Energy levels and radiative rates for Ne-like ions from Cu to Ga

Size: px
Start display at page:

Download "Energy levels and radiative rates for Ne-like ions from Cu to Ga"

Transcription

1 Pramana J. Phys. (2017) 89:79 DOI /s x Indian Academy of Sciences Energy levels and radiative rates for Ne-like ions from Cu to Ga NARENDRA SINGH and SUNNY AGGARWAL Department of Physics, Shyamlal College (University of Delhi), G.T. Road, Shahdara, Delhi , India Corresponding author. MS received 29 June 2016; revised 26 May 2017; accepted 1 June 2017; published online 2 November 2017 Abstract. Energy levels, lifetimes and wave function compositions are computed for 127 fine structural levels in Ne-like ions (Z = 29 31). Configuration interaction has been included among 51 configurations (generating 1016 levels) and multiconfigurational Dirac Fock method is used to generate the wave functions. Similar calculations have also been performed using the fully relativistic flexible atomic code (FAC). Transition wavelength, oscillator strength, transition probabilities and line strength are reported for electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1) and magnetic quadrupole (M2) transitions from the ground level. We compared our calculated results with the available data in the literature. The calculated results are found to be in close agreement with the previous results. Further, we predict some new atomic data which may be important for plasma diagnostics. Keywords. PACS No. Energy levels; oscillator strength; transition probability; GRASP Cs 1. Introduction The spectral lines for neon-like ions are useful in finding the abundance of their ionization states in laboratory and astrophysical [1,2] plasmas. Also, Ne-like ions are highly useful for the modelling of astrophysical, fusion and laser-generated plasmas. Further, because of their closed shell structure, we can estimate the importance of the contributions from relativistic, electron correlations and quantum electrodynamics (QED) effects for studying the energy level and radiative rates. Transitions between levels of 2p 5 3s, 3p and 3d configurations produce prominent lines in the spectra of high-temperature light source in Ne-like ions [3,4]. Further, transitions between these levels were identified in solar flare, Z- pinch plasma etc. To obtain laser action, the 3s and 3p states have been utilized. Also, laser action is obtained in lighter elements [5] for Ne-like ions. Ne-isoelectronic sequence ions have been studied both experimentally and theoretically. On the experimental side, a series of experiments has been performed to measure lifetimes of Ne-like ions using beam foil method [6 11]. As Ne-like ions of middle and high atomic numbers are present in tokamak, laser-produced plasma, electron beam ion trap (EBIT), solar atmosphere etc., the spectra of Ne-like ions have been observed [12 15]. Much work has been done on the theoretical side. Many authors have calculated the transition energies, oscillator strength, lifetimes and transition probabilities using Z-expansion method, configuration-interaction method, multiconfiguration Hartree Fock (MCHF) method, multiconfiguration Dirac Fock () method and relativistic many-body perturbation theory (MBPT) for many Nelike ions with Z = [16 22]. Benchmark calculations for iron group ions have been performed by Ishikawa et al using a relativistic multireference Moller- Plesset method [23,24]. Recently, Jonsson et al [25] calculated energies, transition rates, oscillator strengths and lifetimes using relativistic configuration interaction method for Ne-like ions between Mg and Kr (Z = 29 31). The aim of the present work is to extend the term analysis to more highly ionized ions and to upgrade the database for Ne-like ions with Z = We have calculated results using the method employed in the GRASP code of Grant et al [26], revised by Norrington [27]. To the best of our knowledge, there do not appear to be any large-scale experimental measurement or theoretical calculations for the ions reported in the present work. Therefore, in this paper we have reported 127 fine structural level energies by taking into account Breit and QED effects along with the radiative rate data from the ground state. These calculations find

2 79 Page 2 of 24 Pramana J. Phys. (2017) 89:79 Table 1. Dirac Coulomb (DC), Breit and quantum electrodynamics (QED) contributions to the energy (Ryd.) as a function of the orbital set Ne-like Cu. The sum (Total) is compared with FAC and NIST. All energies are relative to the ground-state energies (Ryd.), lifetimes (s) and mixing coefficients of levels in Ne-like Cu. Level Label J DC Breit QED Total Lifetime Mixing coefficients FAC NIST 1 2s 2 2p 6 1 S e s 2 2p 5 3s 3 P o E s 2 2p 5 3s 1 P o E (5) s 2 2p 5 3s 3 P o E s 2 2p 5 3s 3 P o E (3) s 2 2p 5 3p 3 S e E (13) s 2 2p 5 3p 3 D e E (14) s 2 2p 5 3p 3 D e E s 2 2p 5 3p 1 P e E (12) s 2 2p 5 3p 3 P e E (14) s 2 2p 5 3p 3 P e E s 2 2p 5 3p 3 D e E (9) s 2 2p 5 3p 3 P e E s 2 2p 5 3p 1 D e E (14) (10) s 2 2p 5 3p 1 S e E E s 2 2p 5 3d 3 P o E s 2 2p 5 3d 3 P o E s 2 2p 5 3d 3 P o E (25) s 2 2p 5 3d 3 F o E s 2 2p 5 3d 3 F o E (26) s 2 2p 5 3d 1 D o E (24) (25) s 2 2p 5 3d 3 D o E (26) s 2 2p 5 3d 3 D o E (27) s 2 2p 5 3d 3 F o E (21) s 2 2p 5 3d 3 D o E (18) (21) E s 2 2p 5 3d 1 F o E (20) (22) s 2 2p 5 3d 1 P o E (23) s2p 6 3s 3 S e E s2p 6 3s 1 S e E s2p 6 3p 3 P o E s2p 6 3p 3 P o E s2p 6 3p 3 P o E s2p 6 3p 1 P o E

3 Pramana J. Phys. (2017) 89:79 Page 3 of Table 1. Continued. Level Label J DC Breit QED Total Lifetime Mixing coefficients FAC NIST 34 2s2p 6 3d 3 D e E s2p 6 3d 3 D e E s2p 6 3d 3 D e E s2p 6 3d 1 D e E s 2 2p 5 4s 3 P o E s 2 2p 5 4s 1 P o E (46) s 2 2p 5 4p 3 S e E (56) s 2 2p 5 4p 3 D e E (57) s 2 2p 5 4p 3 D e E s 2 2p 5 4p 1 P e E s 2 2p 5 4p 3 P e E (57) s 2 2p 5 4s 3 P o E s 2 2p 5 4s 3 P o E (39) s 2 2p 5 4p 3 P e E (59) s 2 2p 5 4d 3 P o E s 2 2p 5 4d 3 P o E (71) s 2 2p 5 4d 3 F o E s 2 2p 5 4d 3 F o E (70) s 2 2p 5 4d 3 P o E (69) s 2 2p 5 4p 3 D e E (43) s 2 2p 5 4d 1 D o E (68) (69) s 2 2p 5 4d 3 D o E (70) s 2 2p 5 4p 3 P e E (40) s 2 2p 5 4p 1 D e E (57) (44) s 2 2p 5 4d 1 P o E (71) s 2 2p 5 4p 1 S e E (47) s 2 2p 5 4f 3 D e E s 2 2p 5 4f 1 G e E (73) s 2 2p 5 4f 3 D e E (65) s 2 2p 5 4f 3 G e E s 2 2p 5 4f 3 F e E (75) s 2 2p 5 4f 1 D e E (74) s 2 2p 5 4f 1 F e E (72) s 2 2p 5 4f 3 F e E (61) 99.05

4 79 Page 4 of 24 Pramana J. Phys. (2017) 89:79 Table 1. Continued. Level Label J DC Breit QED Total Lifetime Mixing coefficients FAC NIST 68 2s 2 2p 5 4d 3 F o E (54) s 2 2p 5 4d 3 D o E (69) s 2 2p 5 4d 1 F o E (70) (55) s 2 2p 5 4d 3 D o E (71) s 2 2p 5 4f 3 G e E (66) s 2 2p 5 4f 3 G e E (61) (67) s 2 2p 5 4f 3 F e E (65) (62) s 2 2p 5 4f 3 D e E (64) (66) s 2 2p 5 5s 3 P o E s 2 2p 5 5s 1 P o E (95) s 2 2p 5 5p 3 S e E (105) s 2 2p 5 5p 3 D e E (106) s 2 2p 5 5p 3 D e E s 2 2p 5 5p 1 P e E s 2 2p 5 5p 3 P e E (106) s 2 2p 5 5p 1 S e E (107) s2p 6 4s 3 S e E s 2 2p 5 5d 3 P o E s 2 2p 5 5d 3 P o E (115) s 2 2p 5 5d 3 F o E s 2 2p 5 5d 3 F o E (114) s 2 2p 5 5d 3 P o E (113) s 2 2p 5 5d 1 D o E (112) (113) s 1 2p 6 4s 1 S e E s 2 2p 5 5d 3 D o E (114) s 2 2p 5 5d 1 P o E (115) s 2 2p 5 5s 3 P o E s 2 2p 5 5s 3 P o E (77) s 2 2p 5 5f 3 D e E s 2 2p 5 5f 3 D e E s 2 2p 5 5f 1 G e E (119) s 2 2p 5 5f 3 G e E s 2 2p 5 5f 3 D e E (117)

5 Pramana J. Phys. (2017) 89:79 Page 5 of Table 1. Continued. Level Label J DC Breit QED Total Lifetime Mixing coefficients FAC NIST 101 2s 2 2p 5 5f 1 D e E (118) s 2 2p 5 5f 1 F e E (116) (117) s 2 2p 5 5f 3 F e E (98) s 2 2p 5 5p 3 D e E (81) s 2 2p 5 5p 3 P e E (78) s 2 2p 5 5p 1 D e E (106) (82) s 2 2p 5 5p 3 P e E (83) s2p 6 4p 3 P o E s2p 6 4p 3 P o E (111) s2p 6 4p 3 P o E s2p 6 4p 1 P o E (109) s 2 2p 5 5d 3 F o E (90) s 2 2p 5 5d 3 D o E (113) s 2 2p 5 5d 1 F o E (114) (92) s 2 2p 5 5d 3 D o E (93) s 2 2p 5 5f 3 G e E (102) s 2 2p 5 5f 3 F e E (117) s 2 2p 5 5f 3 F e E (101) (97) s 2 2p 5 5f 3 G e E (98) (103) s2p 6 4d 3 D e E s2p 6 4d 3 D e E s2p 6 4d 3 D e E s2p 6 4d 1 D e E s2p 6 4f 3 F o E s2p 6 4f 3 F o E s2p 6 4f 3 F o E s2p 6 4f 1 F o E

6 79 Page 6 of 24 Pramana J. Phys. (2017) 89:79 Table 2. Dirac Coulomb (DC), Breit and quantum electrodynamics (QED) contributions to the energy (Ryd.) as a function of the orbital set Ne-like Zn. The sum (total) is compared with FAC and NIST. All energies are relative to the ground-state energies (Ryd.), lifetimes (s) and mixing coefficients of levels in Ne-like Zn. Level Label J DC Breit QED Total Lifetime Mixing coefficients FAC NIST 1 2s 2 2p 6 1 Se s 2 2p 5 3s 3 Po E s 2 2p 5 3s 1 Po E (5) s 2 2p 5 3s 3 Po E s 2 2p 5 3s 3 Po E (3) s 2 2p 5 3p 3 Se E (13) s 2 2p 5 3p 3 De E (14) s 2 2p 5 3p 3 De E s 2 2p 5 3p 1 Pe E (12) s 2 2p 5 3p 3 Pe E (14) s 2 2p 5 3p 3 Pe E s 2 2p 5 3p 3 De E (9) s 2 2p 5 3p 3 Pe E (6) s 2 2p 5 3p 1 De E (14) (10) s 2 2p 5 3p 1 Se E E s 2 2p 5 3d 3 Po E s 2 2p 5 3d 3 Po E s 2 2p 5 3d 3 Po E (25) s 2 2p 5 3d 3 Fo E s 2 2p 5 3d 3 Fo E (26) s 2 2p 5 3d 1 Do E (24) (25) s 2 2p 5 3d 3 Do E (26) s 2 2p 5 3d 3 Do E (27) s 2 2p 5 3d 3 Fo E (21) s 2 2p 5 3d 3 Do E (18) (21) s 2 2p 5 3d 1 Fo E (20) (22) s 2 2p 5 3d 1 Po E (23) s2p 6 3s 3 Se E s2p 6 3s 1 Se E s2p 6 3p 3 Po E s2p 6 3p 3 Po E s2p 6 3p 3 Po E s2p 6 3p 1 Po E s2p 6 3d 3 De E s2p 6 3d 3 De E

7 Pramana J. Phys. (2017) 89:79 Page 7 of Table 2. Continued. Level Label J DC Breit QED Total Lifetime Mixing coefficients FAC NIST 36 2s2p 6 3d 3 De E s2p 6 3d 1 De E s 2 2p 5 4s 3 Po E s 2 2p 5 4s 1 Po E (47) s 2 2p 5 4p 3 Se E (57) s 2 2p 5 4p 3 De E (58) s 2 2p 5 4p 3 De E s 2 2p 5 4p 1 Pe E s 2 2p 5 4p 3 Pe E (58) s 2 2p 5 4s 3 Po E s 2 2p 5 4p 3 Pe E (59) s 2 2p 5 4s 3 Po E (39) s 2 2p 5 4d 3 Fo E s 2 2p 5 4d 3 Po E (71) s 2 2p 5 4d 3 Fo E s 2 2p 5 4d 3 Fo E (70) s 2 2p 5 4d 3 Po E (69) s 2 2p 5 4d 1 Do E (68) (69) s 2 2p 5 4d 3 Do E (70) s 2 2p 5 4d 1 De E (43) s 2 2p 5 4d 1 Po E (71) s 2 2p 5 4p 3 Pe E (40) s 2 2p 5 4p 1 De E (58) (44) s 2 2p 5 4p 1 Se E (46) s 2 2p 5 4f 3 De E s 2 2p 5 4f 1 Ge E (73) s 2 2p 5 4f 3 De E (65) s 2 2p 5 4f 3 Ge E s 2 2p 5 4p 3 De E (75) s 2 2p 5 4f 1 De E (74) s 2 2p 5 4p 3 Pe E (72) s 2 2p 5 4f 1 Fe E (61) s 2 2p 5 4d 3 Fo E (53) s 2 2p 5 4d 3 Do E (69) s 2 2p 5 4d 1 Fo E (70) (54)

8 79 Page 8 of 24 Pramana J. Phys. (2017) 89:79 Table 2. Continued. Level Label J DC Breit QED Total Lifetime Mixing coefficients FAC NIST 71 2s 2 2p 5 4d 3 Do E (71) s 2 2p 5 4f 3 Ge E (66) s 2 2p 5 4f 3 Fe E (61) (67) s 2 2p 5 4f 3 Fe E (65) (62) s 2 2p 5 4f 3 De E (64) (66) s 2 2p 5 5s 3 Po E s 2 2p 5 5s 1 Po E (103) s 2 2p 5 5p 3 Se E (109) (84) s 2 2p 5 5p 3 De E (110) s 2 2p 5 5p 1 Pe E (109) (108) s 2 2p 5 5p 3 De E s 2 2p 5 5p 3 Pe E (110) s 2 2p 5 5p 1 Se E (111) s2p 6 4s 3 Se E s2p 6 4s 1 Se E s 2 2p 5 5d 3 Po E s 2 2p 5 5d 3 Po E (115) s 2 2p 5 5d 3 Fo E s 2 2p 5 5d 3 Fo E (114) s 2 2p 5 5d 3 Po E (113) s 2 2p 5 5d 3 Po E (112) s 2 2p 5 5d 3 Do E (114) s 2 2p 5 5d 1 Po E (115) s 2 2p 5 5f 3 De E s 2 2p 5 5f 3 De E s 2 2p 5 5f 1 Ge E (119) s 2 2p 5 5f 3 Ge E s 2 2p 5 5s 3 Pe E s 2 2p 5 5f 3 De E (116) s 2 2p 5 5f 3 Fe E (117)

9 Pramana J. Phys. (2017) 89:79 Page 9 of Table 2. Continued. Level Label J DC Breit QED Total Lifetime Mixing coefficients FAC NIST 101 2s 2 2p 5 5f 1 Fe E (118) (99) s 2 2p 5 5f 3 Fe E (96) s 2 2p 5 5s 3 Pe E (77) s2p 6 4p 3 Pe E (107) s2p 6 4p 3 Po E s2p 6 4p 3 Po E s2p 6 4p 1 Po E (104) s 2 2p 5 5p 3 De E (80) s 2 2p 5 5p 3 Pe E (78) s 2 2p 5 5p 1 De E (110) (82) s 2 2p 5 5p 3 Pe E (83) s 2 2p 5 5d 3 Fo E (91) s 2 2p 5 5d 3 Do E (113) s 2 2p 5 5d 1 Fo E (114) (92) s 2 2p 5 5d 3 Do E (93) s 2 2p 5 5f 3 De E (99) (122) s 2 2p 5 5f 3 Fe E (100) (95) s 2 2p 5 5f 3 Ge E s 2 2p 5 5f 3 Ge E (96) (102) s2p 6 4d 3 De E s2p 6 4d 3 De E s2p 6 4d 3 De E s2p 6 4d 1 De E s2p 6 4f 3 Fo E s2p 6 4f 3 Fo E s2p 6 4f 3 Fo E s2p 6 4f 1 Fo E

10 79 Page 10 of 24 Pramana J. Phys. (2017) 89:79 Table 3. Dirac Coulomb (DC), Breit, and quantum electrodynamics (QED) contributions to the energy (Ryd.) as a function of the orbital set Ne-like Ga. The sum (total) is compared with FAC and NIST. All energies are relative to the ground-state energies (Ryd.), lifetimes (s) and mixing coefficients of levels in Ne-like Ga. S. No. Label J DC Breit QED Total Lifetimes Mixing coefficients FAC NIST 1 2s 2 2p 6 1 S e s 2 2p 5 3s 3 P o E s 2 2p 5 3s 1 P o E (5) s 2 2p 5 3s 3 P o E s 2 2p 5 3s 3 P o E (3) s 2 2p 5 3p 3 S e E (13) s 2 2p 5 3p 3 D e E (14) s 2 2p 5 3p 3 D e E s 2 2p 5 3p 1 P e E (12) s 2 2p 5 3p 3 P e E (14) s 2 2p 5 3p 3 P e E s 2 2p 5 3p 3 D e E (9) s 2 2p 5 3p 3 P e E (6) s 2 2p 5 3p 1 D e E (11) s 2 2p 5 3p 1 S e E E s 2 2p 5 3d 3 P o E s 2 2p 5 3d 3 P o E s 2 2p 5 3d 3 P o E (25) s 2 2p 5 3d 3 F o E s 2 2p 5 3d 3 F o E (26) s 2 2p 5 3d 1 D o E (25) s 2 2p 5 3d 3 D o E (26) s 2 2p 5 3d 3 D o E (27) s 2 2p 5 3d 3 F o E (21) s 2 2p 5 3d 3 D o E (21) s 2 2p 5 3d 1 F o E (22) s 2 2p 5 3d 1 P o E (23) s 1 2p 6 3s 3 S e E s 1 2p 6 3s 1 S e E s 1 2p 6 3p 3 P o E s 1 2p 6 3p 3 P o E (33)

11 Pramana J. Phys. (2017) 89:79 Page 11 of Table 3. Continued. S. No. Label J DC Breit QED Total Lifetimes Mixing coefficients FAC NIST 32 2s 1 2p 6 3p 3 P o E s 1 2p 6 3p 1 P o E (31) s 1 2p 6 3d 3 D e E s 1 2p 6 3d 3 D e E s 1 2p 6 3d 3 D e E s 1 2p 6 3d 1 D e E s 2 2p 5 4s 3 P o E s 2 2p 5 4s 1 P o E (47) s 2 2p 5 4p 3 S e E (57) s 2 2p 5 4p 3 D e E (58) s 2 2p 5 4p 3 D e E s 2 2p 5 4p 1 P e E (40) s 2 2p 5 4p 3 P e E (58) s 2 2p 5 4p 3 P e E (59) s 2 2p 5 4s 3 P o E s 2 2p 5 4s 3 P o E (39) s 2 2p 5 4d 3 P o E s 2 2p 5 4d 3 P o E (71) s 2 2p 5 4d 3 F o E s 2 2p 5 4d 3 F o E (70) s 2 2p 5 4d 3 P o E (69) s 2 2p 5 4d 1 D o E (68) s 2 2p 5 4d 3 D o E (70) s 2 2p 5 4p 3 D e E (43) s 2 2p 5 4d 1 P o E (71) s 2 2p 5 4p 3 P e E (40) s 2 2p 5 4p 1 D e E (44) s 2 2p 5 4p 1 S e E (45) s 2 2p 5 4f 3 D e E s 2 2p 5 4f 1 G e E (74) s 2 2p 5 4f 3 D e E (65) s 2 2p 5 4f 3 G e E s 2 2p 5 4f 3 F e E (75)

12 79 Page 12 of 24 Pramana J. Phys. (2017) 89:79 Table 3. Continued. S. No. Label J DC Breit QED Total Lifetimes Mixing coefficients FAC NIST 65 2s 2 2p 5 4f 1 D e E (73) s 2 2p 5 4f 1 F e E (72) s 2 2p 5 4f 3 F e E (61) s 2 2p 5 4d 3 F o E (53) s 2 2p 5 4d 3 D o E (69) s 2 2p 5 4d 1 F o E (54) s 2 2p 5 4d 3 D o E (71) s 2 2p 5 4f 3 G e E (66) s 2 2p 5 4f 3 F e E (62) s 2 2p 5 4f 3 G e E (67) s 2 2p 5 4f 3 D e E (66) s 2 2p 5 5s 3 P o E s 2 2p 5 5s 1 P o E (107) s 1 2p 6 4s 3 S e E (109) s 2 2p 5 5p 3 D e E (110) s 2 2p 5 5p 3 P e E (84) s 1 2p 6 4s 1 S e E s 2 2p 5 5p 3 D e E s 2 2p 5 5p 3 P e E (110) s 2 2p 5 5p 1 P e E (78) s 2 2p 5 5p 1 S e E (111) s 2 2p 5 5d 3 P o E s 2 2p 5 5d 3 P o E (118) s 2 2p 5 5d 3 F o E s 2 2p 5 5d 3 F o E (117) s 2 2p 5 5d 3 P o E (116) s 2 2p 5 5d 1 D o E (115) s 2 2p 5 5d 3 D o E (117) s 2 2p 5 5d 1 P o E (118) s 1 2p 6 4p 3 P o E s 1 2p 6 4p 3 P o E s 2 2p 5 5f 3 D e E s 2 2p 5 5f 3 D e E s 2 2p 5 5f 3 G e E (121) s 2 2p 5 5f 3 G e E

13 Pramana J. Phys. (2017) 89:79 Page 13 of Table 3. Continued. S. No. Label J DC Breit QED Total Lifetimes Mixing coefficients FAC NIST 100 2s 2 2p 5 5f 3 F e E (123) s 2 2p 5 5f 1 D e E (122) s 2 2p 5 5f 1 F e E (100) s 2 2p 5 5f 3 F e E (121) s 1 2p 6 4p 3 P o E s 1 2p 6 4p 1 P o E (107) s 2 2p 5 5s 3 P o E s 2 2p 5 5s 3 P o E (77) s 2 2p 5 5p 3 D e E (84) s 2 2p 5 5p 3 S e E (109) s 2 2p 5 5p 1 D e E (83) s 2 2p 5 5p 3 P e E (85) s 1 2p 6 4d 3 D e E s 1 2p 6 4d 3 D e E s 1 2p 6 4d 3 D e E s 2 2p 5 5d 3 F o E (91) s 2 2p 5 5d 3 D o E (116) s 2 2p 5 5d 1 F o E (92) s 2 2p 5 5d 3 D o E (93) s 1 2p 6 4d 1 D e E s 2 2p 5 5f 3 G e E (102) s 2 2p 5 5f 1 G e E (103) s 2 2p 5 5f 3 F e E (97) s 2 2p 5 5f 3 D e E (102) s 1 2p 6 4f 3 F o E s 1 2p 6 4f 3 F o E s 1 2p 6 4f 3 F o E s 1 2p 6 4f 1 F o E

14 79 Page 14 of 24 Pramana J. Phys. (2017) 89:79 Table 4. Energies (in Ryd.) are compared with other results. Level Ne-like Ga Ne-like Cu Ne-like Zn Calculated value Ref. [41] Calculated value Ref. [41] Calculated value Ref. [42] 2s 2 2p 6 1 S s 2 2p 5 3s 3 P s 2 2p 5 3s 1 P s 2 2p 5 3s 3 P s 2 2p 5 3s 3 P s 2 2p 5 3p 3 P s 2 2p 5 3p 1 D s 2 2p 5 3p 3 D s 2 2p 5 3p 3 S s 2 2p 5 3p 3 P s 2 2p 5 3p 3 P s 2 2p 5 3p 1 P s 2 2p 5 3p 3 D s 2 2p 5 3p 3 D s 2 2p 5 3p 1 S s 2 2p 5 3d 3 P s 2 2p 5 3d 3 P s 2 2p 5 3d 3 F s 2 2p 5 3d 3 F s 2 2p 5 3d 3 P s 2 2p 5 3d 3 D s 2 2p 5 3d 3 D s 2 2p 5 3d 3 D s 2 2p 5 3d 3 F s 2 2p 5 3d 1 D s 2 2p 5 3d 1 F s 2 2p 5 3d 1 P applications in analysing new data from different plasma and astrophysical sources. 2. Theoretical method For reliable calculations, we have performed calculations by taking two different methods, namely method and flexible atomic code (FAC). Both methods being fully relativistic, give comparable results. We have obtained results using the method employed in the GRASP code of Grant et al [26] and revised by Norrington [27]. In the approach, Hamiltonian for an N-electron atom or ion Dirac Coulomb Hamiltonian is given by Ĥ DC = where N Ĥ i + i=1 N 1 i=1 N j=i+1 ˆri ˆr j 1, (1) Ĥ = c α i p i + βc 2 + V nuc (r) (2) is the single-particle Hamiltonian consisting of kinetic energy and its interaction with the nucleus. In eq. (2), α and β represent 4 4 Dirac matrices whereas c is the speed of light. The N-electron wave function is constructed from central-field Dirac orbitals given by φ nkm = 1 r ( Pnk (r) χ km (θ,φ,σ) iq nk (r) χ km (θ,φ,σ) ), (3) where k is the Dirac angular quantum number, k = ±( j + 1/2) for l = j ± 1/2. So j = k 1/2, m is the projection of the angular momentum j,andp nk, Q nk are radial functions. The spin angular momentum χ km (θ,φ) is a two-component function defined by χ km (θ,φ) = σ =±1/2 lm σ 12 σ l 12 jm Yl m σ (θ, φ) φ σ. (4) An atomic state function (ASF) now formed for the N- electron system with the given total angular momentum

15 Pramana J. Phys. (2017) 89:79 Page 15 of Table 5. Transition data for E1, E2, M1 and M2 transitions from ground levels and 2J for lower level I, upper level k, wavelength λ (Å), line strength S (length form), oscillator strength f (length form), transition rate A ji (length form) calculated using for Ne-like Cu. Results are compared with NIST. S. No. I J λ (Å) λ (Å) NIST A ji (s 1 ) () f ij () S ij (a.u.) () Velocity/length Type 1 2s 2 2p 6 1 S 0 2s 2 2p 5 3s 3 P E E E 02 M2 2 2s 2 2p 6 1 S 0 2s 2 2p 5 3s 1 P E E E E1 3 2s 2 2p 6 1 S 0 2s 2 2p 5 3s 3 P E E E E1 4 2s 2 2p 6 1 S 0 2s 2 2p 5 3s 3 S E E E 04 M1 5 2s 2 2p 6 1 S 0 2s 2 2p 5 3p 3 D E E E E2 6 2s 2 2p 6 1 S 0 2s 2 2p 5 3p 1 P E E E 07 M1 7 2s 2 2p 6 1 S 0 2s 2 2p 5 3p 3 P E E E E2 8 2s 2 2p 6 1 S 0 2s 2 2p 5 3p 3 D E E E 06 M1 9 2s 2 2p 6 1 S 0 2s 2 2p 5 3p 3 P E E E 04 M1 10 2s 2 2p 6 1 S 0 2s 2 2p 5 3p 3 P E E E E2 11 2s 2 2p 6 1 S 0 2s 2 2p 5 3d 3 P E E E E1 12 2s 2 2p 6 1 S 0 2s 2 2p 5 3d 3 P E E E+00 M2 13 2s 2 2p 6 1 S 0 2s 2 2p 5 3d 1 D E E E 01 M2 14 2s 2 2p 6 1 S 0 2s 2 2p 5 3d 3 D E E E E1 15 2s 2 2p 6 1 S 0 2s 2 2p 5 3d 3 3 F E E E 02 M2 16 2s 2 2p 6 1 S 0 2s 2 2p 5 3d 3 D E E E 01 M2 17 2s 2 2p 6 1 S 0 2s 2 2p 5 3d 1 P E E E E1 18 2s 2 2p 6 1 S 0 2s2p 6 3s 3 S E E E 05 M1 19 2s 2 2p 6 1 S 0 2s2p 6 3p 3 P E E E 03 1 E1 20 2s 2 2p 6 1 S 0 2s2p 6 3p 3 P E E E 01 M2 21 2s 2 2p 6 1 S 0 2s2p 6 3p 1 P E E E 02 1 E1 22 2s 2 2p 6 1 S 0 2s2p 6 3d 3 D E E E 06 M1 23 2s 2 2p 6 1 S 0 2s2p 6 3d 3 D E E E E2 24 2s 2 2p 6 1 S 0 2s2p 6 3d 1 D E E E E2 25 2s 2 2p 6 1 S 0 2s 2 2p 5 4s 3 P E E E 02 M2 26 2s 2 2p 6 1 S 0 2s 2 2p 5 4s 1 P E E E E1 27 2s 2 2p 6 1 S 0 2s 2 2p 5 4p 3 S E E E 05 M1 28 2s 2 2p 6 1 S 0 2s 2 2p 5 4p 3 D E E E E2 29 2s 2 2p 6 1 S 0 2s 2 2p 5 4p 1 P E E E 07 M1 30 2s 2 2p 6 1 S 0 2s 2 2p 5 4p 3 P E E E E2 31 2s 2 2p 6 1 S 0 2s 2 2p 5 4s 3 P E E E E1 32 2s 2 2p 6 1 S 0 2s 2 2p 5 4d 3 P E E E E1 33 2s 2 2p 6 1 S 0 2s 2 2p 5 4d 3 F E E E 01 M2 34 2s 2 2p 6 1 S 0 2s 2 2p 5 4p 3 D E E E 06 M1 35 2s 2 2p 6 1 S 0 2s 2 2p 5 4d 1 D E E E 02 M2 36 2s 2 2p 6 1 S 0 2s 2 2p 5 4p 3 P E E E 05 M1 37 2s 2 2p 6 1 S 0 2s 2 2p 5 4p 1 D E E E E2 38 2s 2 2p 6 1 S 0 2s 2 2p 5 4d 1 P E E E E1 39 2s 2 2p 6 1 S 0 2s 2 2p 5 4f 3 D E E E 07 M1 40 2s 2 2p 6 1 S 0 2s 2 2p 5 4f 3 G E E E 04 1 E2 41 2s 2 2p 6 1 S 0 2s 2 2p 5 4f 1 D E E E 03 1 E2 42 2s 2 2p 6 1 S 0 2s 2 2p 5 4d 3 F E E E 03 M2 43 2s 2 2p 6 1 S 0 2s 2 2p 5 4d 3 D E E E 02 M2 44 2s 2 2p 6 1 S 0 2s 2 2p 5 4d 3 D E E E E1 45 2s 2 2p 6 1 S 0 2s 2 2p 5 4f 3 F E E E 04 1 E2 46 2s 2 2p 6 1 S 0 2s 2 2p 5 5s 3 P E E E 03 M2 47 2s 2 2p 6 1 S 0 2s 2 2p 5 5s 1 P E E E E1 48 2s 2 2p 6 1 S 0 2s 2 2p 5 5p 3 S E E E 05 M1

16 79 Page 16 of 24 Pramana J. Phys. (2017) 89:79 Table 5. Continued. S. No. I J λ (Å) λ (Å) NIST A ji (s 1 ) () f ij () S ij (a.u.) () Velocity/length Type 49 2s 2 2p 6 1 S 0 2s 2 2p 5 5p 3 D E E E E2 50 2s 2 2p 6 1 S 0 2s 2 2p 5 5p 1 P E E E 07 M1 51 2s 2 2p 6 1 S 0 2s 2 2p 5 5p 3 P E E E E2 52 2s 2 2p 6 1 S 0 2s2p 6 4s 3 S E E E 07 M1 53 2s 2 2p 6 1 S 0 2s 2 2p 5 5d 3 P E E E E1 54 2s 2 2p 6 1 S 0 2s 2 2p 5 5d 3 F E E E 02 M2 55 2s 2 2p 6 1 S 0 2s 2 2p 5 5d 1 D E E E 02 M2 56 2s 2 2p 6 1 S 0 2s 2 2p 5 5d 1 P E E E E1 57 2s 2 2p 6 1 S 0 2s 2 2p 5 5s 3 P E E E E1 58 2s 2 2p 6 1 S 0 2s 2 2p 5 5f 3 D E E E 07 M1 59 2s 2 2p 6 1 S 0 2s 2 2p 5 5f 3 D E E E E2 60 2s 2 2p 6 1 S 0 2s 2 2p 5 5f 1 D E E E E2 61 2s 2 2p 6 1 S 0 2s 2 2p 5 5p 3 D E E E 07 M1 62 2s 2 2p 6 1 S 0 2s 2 2p 5 5p 3 P E E E E2 63 2s 2 2p 6 1 S 0 2s 2 2p 5 5p 1 D E E E 06 M1 64 2s 2 2p 6 1 S 0 2s2p 6 4p 3 P E E E E1 65 2s 2 2p 6 1 S 0 2s2p 6 4p 3 P E E E 02 M2 66 2s 2 2p 6 1 S 0 2s2p 6 4p 1 P E E E E1 67 2s 2 2p 6 1 S 0 2s 2 2p 5 5d 3 F E E E 03 M2 68 2s 2 2p 6 1 S 0 2s 2 2p 5 5d 3 D E E E 02 M2 69 2s 2 2p 6 1 S 0 2s 2 2p 5 5d 3 D E E E E1 70 2s 2 2p 6 1 S 0 2s 2 2p 5 5f 3 F E E E E2 71 2s 2 2p 6 1 S 0 2s2p 6 4d 3 D E E E 07 M1 72 2s 2 2p 6 1 S 0 2s2p 6 4d 3 D E E E E2 73 2s 2 2p 6 1 S 0 2s2p 6 4d 1 D E E E E2 74 2s 2 2p 6 1 S 0 2s2p 6 4f 3 F E E E 09 M2 J, M and parity P are approximated by a linear combination of n c electronic configuration state functions (CSF) n c ψ α (PJM) = C i (α) γ i (PJM), (5) i=1 where n c is the number of CSFs included in the expansion, C i (α) are the expansion mixing coefficients and α represents all information such as orbital occupation numbers, coupling etc. For expectation of Dirac Hamiltonian we get the energy of the N-electron system as Eα PJM = α (PJM) H DC α (PJM) = ij C i (α) C j (α) γ PJM i H DC γ PJM j (6) = (Cα DC )+ H DC Cα DC. (7) The Hamiltonian matrix H DC has elements H DC rs = γ PJM r H DC γ PJM s. (8) Requiring eq. (8) to be stationary with respect to the mixing coefficients leads to the eigenvalue problem to the mixing coefficients (H DC E DC α I ) C DC α = 0, (9) where I is the n c n c unit matrix. Thus, the predicted atomic energy level Eα PJM can be taken to be the eigenvalues of H DC. There is inclusion of the relativistic two-body Breit interaction and the QED corrections due to vacuum polarization and self-energy. Vacuum polarization and self-energy make up the Lamb shift to the energy and mainly affect the orbitals which penetrate the nucleus. We have used this method to calculate various atomic data parameters in the past [28 38] as it can provide reliable energies and radiative rates among multiplet states of atoms for a wide range of ionizations. Due to the shortage of data for comparison and to check the accuracy of our reported energy levels, we have used the FAC for the other calculation. This is a fully relativistic method based on distorted wave

Relativistic Calculations for Be-like Iron

Relativistic Calculations for Be-like Iron Commun. Theor. Phys. (Beijing, China) 50 (2008) pp. 468 472 Chinese Physical Society Vol. 50, No. 2, August 15, 2008 Relativistic Calculations for Be-like Iron YANG Jian-Hui, 1 LI Ping, 2, ZHANG Jian-Ping,

More information

Ab-initio Calculations for Forbidden M1/E2 Decay Rates in Ti XIX ion

Ab-initio Calculations for Forbidden M1/E2 Decay Rates in Ti XIX ion EJTP 3, No. 11 (2006) 111 122 Electronic Journal of Theoretical Physics Ab-initio Calculations for Forbidden M1/E2 Decay Rates in Ti XIX ion A. Farrag Physics Department,Faculty of Science, Cairo University,

More information

arxiv: v1 [physics.atom-ph] 2 Dec 2015

arxiv: v1 [physics.atom-ph] 2 Dec 2015 J. Phys. B: At. Mol. Opt. Phys. arxiv:1512.657v1 [physics.atom-ph] 2 Dec 215 Theoretical investigation of spectroscopic properties of W 26+ in EBIT plasma V. Jonauskas, A. Kynienė, P. Rynkun, S. Kučas,

More information

Fine Structure Calculations of Atomic Data for Ar XVI

Fine Structure Calculations of Atomic Data for Ar XVI Journal of Modern Physics, 2015, 6, 1609-1630 Published Online September 2015 in SciRes. http://www.scirp.org/journal/jmp http://dx.doi.org/10.4236/jmp.2015.611163 Fine Structure Calculations of Atomic

More information

arxiv: v1 [physics.atm-clus] 11 Jun 2014

arxiv: v1 [physics.atm-clus] 11 Jun 2014 Energy levels, radiative rates, and lifetimes for transitions in W LVIII Kanti M. Aggarwal and Francis P. Keenan arxiv:1406.2838v1 [physics.atm-clus] 11 Jun 2014 Astrophysics Research Centre, School of

More information

NIST Research on Spectroscopy and Collisional-Radiative Modeling of Highly-Charged Ions of Tungsten

NIST Research on Spectroscopy and Collisional-Radiative Modeling of Highly-Charged Ions of Tungsten NIST Research on Spectroscopy and Collisional-Radiative Modeling of Highly-Charged Ions of Tungsten Yuri Ralchenko National Institute of Standards and Technology Gaithersburg, USA Vienna, Austria, Dec

More information

Academic Editor: Joseph Reader Received: 25 November 2016; Accepted: 6 January 2017; Published: 12 January 2017

Academic Editor: Joseph Reader Received: 25 November 2016; Accepted: 6 January 2017; Published: 12 January 2017 atoms Article Combining Multiconfiguration and Perturbation Methods: Perturbative Estimates of Core Core Electron Correlation Contributions to Excitation Energies in Mg-Like Iron Stefan Gustafsson 1, Per

More information

Photoionization of excited states of neon-like Mg III

Photoionization of excited states of neon-like Mg III PRAMANA cfl Indian Academy of Sciences Vol. 58, No. 4 journal of April 2002 physics pp. 639 646 Photoionization of excited states of neon-like Mg III NARENDRA SINGH and MAN MOHAN Department of Physics

More information

Atomic structure and dynamics

Atomic structure and dynamics Atomic structure and dynamics -- need and requirements for accurate atomic calculations Analysis and interpretation of optical and x-ray spectra (astro physics) Isotope shifts and hyperfine structures

More information

Energy Levels, Oscillator Strengths, and Transition Probabilities of Ni XIX and Cu XX

Energy Levels, Oscillator Strengths, and Transition Probabilities of Ni XIX and Cu XX Optics and Photonics Journal, 2014, 4, 54-89 Published Online March 2014 in SciRes. http://www.scirp.org/journal/opj http://dx.doi.org/10.4236/opj.2014.43008 Energy Levels, Oscillator Strengths, and Transition

More information

Multiconfiguration Dirac-Hartree-Fock Calculations with Spectroscopic Accuracy: Applications to Astrophysics

Multiconfiguration Dirac-Hartree-Fock Calculations with Spectroscopic Accuracy: Applications to Astrophysics Review Multiconfiguration Dirac-Hartree-Fock Calculations with Spectroscopic Accuracy: Applications to Astrophysics Per Jönsson 1, *, Gediminas Gaigalas 2, Pavel Rynkun 2, Laima Radžiūtė 2, Jörgen Ekman

More information

Evaluation and Comparison of the Configuration Interaction Calculations for Complex Atoms

Evaluation and Comparison of the Configuration Interaction Calculations for Complex Atoms Atoms 2014, 2, 1-14; doi:10.3390/atoms2010001 OPEN ACCESS atoms ISSN 2218-2004 www.mdpi.com/journal/atoms Article Evaluation and Comparison of the Configuration Interaction Calculations for Complex Atoms

More information

Theoretical study on the K α transition properties of F-like ions

Theoretical study on the K α transition properties of F-like ions J. At. Mol. Sci. doi: 10.4208/jams.013010.022010a Vol. 1, No. 2, pp. 134-142 May 2010 Theoretical study on the K α transition properties of F-like ions X. L. Wang, J. J. Wan, Y. J. Wang, and C. Z. Dong

More information

Oscillator strengths and E1 radiative rates for Ca-like titanium, Ti III

Oscillator strengths and E1 radiative rates for Ca-like titanium, Ti III Int. J. New. Hor. Phys. 2, No. 1, 25-31 (2015) 25 International Journal of New Horizons in Physics http://dx.doi.org/10.12785/ijnhp/020105 Oscillator strengths and E1 radiative rates for Ca-like titanium,

More information

Relativistic corrections of energy terms

Relativistic corrections of energy terms Lectures 2-3 Hydrogen atom. Relativistic corrections of energy terms: relativistic mass correction, Darwin term, and spin-orbit term. Fine structure. Lamb shift. Hyperfine structure. Energy levels of the

More information

Forbidden Electric Dipole Transitions in the Hydrogen Molecular Ion First Estimates

Forbidden Electric Dipole Transitions in the Hydrogen Molecular Ion First Estimates Bulg. J. Phys. 44 (2017) 76 83 Forbidden Electric Dipole Transitions in the Hydrogen Molecular Ion First Estimates P. Danev Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences,

More information

Evaluating the Accuracy of Theoretical Transition Data for Atoms

Evaluating the Accuracy of Theoretical Transition Data for Atoms Evaluating the Accuracy of Theoretical Transition Data for Atoms Per Jönsson Group for Materials Science and Applied Mathematics School of Engineering, Malmö University, Sweden 6 maj 2013 Code development

More information

Benchmarking High-Field Few-Electron Correlation and QED Contributions in Hg 75+ to Hg 78+ Ions. II. Theory

Benchmarking High-Field Few-Electron Correlation and QED Contributions in Hg 75+ to Hg 78+ Ions. II. Theory Missouri University of Science and Technology Scholars' Mine Physics Faculty Research & Creative Works Physics 5-1-2006 Benchmarking High-Field Few-Electron Correlation and QED Contributions in Hg 75+

More information

Energy Levels and Transition Probabilities for Boron-Like Fe XXII

Energy Levels and Transition Probabilities for Boron-Like Fe XXII University of Kentucky UKnowledge Physics and Astronomy Faculty Publications Physics and Astronomy 9-1-2006 Energy Levels and Transition Probabilities for Boron-Like Fe XXII V. Jonauskas The Queen's University

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 Questions about organization Second quantization Questions about last class? Comments? Similar strategy N-particles Consider Two-body operators in Fock

More information

R. Clark, D. Humbert, K. Sheikh Nuclear Data Section

R. Clark, D. Humbert, K. Sheikh Nuclear Data Section Calculation of Atomic Data for Plasma Modeling: Introduction and Atomic Structure Part 1 R. Clark, D. Humbert, K. Sheikh Nuclear Data Section Overview Plasmas in fusion research Data needs for plasma modeling

More information

Plane wave solutions of the Dirac equation

Plane wave solutions of the Dirac equation Lecture #3 Spherical spinors Hydrogen-like systems again (Relativistic version) irac energy levels Chapter, pages 48-53, Lectures on Atomic Physics Chapter 5, pages 696-76, Bransden & Joachain,, Quantum

More information

Atomic and molecular physics Revision lecture

Atomic and molecular physics Revision lecture Atomic and molecular physics Revision lecture Answer all questions Angular momentum J`2 ` J z j,m = j j+1 j,m j,m =m j,m Allowed values of mgo from j to +jin integer steps If there is no external field,

More information

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract This work was performed under the auspices of the U.S. Department of Energy by under contract DE-AC52-7NA27344. Lawrence Livermore National Security, LLC The ITER tokamak Tungsten (W) is attractive as

More information

The LANL atomic kinetics modeling effort and its application to W plasmas

The LANL atomic kinetics modeling effort and its application to W plasmas The LANL atomic kinetics modeling effort and its application to W plasmas James Colgan, Joseph Abdallah, Jr., Christopher Fontes, Honglin Zhang Los Alamos National Laboratory IAEA CRP December 2010 jcolgan@lanl.gov

More information

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data January 2012

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data January 2012 2327-4 Joint ICTP- Workshop on Fusion Plasma Modelling using Atomic and Molecular Data 23-27 January 2012 Atomic Processes Modeling in Plasmas Modeling Spectroscopic Observables from Plasmas Hyun-Kyung

More information

Canadian Journal of Physics. Energy, fine structure, hyperfine structure, and transitions for the high-lying multi-excited 4Pe,o states of B-like ions

Canadian Journal of Physics. Energy, fine structure, hyperfine structure, and transitions for the high-lying multi-excited 4Pe,o states of B-like ions Energy, fine structure, hyperfine structure, and transitions for the high-lying multi-excited 4Pe,o states of B-like ions Journal: Canadian Journal of Physics Manuscript ID cjp-2-69.r3 Manuscript Type:

More information

Workshop on: ATOMIC STRUCTURE AND TRANSITIONS: THEORY IN USING SUPERSTRUCTURE PROGRAM

Workshop on: ATOMIC STRUCTURE AND TRANSITIONS: THEORY IN USING SUPERSTRUCTURE PROGRAM Workshop on: ATOMIC STRUCTURE AND TRANSITIONS: THEORY IN USING SUPERSTRUCTURE PROGRAM PROF. SULTANA N. NAHAR Astronomy, Ohio State U, Columbus, Ohio, USA Email: nahar.1@osu.edu http://www.astronomy.ohio-state.edu/

More information

Gain Coefficient Calculation for Short Wave Laser Emission from Sodium like Co

Gain Coefficient Calculation for Short Wave Laser Emission from Sodium like Co Optics and Photonics Journal, 2013, 3, 369-378 Published Online December 2013 (http://www.scirp.org/journal/opj) http://dx.doi.org/10.4236/opj.2013.38058 Gain Coefficient Calculation for Short Wave Laser

More information

Problem 1: Spin 1 2. particles (10 points)

Problem 1: Spin 1 2. particles (10 points) Problem 1: Spin 1 particles 1 points 1 Consider a system made up of spin 1/ particles. If one measures the spin of the particles, one can only measure spin up or spin down. The general spin state of a

More information

Investigation of M1 transitions of the ground-state configuration of In-like Tungsten

Investigation of M1 transitions of the ground-state configuration of In-like Tungsten Investigation of M1 transitions of the ground-state configuration of In-like Tungsten W Li 1,2,3, J Xiao 1,2, Z Shi 1,2a, Z Fei 1,2b, R Zhao 1,2c, T Brage 3, S Huldt, R Hutton 1, 2 * and Y Zou 1,2 * 1

More information

The Electronic Structure of Atoms

The Electronic Structure of Atoms The Electronic Structure of Atoms Classical Hydrogen-like atoms: Atomic Scale: 10-10 m or 1 Å + - Proton mass : Electron mass 1836 : 1 Problems with classical interpretation: - Should not be stable (electron

More information

ABSTRACT Electron collision excitation strengths of inelastic transitions among the 52 Ðne-structure levels of the

ABSTRACT Electron collision excitation strengths of inelastic transitions among the 52 Ðne-structure levels of the THE ASTROPHYSICAL JOURNAL, 530:1091È1104, 2000 February 20 ( 2000. The American Astronomical Society. All rights reserved. Printed in U.S.A. ELECTRON COLLISION EXCITATION OF FINE-STRUCTURE LEVELS IN S

More information

Atomic Data for Lowly-Charged Tungsten Ions

Atomic Data for Lowly-Charged Tungsten Ions Atomic Data for Lowly-Charged Tungsten Ions Patrick Palmeri patrick.palmeri@umons.ac.be ADAS 2012 (Cadarache, France) 1 Outline Introduction HFR+CPOL Method Results: W 0, W 3-5+ Conclusions & Perspectives

More information

Allowed and forbidden transition parameters for Fe XXII Sultana N. Nahar *

Allowed and forbidden transition parameters for Fe XXII Sultana N. Nahar * Atomic Data and Nuclear Data Tables, 96, (2010), p.26 51. ISSN: 0092-640x/0092-640X doi:10.1016/j.adt.2009.09.001 2009 Elsevier Inc. All rights reserved. http://www.elsevier.com/wps/find/homepage.cws_home

More information

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION P. W. Atkins and R. S. Friedman Molecular Quantum Mechanics THIRD EDITION Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1997 Introduction and orientation 1 Black-body radiation 1 Heat capacities 2 The

More information

Academic Editor: Joseph Reader Received: 21 December 2016; Accepted:19 January 2017; Published: 27 January 2017

Academic Editor: Joseph Reader Received: 21 December 2016; Accepted:19 January 2017; Published: 27 January 2017 atoms Article JJ2LSJ Transformation and Unique Labeling for Energy Levels Gediminas Gaigalas 1, *, Charlotte Froese Fischer 2, Pavel Rynkun 1 and Per Jönsson 3 1 Institute of Theoretical Physics and Astronomy,

More information

Radiative rates of transitions from the 2s2p 3 5 S 2 level of neutral carbon

Radiative rates of transitions from the 2s2p 3 5 S 2 level of neutral carbon Radiative rates of transitions from the 2s2p 3 5 S 2 level of neutral carbon K Haris 1 and A Kramida National Institute of Standards and Technology, Gaithersburg, MD 20899, USA E-mail: haris.kunari@nist.gov

More information

QUANTUM MECHANICS SECOND EDITION G. ARULDHAS

QUANTUM MECHANICS SECOND EDITION G. ARULDHAS QUANTUM MECHANICS SECOND EDITION G. ARULDHAS Formerly, Professor and Head of Physics and Dean, Faculty of Science University of Kerala New Delhi-110001 2009 QUANTUM MECHANICS, 2nd Ed. G. Aruldhas 2009

More information

Electric-dipole, electric-quadrupole, magnetic-dipole, and magnetic-quadrupole transitions in the neon isoelectronic sequence

Electric-dipole, electric-quadrupole, magnetic-dipole, and magnetic-quadrupole transitions in the neon isoelectronic sequence PHYSICAL REVIEW A, VOLUME 64, 012507 Electric-dipole, electric-quadrupole, magnetic-dipole, and magnetic-quadrupole transitions in the neon isoelectronic sequence U. I. Safronova, 1,2 C. Namba, 1 I. Murakami,

More information

URL: / /49/18/ Publisher: IOP. This document has been downloaded from MUEP (http://muep.mah.se).

URL: / /49/18/ Publisher: IOP. This document has been downloaded from MUEP (http://muep.mah.se). This is an author produced version of a paper published in Journal of Physics B: Atomic, Molecular and Optical Physics. This paper has been peer-reviewed but does not include the final publisher proof-corrections

More information

Oak Ridge National Laboratory Oak Ridge, Tennessee 37830, U.S.A.

Oak Ridge National Laboratory Oak Ridge, Tennessee 37830, U.S.A. CONTRIBUTORS ANDERSEN, J. U BACKE, H. BARAT, M. BOSCH, F. COCKE, C.L. CRANDALL, D. H DESCLAUX, J.P. DRAKE, G.W.F. DUBAU, J. HINNOV, E. MARTINSON, I. Institute of Physics, University of Aarhus DK-8000 Aarhus

More information

Lecture 9. Hartree Fock Method and Koopman s Theorem

Lecture 9. Hartree Fock Method and Koopman s Theorem Lecture 9 Hartree Fock Method and Koopman s Theorem Ψ(N) is approximated as a single slater determinant Φ of N orthogonal One electron spin-orbitals. One electron orbital φ i = φ i (r) χ i (σ) χ i (σ)

More information

Quantum Mechanics: Fundamentals

Quantum Mechanics: Fundamentals Kurt Gottfried Tung-Mow Yan Quantum Mechanics: Fundamentals Second Edition With 75 Figures Springer Preface vii Fundamental Concepts 1 1.1 Complementarity and Uncertainty 1 (a) Complementarity 2 (b) The

More information

Calculation of the Isotope Shifts on 5S 1/2 4D 3/2,5/2 Transitions of 87,88 Sr +

Calculation of the Isotope Shifts on 5S 1/2 4D 3/2,5/2 Transitions of 87,88 Sr + Commun. Theor. Phys. (Beijing, China) 37 (22) pp 76 7 c International Academic Publishers Vol. 37, No. 6, June 5, 22 Calculation of the Isotope Shifts on 5S /2 4D 3/2,5/2 Transitions of 87,88 Sr + LI Yong,,2

More information

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Peter van der Straten Universiteit Utrecht, The Netherlands and Harold Metcalf State University of New York, Stony Brook This

More information

The World s Smallest Extreme Laboratories:

The World s Smallest Extreme Laboratories: The World s Smallest Extreme Laboratories: Probing QED with Highly Charged Ions. Joan Marler Clemson University Outline About HCIs About Ion trapping Precision spectroscopy with HCIs Highly Charged Ions

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

Extreme ultraviolet spectroscopy of highly charged argon ions at the Berlin EBIT

Extreme ultraviolet spectroscopy of highly charged argon ions at the Berlin EBIT Extreme ultraviolet spectroscopy of highly charged argon ions at the Berlin EBIT C. Biedermann, R. Radtke, G. Fussmann, F.I. Allen Institut für Physik der Humboldt-Universität zu Berlin, Lehrstuhl Plasmaphysik,

More information

The Effect of Correlation on Spectra of the Lanthanides: Pr 3+

The Effect of Correlation on Spectra of the Lanthanides: Pr 3+ Article The Effect of Correlation on Spectra of the Lanthanides: Pr 3+ Charlotte Froese Fischer 1, * and Gediminas Gaigalas 2 1 Department of Computer Science, University of British Columbia, 2366 Main

More information

EUV spectra from the NIST EBIT

EUV spectra from the NIST EBIT EUV spectra from the NIST EBIT D. Kilbane and G. O Sullivan Atomic and Molecular Plasma Physics group, UCD, Ireland J. D. Gillaspy, Yu. Ralchenko and J. Reader National Institute of Standards and Technology,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, Problem Set #2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, Problem Set #2 Reading Assignment: Bernath Chapter 5 MASSACHUSETTS INSTITUTE O TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring 994 Problem Set # The following handouts also contain useful information: C &

More information

64-311/5: Atomic and Molecular Spectra

64-311/5: Atomic and Molecular Spectra 64-311-Questions.doc 64-311/5: Atomic and Molecular Spectra Dr T Reddish (Room 89-1 Essex Hall) SECTION 1: REVISION QUESTIONS FROM 64-310/14 ε ο = 8.854187817 x 10-1 Fm -1, h = 1.0545766 x 10-34 Js, e

More information

PHY492: Nuclear & Particle Physics. Lecture 6 Models of the Nucleus Liquid Drop, Fermi Gas, Shell

PHY492: Nuclear & Particle Physics. Lecture 6 Models of the Nucleus Liquid Drop, Fermi Gas, Shell PHY492: Nuclear & Particle Physics Lecture 6 Models of the Nucleus Liquid Drop, Fermi Gas, Shell Liquid drop model Five terms (+ means weaker binding) in a prediction of the B.E. r ~A 1/3, Binding is short

More information

FINE STRUCTURE RADIATIVE TRANSITIONS IN C II AND C III USING THE BREIT PAULI R-MATRIX METHOD SULTANA N. NAHAR

FINE STRUCTURE RADIATIVE TRANSITIONS IN C II AND C III USING THE BREIT PAULI R-MATRIX METHOD SULTANA N. NAHAR Atomic Data and Nuclear Data Tables, 80, (2002) p.205-234. ISSN: 0092-640x ISSN (electronic): 1090-2090 doi:10.1006/adnd.2002.0879 2002 Elsevier Inc. All rights reserved. http://www.elsevier.com/wps/find/homepage.cws_home

More information

Goal: find Lorentz-violating corrections to the spectrum of hydrogen including nonminimal effects

Goal: find Lorentz-violating corrections to the spectrum of hydrogen including nonminimal effects Goal: find Lorentz-violating corrections to the spectrum of hydrogen including nonminimal effects Method: Rayleigh-Schrödinger Perturbation Theory Step 1: Find the eigenvectors ψ n and eigenvalues ε n

More information

In this lecture, we will go through the hyperfine structure of atoms. The coupling of nuclear and electronic total angular momentum is explained.

In this lecture, we will go through the hyperfine structure of atoms. The coupling of nuclear and electronic total angular momentum is explained. Lecture : Hyperfine Structure of Spectral Lines: Page- In this lecture, we will go through the hyperfine structure of atoms. Various origins of the hyperfine structure are discussed The coupling of nuclear

More information

The Overhauser Instability

The Overhauser Instability The Overhauser Instability Zoltán Radnai and Richard Needs TCM Group ESDG Talk 14th February 2007 Typeset by FoilTEX Introduction Hartree-Fock theory and Homogeneous Electron Gas Noncollinear spins and

More information

Multi-Electron Atoms II

Multi-Electron Atoms II Multi-Electron Atoms II LS Coupling The basic idea of LS coupling or Russell-Saunders coupling is to assume that spin-orbit effects are small, and can be neglected to a first approximation. If there is

More information

2.4. Quantum Mechanical description of hydrogen atom

2.4. Quantum Mechanical description of hydrogen atom 2.4. Quantum Mechanical description of hydrogen atom Atomic units Quantity Atomic unit SI Conversion Ang. mom. h [J s] h = 1, 05459 10 34 Js Mass m e [kg] m e = 9, 1094 10 31 kg Charge e [C] e = 1, 6022

More information

Relativistic multiconfiguration methods. Atomic Structure Calculations using GRASP2K. What is needed. Grasp2K manual and references.

Relativistic multiconfiguration methods. Atomic Structure Calculations using GRASP2K. What is needed. Grasp2K manual and references. Relativistic multiconfiguration methods Atomic Structure Calculations using GRASP2K Jörgen Ekman, Per Jönsson Group for Materials Science and Applied Mathematics Malmö University, Sweden 13 mars 2015 General

More information

Lecture 4. Beyound the Dirac equation: QED and nuclear effects

Lecture 4. Beyound the Dirac equation: QED and nuclear effects Lecture 4 Beyound the Dirac equation: QED and nuclear effects Plan of the lecture Reminder from the last lecture: Bound-state solutions of Dirac equation Higher-order corrections to Dirac energies: Radiative

More information

The Extreme Ultraviolet Emissions of W 23+ (4f 5 )

The Extreme Ultraviolet Emissions of W 23+ (4f 5 ) The Extreme Ultraviolet Emissions of W 23+ (4f 5 ) T Pütterich, V. Jonauskas, R Neu, R Dux and ASDEX Upgrade Team Max Planck Institut für Plasmaphysik, EURATOM Association, D 85748 Garching, Germany Institute

More information

Physics of atoms and molecules

Physics of atoms and molecules Physics of atoms and molecules 2nd edition B.H. Bransden and C.J. Joachain Prentice Hall An imprint of Pearson Education Harlow, England London New York Boston San Francisco Toronto Sydney Singapore Hong

More information

(8) Atomic Physics (1½l, 1½p)

(8) Atomic Physics (1½l, 1½p) 10390-716(8) Atomic Physics (1½l, 1½p) 2018 Course summary: Multi-electron atoms, exclusion principle, electrostatic interaction and exchange degeneracy, Hartree model, angular momentum coupling: L-S and

More information

W 25+ More Complex, W 25+, which is In-like. There are now 41 fine structure levels belonging to the ground state,

W 25+ More Complex, W 25+, which is In-like. There are now 41 fine structure levels belonging to the ground state, W 25+ More Complex, W 25+, which is In-like. There are now 41 fine structure levels belonging to the ground state, A partial energy level diagram of In-like tungsten. The energy levels are taken from our

More information

Dirac-Hartree-Fock code (DHF). To run the code:./dhf <na.in. Walter Johnson, "Atomic structure theory"

Dirac-Hartree-Fock code (DHF). To run the code:./dhf <na.in. Walter Johnson, Atomic structure theory Page Lecture Dirac-Hartree-Fock code. Second-order perturbation theory and running second-order code. Atomic calculations and the search for the variation of the fine-structure constant. Dirac-Hartree-Fock

More information

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie Quantum Mechanics II Lecture (www.sp.phy.cam.ac.u/~dar/pdf) David Ritchie Michaelmas. So far we have found solutions to Section 4:Transitions Ĥ ψ Eψ Solutions stationary states time dependence with time

More information

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance The foundation of electronic spectroscopy is the exact solution of the time-independent Schrodinger equation for the hydrogen atom.

More information

Atomic Parity Violation

Atomic Parity Violation Atomic Parity Violation Junghyun Lee APV proposes new physics beyond the standard model of elementary particles. APV is usually measured through the weak nuclear charge Q w, quantifying the strength of

More information

arxiv: v2 [physics.atom-ph] 10 Oct 2013

arxiv: v2 [physics.atom-ph] 10 Oct 2013 Cascade emission in electron beam ion trap plasma Valdas Jonauskas a, Šarūnas Masysa, Aušra Kynienė a, Gediminas Gaigalas a arxiv:1210.5742v2 [physics.atom-ph] 10 Oct 2013 a Institute of Theoretical Physics

More information

Oscillator strengths and transition probabilities of O II

Oscillator strengths and transition probabilities of O II At. Data Nucl. Data Tables Vol. 96(6):863-877 (2010) ISSN: (print 0092-640X)(online 1090-2090) doi: 10.1016/j.adt.2010.07.002 This is a peer reviewed pre-print version of the following article: Oscillator

More information

Physics of Condensed Matter I

Physics of Condensed Matter I Physics of Condensed Matter I 1100-4INZ`PC Faculty of Physics UW Jacek.Szczytko@fuw.edu.pl Summary of the lecture 1. Quantum mechanics 2. Optical transitions 3. Lasers 4. Optics 5. Molecules 6. Properties

More information

Energy levels and radiative data for Kr-like W 38+ from MCDHF and RMBPT calculations

Energy levels and radiative data for Kr-like W 38+ from MCDHF and RMBPT calculations Energy levels and radiative data for Kr-like W 8+ from MCDHF and RMBPT calculations XueLing Guo 1,2,, Jon Grumer 1, Tomas Brage 1, Ran Si 2,, ChongYang Chen 2,, Per Jönsson 4, Kai Wang 5,6, Jun Yan 6,7,

More information

Atomic data for astrophysics: improved collision strengths for

Atomic data for astrophysics: improved collision strengths for Astronomy & Astrophysics manuscript no. paper6 c ESO 2014 June 21, 2014 Atomic data for astrophysics: improved collision strengths for Fe VIII G. Del Zanna 1 and N. R. Badnell 2 1 DAMTP, Centre for Mathematical

More information

Atomic-Physics Tests of QED & the Standard Model

Atomic-Physics Tests of QED & the Standard Model Atomic-Physics Tests of QED & the Standard Model W.R. Johnson Notre Dame University http://www.nd.edu/ johnson Abstract A brief review of tests of strong-field QED in many-electron atoms and of atomic

More information

Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms

Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms K. JANKOWSKI a, R. SŁUPSKI a, and J. R. FLORES b a Nicholas Copernicus University 87-100 Toruń,

More information

Determination of electric-dipole matrix elements in K and Rb from Stark shift measurements

Determination of electric-dipole matrix elements in K and Rb from Stark shift measurements Determination of electric-dipole matrix elements in K and Rb from Stark shift measurements Bindiya Arora and M. S. Safronova Department of Physics and Astronomy, University of Delaware, Newark, Delaware

More information

13. Basic Nuclear Properties

13. Basic Nuclear Properties 13. Basic Nuclear Properties Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 13. Basic Nuclear Properties 1 In this section... Motivation for study The strong nuclear force Stable nuclei Binding

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals Laporte Selection Rule Polarization Dependence Spin Selection Rule 1 Laporte Selection Rule We first apply this

More information

Electron impact excitation of NIV: Calculations with the DARC code and a comparison with ICFT results

Electron impact excitation of NIV: Calculations with the DARC code and a comparison with ICFT results Electron impact excitation of NIV: Calculations with the DARC code and a comparison with ICFT results Aggarwal, K. M., Keenan, F. P., & Lawson, K. D. (2016). Electron impact excitation of NIV: Calculations

More information

Gravitational Interactions and Fine-Structure Constant

Gravitational Interactions and Fine-Structure Constant Gravitational Interactions and Fine-Structure Constant Ulrich D. Jentschura Missouri University of Science and Technology Rolla, Missouri (Fellow/APS) Bled Workshop: Beyond Standard Model 22-JUL-2014 (Research

More information

Introduction to Electronic Structure Theory

Introduction to Electronic Structure Theory Introduction to Electronic Structure Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology June 2002 Last Revised: June 2003 1 Introduction The purpose of these

More information

I. INTRODUCTION JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 3 15 JANUARY ; Electronic mail:

I. INTRODUCTION JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 3 15 JANUARY ; Electronic mail: JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 3 15 JANUARY 2003 Quasirelativistic theory for the magnetic shielding constant. I. Formulation of Douglas Kroll Hess transformation for the magnetic field

More information

Atomic Structure and Atomic Spectra

Atomic Structure and Atomic Spectra Atomic Structure and Atomic Spectra Atomic Structure: Hydrogenic Atom Reading: Atkins, Ch. 10 (7 판 Ch. 13) The principles of quantum mechanics internal structure of atoms 1. Hydrogenic atom: one electron

More information

arxiv:physics/ v2 [physics.atom-ph] 31 May 2004

arxiv:physics/ v2 [physics.atom-ph] 31 May 2004 arxiv:physics/0405136v2 [physics.atom-ph] 31 May 2004 Pure spin angular momentum coefficients for non scalar one particle operators in jj coupling G. Gaigalas a and S. Fritzsche b a Institute of Theoretical

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Chemistry 3502/4502 Final Exam Part I May 14, 2005 1. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle (e) The

More information

Transition Probabilities for the Dipole Allowed Fine Structure Transitions in Sll

Transition Probabilities for the Dipole Allowed Fine Structure Transitions in Sll Physica Scripta., Vol.55, 200-238, 1997 ISSN: 1402-4896/55/2/012 (print) doi: 10.1088/0031-8949/55/2/012 IOP Publishing http://journals.iop.org/ http://www.iop.org/ej/journal/physscr Transition Probabilities

More information

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions. 1. Quantum Mechanics (Fall 2004) Two spin-half particles are in a state with total spin zero. Let ˆn a and ˆn b be unit vectors in two arbitrary directions. Calculate the expectation value of the product

More information

Identification and Plasma Diagnostics Study of Extreme Ultraviolet Transitions in Highly Charged Yttrium

Identification and Plasma Diagnostics Study of Extreme Ultraviolet Transitions in Highly Charged Yttrium atoms Article Identification and Plasma Diagnostics Study of Extreme Ultraviolet Transitions in Highly Charged Yttrium Roshani Silwal 1,2,, Endre Takacs 1,2, Joan M. Dreiling 2, John D. Gillaspy 2,3 and

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Advocacy chit Chemistry 350/450 Final Exam Part I May 4, 005. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle

More information

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer Franz Schwabl QUANTUM MECHANICS Translated by Ronald Kates Second Revised Edition With 122Figures, 16Tables, Numerous Worked Examples, and 126 Problems ff Springer Contents 1. Historical and Experimental

More information

Breit interaction in heavy atoms

Breit interaction in heavy atoms LETTER TO THE EDITOR Breit interaction in heavy atoms M G Kozlov, SGPorsev, and I I Tupitsyn Petersburg Nuclear Physics Institute, 188350, Gatchina, Russia E-mail: mgk@mf1309.spb.edu St. Petersburg State

More information

Higher-order recoil corrections in Helium and Helium-like ions

Higher-order recoil corrections in Helium and Helium-like ions Higher-order recoil corrections in Helium and Helium-like ions Vojtěch Patkóš Department of Chemical Physics and Optics Charles University in Prague 19th May 2017 Motivation Motivation Hydrogenic systems

More information

(relativistic effects kinetic energy & spin-orbit coupling) 3. Hyperfine structure: ) (spin-spin coupling of e & p + magnetic moments) 4.

(relativistic effects kinetic energy & spin-orbit coupling) 3. Hyperfine structure: ) (spin-spin coupling of e & p + magnetic moments) 4. 4 Time-ind. Perturbation Theory II We said we solved the Hydrogen atom exactly, but we lied. There are a number of physical effects our solution of the Hamiltonian H = p /m e /r left out. We already said

More information

Exercise 1: Structure and dipole moment of a small molecule

Exercise 1: Structure and dipole moment of a small molecule Introduction to computational chemistry Exercise 1: Structure and dipole moment of a small molecule Vesa Hänninen 1 Introduction In this exercise the equilibrium structure and the dipole moment of a small

More information

Atomic data from the IRON project ABSTRACT

Atomic data from the IRON project ABSTRACT A&A 446, 361 366 (26) DOI: 1.151/4-6361:253631 c ESO 26 Astronomy & Astrophysics Atomic data from the IRON project LX. Electron-impact excitation of n = 3, 4 levels of Fe 17+ M. C. Witthoeft 1,N.R.Badnell

More information

Chapter 5. Atomic spectra

Chapter 5. Atomic spectra Atomic spectra Sommerfelds relativistic model Sommerfeld succeeded partially in explaining fine structure by extending Bohr Theory i) He allowed the possibility of elliptical orbits for the electrons in

More information

Effective collision strengths for electron impact excitation of Xe III, Xe IV, Xe VI and Ba II, Ba IV

Effective collision strengths for electron impact excitation of Xe III, Xe IV, Xe VI and Ba II, Ba IV ASTRONOMY & ASTROPHYSICS MARCH II 1998, PAGE 581 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 128, 581-588 (1998) Effective collision strengths for electron impact excitation of Xe III, Xe IV, Xe VI

More information