonics Journal, 2014, 4, 54-89 Published Online March 2014 in SciRes. http://www.scirp.org/journal/opj http://dx.doi.org/10.4236/opj.2014.43008 Energy Levels, Oscillator Strengths, and Transition

More information

Nebular and auroral emission lines of [Cl III] in the optical spectra of planetary nebulae

Nebular and auroral emission lines of [Cl III] in the optical spectra of planetary nebulae Nebular auroral emission lines of [Cl III] in the optical spectra of planetary nebulae Francis P. Keenan*, Lawrence H. Aller, Catherine A. Ramsbottom, Kenneth L. Bell, Fergal L. Crawford*, Siek Hyung *Department

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c L i f e t i m e M a n a g e m e n t o f F l a-b s ah s e d S S D s U s i n g R e c o v e r-a y w a r e D y n a m i c T h r o t t l i n g S u n g j i n L e, e T a e j i n K i m, K y u n g h o, Kainmd J

More information

ELECTRIC DIPOLE MOMENT OF THE ELECTRON AND ITS COSMOLOGICAL IMPLICATIONS

ELECTRIC DIPOLE MOMENT OF THE ELECTRON AND ITS COSMOLOGICAL IMPLICATIONS ELECTRIC DIPOLE MOMENT OF THE ELECTRON AND ITS COSMOLOGICAL IMPLICATIONS H S NATARAJ Under the Supervision of Prof. B P DAS Non-Accelerator Particle Physics Group Indian Institute of Astrophysics Bangalore

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

Atomic fluorescence. The intensity of a transition line can be described with a transition probability inversely

Atomic fluorescence. The intensity of a transition line can be described with a transition probability inversely Atomic fluorescence 1. Introduction Transitions in multi-electron atoms Energy levels of the single-electron hydrogen atom are well-described by EE nn = RR nn2, where RR = 13.6 eeee is the Rydberg constant.

More information

Collisional Excitation and N-Level Atoms.

Collisional Excitation and N-Level Atoms. Collisional Excitation and N-Level Atoms. 1 Collisional Excitation & Deexcitation Consider an atom or ion with a lower energy level 1 and an upper level. Collision of a free electron with kinetic energy

More information

Decay studies of 170,171 Au, Hg, and 176 Tl

Decay studies of 170,171 Au, Hg, and 176 Tl PHYSICAL REVIEW C 69, 054323 (2004) Decay studies of 170,171 Au, 171 173 Hg, and 176 Tl H. Kettunen, T. Enqvist, T. Grahn, P. T. Greenlees, P. Jones, R. Julin, S. Juutinen, A. Keenan, P. Kuusiniemi, M.

More information

The Astrophysical Journal, 595: , 2003 September 20 # The American Astronomical Society. All rights reserved. Printed in U.S.A.

The Astrophysical Journal, 595: , 2003 September 20 # The American Astronomical Society. All rights reserved. Printed in U.S.A. The Astrophysical Journal, 595:550 554, 2003 September 20 # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. TRANSITIONS FROM AUTOIONIZED SINGLE-IONIZED TIN STATES: A THEORETICAL

More information

Collisionally Excited Spectral Lines (Cont d) Diffuse Universe -- C. L. Martin

Collisionally Excited Spectral Lines (Cont d) Diffuse Universe -- C. L. Martin Collisionally Excited Spectral Lines (Cont d) Please Note: Contrast the collisionally excited lines with the H and He lines in the Orion Nebula spectrum. Preview: Pure Recombination Lines Recombination

More information

Stark width regularities within magnesium spectral series

Stark width regularities within magnesium spectral series Mon. Not. R. Astron. Soc. 415, 503 512 (2011) doi:10.1111/j.1365-2966.2011.18719.x Stark width regularities within magnesium spectral series Irinel Tapalaga, Ivan P. Dojčinović and Jagoš Purić University

More information

Thermal Equilibrium in Nebulae 1. For an ionized nebula under steady conditions, heating and cooling processes that in

Thermal Equilibrium in Nebulae 1. For an ionized nebula under steady conditions, heating and cooling processes that in Thermal Equilibrium in Nebulae 1 For an ionized nebula under steady conditions, heating and cooling processes that in isolation would change the thermal energy content of the gas are in balance, such that

More information

FEB RUARY 15, 1933 PH YSI CAL REVI EW -VOLUME 43

FEB RUARY 15, 1933 PH YSI CAL REVI EW -VOLUME 43 FEB RUARY 5, 933 PH YSI CAL REVI EW -VOLUME 43 The Interaction of Configurations: sd p' R. F. BAcHER, * University of 3fichigan (Received December 6, 932) It does not seem possible to account for the presence

More information

Engine Control <2TR-FE> I

Engine Control <2TR-FE> I Engine Control (AT) (AT) (I) 0A EFI A A/F HEATER A IN AM I R C I R ST I Ignition S R R R EA 0A AM R C 0A EFI N. R A EFI Relay A 0 A A 0 A A A/F HEATER Relay A C/PN Relay F Fuel Suction Pump and

More information

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode Unit 2 : Software Process O b j ec t i ve This unit introduces software systems engineering through a discussion of software processes and their principal characteristics. In order to achieve the desireable

More information

in this web service Cambridge University Press

in this web service Cambridge University Press Atomic Astrophysics and Spectroscopy Spectroscopy allows the precise study of astronomical objects and phenomena. Bridging the gap between physics and astronomy, this is the first integrated graduate-level

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960 Introduction to X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate

More information

The LANL atomic kinetics modeling effort and its application to W plasmas

The LANL atomic kinetics modeling effort and its application to W plasmas The LANL atomic kinetics modeling effort and its application to W plasmas James Colgan, Joseph Abdallah, Jr., Christopher Fontes, Honglin Zhang Los Alamos National Laboratory IAEA CRP December 2010 jcolgan@lanl.gov

More information

Evaluating the Accuracy of Theoretical Transition Data for Atoms

Evaluating the Accuracy of Theoretical Transition Data for Atoms Evaluating the Accuracy of Theoretical Transition Data for Atoms Per Jönsson Group for Materials Science and Applied Mathematics School of Engineering, Malmö University, Sweden 6 maj 2013 Code development

More information

NIST Research on Spectroscopy and Collisional-Radiative Modeling of Highly-Charged Ions of Tungsten

NIST Research on Spectroscopy and Collisional-Radiative Modeling of Highly-Charged Ions of Tungsten NIST Research on Spectroscopy and Collisional-Radiative Modeling of Highly-Charged Ions of Tungsten Yuri Ralchenko National Institute of Standards and Technology Gaithersburg, USA Vienna, Austria, Dec

More information

Stellar atmospheres: an overview

Stellar atmospheres: an overview Stellar atmospheres: an overview Core M = 2x10 33 g R = 7x10 10 cm 50 M o 20 R o L = 4x10 33 erg/s 10 6 L o 10 4 (PN) 10 6 (HII) 10 12 (QSO) L o Photosphere Envelope Chromosphere/Corona R = 200 km ~ 3x10

More information

Theoretical study on the K α transition properties of F-like ions

Theoretical study on the K α transition properties of F-like ions J. At. Mol. Sci. doi: 10.4208/jams.013010.022010a Vol. 1, No. 2, pp. 134-142 May 2010 Theoretical study on the K α transition properties of F-like ions X. L. Wang, J. J. Wan, Y. J. Wang, and C. Z. Dong

More information

Radiative Transfer and Stellar Atmospheres

Radiative Transfer and Stellar Atmospheres Radiative Transfer and Stellar Atmospheres 4 lectures within the first IMPRS advanced course Joachim Puls Institute for Astronomy & Astrophysics, Munich Contents quantitative spectroscopy: the astrophysical

More information

2. Electric Dipole Start from the classical formula for electric dipole radiation. de dt = 2. 3c 3 d 2 (2.1) qr (2.2) charges q

2. Electric Dipole Start from the classical formula for electric dipole radiation. de dt = 2. 3c 3 d 2 (2.1) qr (2.2) charges q APAS 50. Internal Processes in Gases. Fall 999. Transition Probabilities and Selection Rules. Correspondence between Classical and Quantum Mechanical Transition Rates According to the correspondence principle

More information

Academic Editor: Joseph Reader Received: 21 December 2016; Accepted:19 January 2017; Published: 27 January 2017

Academic Editor: Joseph Reader Received: 21 December 2016; Accepted:19 January 2017; Published: 27 January 2017 atoms Article JJ2LSJ Transformation and Unique Labeling for Energy Levels Gediminas Gaigalas 1, *, Charlotte Froese Fischer 2, Pavel Rynkun 1 and Per Jönsson 3 1 Institute of Theoretical Physics and Astronomy,

More information

Atomic Structure & Radiative Transitions

Atomic Structure & Radiative Transitions Atomic Structure & Radiative Transitions electron kinetic energy nucleus-electron interaction electron-electron interaction Remember the meaning of spherical harmonics Y l, m (θ, ϕ) n specifies the

More information

Atomic Spectra in Astrophysics

Atomic Spectra in Astrophysics Atomic Spectra in Astrophysics Potsdam University : Wi 2016-17 : Dr. Lidia Oskinova lida@astro.physik.uni-potsdam.de Complex Atoms Non-relativistic Schrödinger Equation 02 [ N i=1 ( ) 2 2m e 2 i Ze2 4πǫ

More information

Introduction to Finite Element Method

Introduction to Finite Element Method p. o C d Eo E. Iodo o E Mod s H L p. o C d Eo E o o s Ass L. o. H L p://s.s.. p. o C d Eo E. Cos. Iodo. Appoo o os & o Cs. Eqos O so. Mdso os-es 5. szo 6. wo so Es os 7. os ps o Es 8. Io 9. Co C Isop E.

More information

Marks for each question are as indicated in [] brackets.

Marks for each question are as indicated in [] brackets. Name Student Number CHEMISTRY 140 FINAL EXAM December 10, 2002 Numerical answers must be given with appropriate units and significant figures. Please place all answers in the space provided for the question.

More information