The light Scalar Mesons: σ and κ

Size: px
Start display at page:

Download "The light Scalar Mesons: σ and κ"

Transcription

1 7th HEP Annual Conference Guilin, Oct 29, 2006 The light Scalar Mesons: σ and κ Zhou Zhi-Yong Southeast University

2 1 Background Linear σ model Nonlinear σ model σ particle: appear disappear reappear in P DG Pi Pi s0-channel f 0 (980) πk s c a tte rin g s 1 /2 c h a n n e l phase 300 δ f 0 (600)? s 1/ s 1 /2

3 1 0.8 Im t 0 0 unitarity limit Energy (GeV) There is the broad object seen in ππ scattering, often called background, which extends from about 400 MeV up to about 1700 MeV. This object we consider as a single broad resonance 2 which we identify as the lightest glueball with quantum numbers J P C = we refer to it as red dragon P. Minkowski and W. Ochs, Eur. Phys. J. C9 (1999) 283 H. Leutwyler Bern The lowest resonance of QCD p.8/39

4 The Red Dragon the red dragon I. Caprini, G. Colangelo and H. Leutwyler, Phys. Rev. Lett. 96 (2006) Does QCD have a resonance near threshold? Why care? Concerns the nonperturbative domain of QCD Quark and gluon degrees of freedom useless there Understanding very poor, pattern of energy levels? Lowest resonance: σ? ρ? Resonance pole on second sheet Poles are universal Pole position is unambiguous, even if width is large Where is the pole closest to the origin? as pointed by H.Leutwyler in QCHS VII H. Leutwyler Bern The lowest resonance of QCD p.9/39

5 Comparison with compilation of PDG

6 Different methods in studying ππ physics 1. Chiral Perturbation Theory(without the information of resonance) 2. Phenomenological Analysis(model-dependent, hardly to be trusted in studying broad resonance) 3. Dispersive technique(including Roy equation method, S matrix theory...), modelindependent

7 2 Analytical Continuation pole on second sheet zero on first sheet S 0 0 (s) = η0 0 (s) exp 2iδ0 0 (s) s-plane S 0 0 (s) is analytic in the cut plane 0 4 M π 2 physical region For 0 < s < 4Mπ 2, S0 0 (s) is real S 0 0 (s ) = S 0 0 (s) x in elastic interval: S 0 0 (x ± iɛ) = exp ±2iδ0 0 (x) Second sheet is reached by continuation across the elastic interval of the right hand cut S0 0(x iɛ)ii = S0 0(x + iɛ)i = 1/S0 0 (x iɛ)i Analyticity S 0 0 (s)ii = 1/S 0 0 (s)i valid s Pole in S 0 0 (s)ii zero in S 0 0 (s)i H. Leutwyler Bern The lowest resonance of QCD p.12/39

8 3 PKU Parametrization Form The most important characters in studying low energy physics 1. Unitarity 2. Crossing symmetry 3. Analyticity S phy = S cut S p i, (1) S cut is expressed based on dispersion relation: S cut = exp[2iρ(s)f(s)], (2) i f(s) = f(s 0 ) + (s s 0) disc L f(z) 2πi L(z s)(z s 0 ) dz + (s s 0) Im R f(z) dz. (3) π (z s)(z s 0 ) R

9 It conserves unitarity, The Simplest S Matrices 1 discf = disc{ 2iρ(s) log [ S phy (s) ] }. (4) Im R f(s) = 1 1 log η(s) = 2ρ(s) 4ρ(s) log(s 11S 22 dets ), (5) 1. A virtual state pole at s 0, with s 0 real. S(s) = 1 + iρ(s) s s0 s L s s L s R s 0. (6) 1 iρ(s) s s0 s L s s L s R s 0 As for a bound state at s 0, change sign. s L < s 0 < s R. 2. A resonance poles at z 0 and z 0 on second sheet: S(s) = M 2 (z 0 ) s + iρ(s)sg M 2 (z 0 ) s iρ(s)sg, (7)

10 Some examples of the second sheet poles;in different Im[z 0 ], the relations of M 2 (z 0 ) and Re[z 0 ].

11 Recast Eq.(1) into 1 2iρ(s) log(1 + 2iρ(s)T phy (s)) = 1 log(s R i (s)) + f(s). (8) 2iρ(s) i its behavious when s 0 + : f(0) = 0, (9) u =0 s channel t =0 s =0 u channel t channel In the case of equal-mass, TJ I 1 0 2t (s) = 32π(s 4m 2 dtp J (1 + π) 4m s 4m 2 π s 2 )T I (s, t, u), π u = 4m 2 π s t (10) T I J (0 +) is finite based on Mandelstam analyticity.

12 u =0 s channel t =0 u =(MK + Mπ) 2 t =4M 2 K s =(MK + Mπ) 2 s =0 u channel t channel In the case of unequal-mass, the behavior of T (s, t) in t is described by ReggeT heory. For simplicity, assume that T (s, t) < t n for a certain s and t TJ I (s) = π 2q 2 s 0 4q 2 s dtp J (1 + t 2q s 2 )T I (s, t, u), qs 2 = (m2 K m2 π) 2, (s 0) (11) 4s So lim T I s (s) < dt t n, 32π 2q 2 s 4qs 2 O(s n ) (12)

13 According to the multi-channel unitarity Im{Tl ii (s)} = ρ i Tl ii (s) 2 + ρ n T in (s + )T ni (s ) n i + (3 and more body channels) (13) so Im R f(s) = 1 2ρ(s) log Sphy (s) = 1 4ρ log [ 1 4ρIm R T + 4ρ 2 T (s) 2] = 1 4ρ log [ 1 4ρ( n ρ n T 1n (s) 2 + ) The behavior of third sheet pole is totally different from that of second sheet pole: Δδ η ] (14) s 0.75 contribution of 3-sheet pole s

14 4 ππ Scattering and σ resonance Z.Y. Zhou et al.,[jhep 0502:043,2005] IJ=20 channel There exist a virtual state in s2 partial wave. s GeV 2, its contribution to a 2 0 is fairly large 0.11m 1 π )

15 IJ=11 channel ReT IJ (s) = q 2J [a I J + b I Jq 2 + O(q 4 )], (q = 1 2 s 4m 2 π ), (15) leads to f(4m 2 π) = i a R i. (16) Thus f is subtracted at s = 0 and s = 4m 2 π, f(s) = f(4m2 π) 4m 2 s + s(s 4m2 π) π π a R s i 4m 2 + s(s 4m2 π) i π π. L+R Imf(s ) s (s 4m 2 π)(s s) L+R Imf(s ) s (s 4m 2 π)(s s) ds, (17)

16 IJ=00 channel two resonance: σ and f 0 (980). Crossing symmetry BNR relations: χ 2 tot = χ χ χ χ 2 BNR = 29.7(36) (39) (23) ; M ρ = ± 0.4MeV, Γ ρ = ± 0.6MeV, M σ = 457 ± 15MeV, Γ σ = 551 ± 28MeV, ( ff' ππ οß,& σ Λ(fi 45 MeV ) e0,3 rmcn]sz^h ( MeV ) CCL, PRL96(2006) table 5.1 ο»lffl xc χpt #5 [68] χ (18) p Roy equation m.#5 [71] 39ffν 3 #5[H#» IJ fl 11.3S?"tL Uc5IFgsfi.»,ο BNR *6T T 11 =μfi>'3 8± Our results χpt [68] Roy Eqs. [71] Exp. [62] Unit a ± ± ± ± 0.05 b ± ± ± ± 0.03 m 2 π a ± ± ± ± b ± ± ± ± m 2 π a ± ± ± ± m 2 π b ± ± ± m 4 π ^ 4.1: χhfiωφffwxyeπx6fixz3± IJ=11 u+fπenr Ref. [17, 64]. 7m.ffiχ#5χpip/B:HΩe=-j35I»>N0, σ l53μ tcvm3ο`ψc-jρ M σ = 470 ± 50MeV, Γ σ = 570 ± 50MeV, (4.28)

17 5 πk Scattering and κ resonance s-plane Kπ singularity a) s-channel unitarity cut s (M K + M π ) 2 b) u-channel unitarity cut u (M K + M π ) 2, leads to s-plane < s (M K M π ) 2 c) t-channel unitarity cut t 4(M π ) 2,leads to i circular cut s = (M 2 K M 2 π)exp(iφ) ii < s 0 d) singularity at s const χ' Kπ οß& κ Λ(fi 53 s plane C o C i Inelastic threshold L 1 L 2 (m K m π) 2 (mk + m π) 2 R m 2 K m2 π Π 5.1: πk 3C@ C»j CCA@ C±

18 By measuring process K π +, LASS Collaboration provide a combined data of a 0 and φ 0 : A 0 = a 0 e iφ 0 = T 1/ T 3/2 0 = 1 2i (η1/2 0 e 2iδ1/2 0 1) + 1 4i (η3/2 0 e 2iδ3/2 0 1), (19)

19 Our result:m σ = 694 ± 53MeV, Γ σ = 606 ± 59MeV [Z. Y. Zhou, H. Q. Zheng, [Nucl. Phy. A775 (2006) ] Roy-steiner relation(an analogue of Roy equation) find the lowest I=1/2, l=0 resonance sits at M σ = 658 ± 13MeV, Γ σ = 557 ± 24MeV [S. Descotes-Genon, B. Moussallam, hep-ph/ ] Calculation confirms our result.

20 QCHS VII, Leutwyler

21 6 Conclusion 1. Including the contributions of left hand cut will stablize the low-lying pole positions in fit. 2. By a model independent approach, the existence of σ and κ is confirmed and determined accurately.

22 Thank you! Address: E_mail: Tel: Institute of Structural Mechanics, CAEP, P.O.Box , Mianyang, Sichuan, China, & (O), (H), (M) Fax:

The taming of the red dragon

The taming of the red dragon The taming o the red dragon H. Leutwyler University o Bern Spontaneous topics in theoretical physics Bern, May 5, 2006 The taming o the red dragon p.1/26 There is the broad object seen in ππ scattering,

More information

On Factorization of Coupled Channel Scattering S Matrices

On Factorization of Coupled Channel Scattering S Matrices Commun. Theor. Phys. Beijing, China 48 007 pp. 90 907 c International Academic Publishers Vol. 48, No. 5, November 5, 007 On Factoriation of Coupled Channel Scattering S Matrices FANG Ke-Jie Department

More information

Nature of the sigma meson as revealed by its softening process

Nature of the sigma meson as revealed by its softening process Nature of the sigma meson as revealed by its softening process Tetsuo Hyodo a, Daisuke Jido b, and Teiji Kunihiro c Tokyo Institute of Technology a YITP, Kyoto b Kyoto Univ. c supported by Global Center

More information

arxiv: v1 [hep-ph] 24 Aug 2011

arxiv: v1 [hep-ph] 24 Aug 2011 Roy Steiner equations for γγ ππ arxiv:1108.4776v1 [hep-ph] 24 Aug 2011 Martin Hoferichter 1,a,b, Daniel R. Phillips b, and Carlos Schat b,c a Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and

More information

Pion-Kaon interactions Workshop, JLAB Feb , From πk amplitudes to πk form factors (and back) Bachir Moussallam

Pion-Kaon interactions Workshop, JLAB Feb , From πk amplitudes to πk form factors (and back) Bachir Moussallam Pion-Kaon interactions Workshop, JLAB Feb. 14-15, 2018 From πk amplitudes to πk form factors (and back) Bachir Moussallam Outline: Introduction ππ scalar form factor πk: J = 0 amplitude and scalar form

More information

arxiv:hep-ph/ v2 9 Jan 2007

arxiv:hep-ph/ v2 9 Jan 2007 The mass of the σ pole. D.V. Bugg 1, Queen Mary, University of London, London E14NS, UK arxiv:hep-ph/0608081v2 9 Jan 2007 Abstract BES data on the σ pole are refitted taking into account new information

More information

pipi scattering from partial wave dispersion relation Lingyun Dai (Indiana University & JPAC)

pipi scattering from partial wave dispersion relation Lingyun Dai (Indiana University & JPAC) pipi scattering from partial wave dispersion relation Lingyun Dai (Indiana University & JPAC) Outlines 1 Introduction 2 K-Matrix fit 3 poles from dispersion 4 future projects 5 Summary 1. Introduction

More information

Roy-Steiner equations for πn

Roy-Steiner equations for πn Roy-Steiner equations for πn J. Ruiz de Elvira Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn The Seventh International Symposium on

More information

Improved dispersive analysis of the scalar form factor of the nucleon

Improved dispersive analysis of the scalar form factor of the nucleon Improved dispersive analysis of the scalar form factor of the nucleon, ab Christoph Ditsche, a Bastian Kubis, a and Ulf-G. Meißner ac a Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Bethe

More information

How far can you go? Surprises & pitfalls in three-flavour chiral extrapolations

How far can you go? Surprises & pitfalls in three-flavour chiral extrapolations How far can you go? Surprises & pitfalls in three-flavour chiral extrapolations Sébastien Descotes-Genon Laboratoire de Physique Théorique CNRS & Université Paris-Sud 11, 91405 Orsay, France July 31 2007

More information

Dalitz plot analysis in

Dalitz plot analysis in Dalitz plot analysis in Laura Edera Universita degli Studi di Milano DAΦNE 004 Physics at meson factories June 7-11, 004 INFN Laboratory, Frascati, Italy 1 The high statistics and excellent quality of

More information

Dispersion Relation Analyses of Pion Form Factor, Chiral Perturbation Theory and Unitarized Calculations

Dispersion Relation Analyses of Pion Form Factor, Chiral Perturbation Theory and Unitarized Calculations CPHT S758.0100 Dispersion Relation Analyses of Pion Form Factor, Chiral Perturbation Theory and Unitarized Calculations Tran N. Truong Centre de Physique Théorique, Ecole Polytechnique F91128 Palaiseau,

More information

Roy Steiner-equation analysis of pion nucleon scattering

Roy Steiner-equation analysis of pion nucleon scattering Roy Steiner-equation analysis of pion nucleon scattering Jacobo Ruiz de Elvira 1 Martin Hoferichter 2 1 HISKP and Bethe Center for Theoretical Physics, Universität Bonn 2 Institute for Nuclear Theory,

More information

Properties of the S-matrix

Properties of the S-matrix Properties of the S-matrix In this chapter we specify the kinematics, define the normalisation of amplitudes and cross sections and establish the basic formalism used throughout. All mathematical functions

More information

Light by Light. Summer School on Reaction Theory. Michael Pennington Jefferson Lab

Light by Light. Summer School on Reaction Theory. Michael Pennington Jefferson Lab Light by Light Summer School on Reaction Theory Michael Pennington Jefferson Lab Amplitude Analysis g g R p p resonances have definite quantum numbers I, J, P (C) g p g p = S F Jl (s) Y Jl (J,j) J,l Amplitude

More information

When Is It Possible to Use Perturbation Technique in Field Theory? arxiv:hep-ph/ v1 27 Jun 2000

When Is It Possible to Use Perturbation Technique in Field Theory? arxiv:hep-ph/ v1 27 Jun 2000 CPHT S758.0100 When Is It Possible to Use Perturbation Technique in Field Theory? arxiv:hep-ph/000630v1 7 Jun 000 Tran N. Truong Centre de Physique Théorique, Ecole Polytechnique F9118 Palaiseau, France

More information

Analyticity and crossing symmetry in the K-matrix formalism.

Analyticity and crossing symmetry in the K-matrix formalism. Analyticity and crossing symmetry in the K-matrix formalism. KVI, Groningen 7-11 September, 21 Overview Motivation Symmetries in scattering formalism K-matrix formalism (K S ) (K A ) Pions and photons

More information

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013 Baryon Resonance Determination using LQCD Robert Edwards Jefferson Lab Baryons 2013 Where are the Missing Baryon Resonances? What are collective modes? Is there freezing of degrees of freedom? What is

More information

Chiral dynamics and baryon resonances

Chiral dynamics and baryon resonances Chiral dynamics and baryon resonances Tetsuo Hyodo a Tokyo Institute of Technology a supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, June 5th 1 Contents Contents

More information

Photon-fusion reactions in a dispersive effective field theory from the chiral Lagrangian with vector-meson fields

Photon-fusion reactions in a dispersive effective field theory from the chiral Lagrangian with vector-meson fields Photon-fusion reactions in a dispersive effective field theory from the chiral Lagrangian with vector-meson fields Igor Danilkin (collaborators: Matthias F. M. Lutz, Stefan Leupold, Carla Terschlüsen,

More information

arxiv: v2 [hep-ph] 31 Dec 2018

arxiv: v2 [hep-ph] 31 Dec 2018 On the Existence of N (89) Resonance in S 11 Channel of πn Scatterings Yu-Fei Wang a, De-Liang Yao b, Han-Qing Zheng a,c a Department of Physics and State Key Laboratory of Nuclear Physics and Technology,

More information

K form factors and determination of V us from decays

K form factors and determination of V us from decays form factors and determination of V us from decays Emilie Passemar Los Alamos National Laboratory The 11th International Workshop on Chiral Dynamics Jefferson Laboratory, Virginia, USA August 7, 01 Outline

More information

Quantum Chromo Dynamics (QCD), as the fundamental theory of the strong interaction predicts the existence of exotic mesons made of gluons. Observation

Quantum Chromo Dynamics (QCD), as the fundamental theory of the strong interaction predicts the existence of exotic mesons made of gluons. Observation Scalar Glueball Decay Into Pions In Eective Theory Hongying Jin and Xinmin Zhang Institute of High Energy Physics, Academia Sinica, P.O.Box 98(4), Beijing 39, China Abstract We examine the mixing between

More information

A meson-exchange model for π N scattering up to energies s. Shin Nan Yang National Taiwan University

A meson-exchange model for π N scattering up to energies s. Shin Nan Yang National Taiwan University A meson-exchange model for π N scattering up to energies s 2 GeV Shin Nan Yang National Taiwan University Collaborators: S. S. Kamalov (Dubna) Guan Yeu Chen (Taipei) 18th International Conference on Few-body

More information

A scrutiny of hard pion chiral perturbation theory

A scrutiny of hard pion chiral perturbation theory A scrutiny of hard pion chiral perturbation theory Massimiliano Procura Albert Einstein Center for Fundamental Physics 7th Workshop on Chiral Dynamics, JLab, Newport News, August 2012 Outline Hard pion

More information

Analysis of the Isgur-Wise function of the Λ b Λ c transition with light-cone QCD sum rules

Analysis of the Isgur-Wise function of the Λ b Λ c transition with light-cone QCD sum rules Analysis of the Isgur-Wise function of the Λ b Λ c transition with light-cone QCD sum rules Zhi-Gang Wang 1 Department of Physics, North China Electric Power University, Baoding 713, P. R. China arxiv:96.426v1

More information

arxiv:hep-ex/ v1 30 Oct 2002

arxiv:hep-ex/ v1 30 Oct 2002 Physics in Collision - Stanford, California, June -, arxiv:hep-ex/165v1 3 Oct SOME DEVELOPMENTS IN LIGHT QUARK SPECTROSCOPY Brian T. Meadows Physics Department, University of Cincinnati, Cincinnati, OH

More information

Decay. Scalar Meson σ Phase Motion at D + π π + π + 1 Introduction. 2 Extracting f 0 (980) phase motion with the AD method.

Decay. Scalar Meson σ Phase Motion at D + π π + π + 1 Introduction. 2 Extracting f 0 (980) phase motion with the AD method. 1398 Brazilian Journal of Physics, vol. 34, no. 4A, December, 2004 Scalar Meson σ Phase Motion at D + π π + π + Decay Ignacio Bediaga Centro Brasileiro de Pesquisas Físicas-CBPF Rua Xavier Sigaud 150,

More information

A K-Matrix Tutorial. Curtis A. Meyer. October 23, Carnegie Mellon University

A K-Matrix Tutorial. Curtis A. Meyer. October 23, Carnegie Mellon University A K-Matrix Tutorial Curtis A. Meyer Carnegie Mellon University October 23, 28 Outline Why The Formalism. Simple Examples. Recent Analyses. Note: See S. U. Chung, et al., Partial wave analysis in K-matrix

More information

Lattice study on kaon pion scattering length in the I = 3/2 channel

Lattice study on kaon pion scattering length in the I = 3/2 channel Physics Letters B 595 (24) 4 47 www.elsevier.com/locate/physletb Lattice study on kaon pion scattering length in the I = 3/2 channel Chuan Miao, Xining Du, Guangwei Meng, Chuan Liu School of Physics, Peking

More information

Meson-baryon interactions and baryon resonances

Meson-baryon interactions and baryon resonances Meson-baryon interactions and baryon resonances Tetsuo Hyodo Tokyo Institute of Technology supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2011, June 16th 1 Contents Contents

More information

Scalar mesons in three-flavor Linear Sigma Models

Scalar mesons in three-flavor Linear Sigma Models JLAB-THY-01-34 Scalar mesons in three-flavor Linear Sigma Models Deirdre Black a Amir H. Fariborz b Sherif Moussa a Salah Nasri a Joseph Schechter a a Department of Physics, Syracuse University, Syracuse,

More information

On the importance of Kpi scattering for Phenomenology

On the importance of Kpi scattering for Phenomenology On the importance of Kpi scattering for Phenomenology Indiana University/Jefferson Lab. Physics with Neutral Kaon Beam at JLab Workshop Thomas Jefferson National Accelerator Facility Newport News, VA,

More information

Compositeness of the Δ(1232) resonance in πn scatterings

Compositeness of the Δ(1232) resonance in πn scatterings Compositeness of the Δ(1232) resonance in πn scatterings Takayasu SEKIHARA (RCNP, Osaka Univ.) in collaboration with Takashi ARAI (KEK), Junko YAMAGATA-SEKIHARA (Oshima National Coll. of Maritime Tech.)

More information

Introduction to chiral perturbation theory II Higher orders, loops, applications

Introduction to chiral perturbation theory II Higher orders, loops, applications Introduction to chiral perturbation theory II Higher orders, loops, applications Gilberto Colangelo Zuoz 18. July 06 Outline Introduction Why loops? Loops and unitarity Renormalization of loops Applications

More information

Three-body final state interactions in D` Ñ K π`π`

Three-body final state interactions in D` Ñ K π`π` hree-body final state interactions in D` Ñ K π`π` Patrícia C. Magalhães 1,a, M.. obilotta a, K. S. F. F. Guimarães b,. Frederico b, W. de Paula b, A. C. dos eis c, I. and Bediaga c a Instituto de Física,

More information

Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations

Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations Bastian Kubis Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) Bethe Center for Theoretical Physics

More information

Some recent progresses in heavy hadron physics. Kazem Azizi. Oct 23-26, Second Iran & Turkey Joint Conference on LHC Physics

Some recent progresses in heavy hadron physics. Kazem Azizi. Oct 23-26, Second Iran & Turkey Joint Conference on LHC Physics Some recent progresses in heavy hadron physics Kazem Azizi School of Physics Doğuş University-Istanbul Oct 23-26, 2017 Second Iran & Turkey Joint Conference on LHC Physics 1 Outline v Introduction to the

More information

Roy Steiner equations for πn scattering

Roy Steiner equations for πn scattering Roy Steiner equations for N scattering C. Ditsche 1 M. Hoferichter 1 B. Kubis 1 U.-G. Meißner 1, 1 Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität

More information

PoS(EPS-HEP2011)179. Lattice Flavour Physics

PoS(EPS-HEP2011)179. Lattice Flavour Physics Rome University Tor Vergata" and INFN sez. Rome Tor Vergata" E-mail: nazario.tantalo@roma.infn.it I briefly discuss recent lattice calculations of a selected list of hadronic matrix elements that play

More information

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Peter Stoffer in collaboration with G. Colangelo, M. Hoferichter and M. Procura JHEP 09 (2015) 074 [arxiv:1506.01386 [hep-ph]] JHEP

More information

Combined analysis of the decays τ K S π ν τ and

Combined analysis of the decays τ K S π ν τ and Combined analysis of the decays τ K S π ν τ and τ K ην τ Sergi Gonzàlez-Solís Grup de Física Teòrica (Departament de Física) and Institut de Física d Altes Energies (IFAE), Universitat Autònoma de Barcelona,

More information

Chiral Symmetry Restoration in Double-Pion Production

Chiral Symmetry Restoration in Double-Pion Production Chiral Symmetry Restoration in Double-Pion Production Vladimir Kukulin and Maria Platonova Lomonosov Moscow State University Mini-workshop on two-pion production in the HADES and WASA experiments 3-4 April

More information

Light hadrons in 2+1 flavor lattice QCD

Light hadrons in 2+1 flavor lattice QCD Light hadrons..., Lattice seminar, KITP, Jan 26, 2005. U.M. Heller p. 1/42 Light hadrons in 2+1 flavor lattice QCD Urs M. Heller American Physical Society & BNL Modern Challenges for Lattice Field Theory

More information

S-wave exotic resonances induced by chiral interaction

S-wave exotic resonances induced by chiral interaction S-wave exotic resonances induced by chiral interaction Tetsuo Hyodo a D. Jido a, and A. Hosaka b YITP, Kyoto a RCNP, Osaka b 006, Aug. rd 1 Contents Introduction Weinberg-Tomozawa interaction Unitarization

More information

arxiv: v1 [hep-ph] 16 Jan 2019

arxiv: v1 [hep-ph] 16 Jan 2019 Analysis of the D D K system with QCD sum rules Zun-Yan Di 1,2, Zhi-Gang Wang 1 1 Department of Physics, North China Electric Power University, Baoding 071003, P. R. China 2 School of Nuclear Science and

More information

Dispersion theory in hadron form factors

Dispersion theory in hadron form factors Dispersion theory in hadron form factors C. Weiss (JLab), Reaction Theory Workshop, Indiana U., 1-Jun-17 E-mail: weiss@jlab.org Objectives Review hadron interactions with electroweak fields: currents,

More information

Hadronic Interactions and Nuclear Physics

Hadronic Interactions and Nuclear Physics Williamsburg,VA LATT2008 7/2008 p. 1/35 Hadronic Interactions and Nuclear Physics Silas Beane University of New Hampshire Williamsburg,VA LATT2008 7/2008 p. 2/35 Outline Motivation Signal/Noise Estimates

More information

On the QCD Sum Rule Determination of the Strange Quark Mass

On the QCD Sum Rule Determination of the Strange Quark Mass BARI-TH/97-262 March 1997 arxiv:hep-ph/9704249v1 7 Apr 1997 On the QCD Sum Rule Determination of the Strange Quark Mass P. Colangelo a, F. De Fazio a,b, G. Nardulli a,b, N. Paver c a Istituto Nazionale

More information

Why? How? to test strong QCD! SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD

Why? How? to test strong QCD! SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD Why? to test strong QCD! How? SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD Cornelius Bennhold George Washington University Excitation

More information

Mass of Heavy Mesons from Lattice QCD

Mass of Heavy Mesons from Lattice QCD Mass of Heavy Mesons from Lattice QCD David Richards Jefferson Laboratory/Hadron Spectrum Collaboration Temple, March 2016 Outline Heavy Mesons Lattice QCD Spectroscopy Recipe Book Results and insight

More information

Nucleon EM Form Factors in Dispersion Theory

Nucleon EM Form Factors in Dispersion Theory Nucleon EM Form Factors in Dispersion Theory H.-W. Hammer, University of Bonn supported by DFG, EU and the Virtual Institute on Spin and strong QCD Collaborators: M. Belushkin, U.-G. Meißner Agenda Introduction

More information

Is the up-quark massless? Hartmut Wittig DESY

Is the up-quark massless? Hartmut Wittig DESY Is the up-quark massless? Hartmut Wittig DESY Wuppertal, 5 November 2001 Quark mass ratios in Chiral Perturbation Theory Leutwyler s ellipse: ( mu m d ) 2 + 1 Q 2 ( ms m d ) 2 = 1 25 m s m d 38 R 44 0

More information

arxiv:nucl-th/ v1 28 Aug 2001

arxiv:nucl-th/ v1 28 Aug 2001 A meson exchange model for the Y N interaction J. Haidenbauer, W. Melnitchouk and J. Speth arxiv:nucl-th/1862 v1 28 Aug 1 Forschungszentrum Jülich, IKP, D-52425 Jülich, Germany Jefferson Lab, 1 Jefferson

More information

On the two-pole interpretation of HADES data

On the two-pole interpretation of HADES data J-PARC collaboration September 3-5, 03 On the two-pole interpretation of HADES data Yoshinori AKAISHI nucl U K MeV 0-50 Σ+ Λ+ -00 K - + p 3r fm Λ(405) E Γ K = -7 MeV = 40 MeV nucl U K MeV 0-50 Σ+ Λ+ -00

More information

Exclusive Vector Meson Production and Inclusive K 0

Exclusive Vector Meson Production and Inclusive K 0 Exclusive Vector Meson Production and Inclusive K 0 S K0 S Final State in DIS at HERA Photon003, Frascati 07-11/04 McGill University For the H1 and Zeus Collaboration Outline: Exclusive vector meson production

More information

Scattering amplitudes from lattice QCD

Scattering amplitudes from lattice QCD Scattering amplitudes from lattice QCD David Wilson Old Dominion University Based on work in collaboration with J.J. Dudek, R.G. Edwards and C.E. Thomas. Jefferson lab theory center 20th October 2014.

More information

Analysis tools: the heavy quark sector. Gianluca Cavoto INFN Roma ATHOS 12 Jun 20 th -22 nd, 2012 Camogli, Italy

Analysis tools: the heavy quark sector. Gianluca Cavoto INFN Roma ATHOS 12 Jun 20 th -22 nd, 2012 Camogli, Italy Analysis tools: the heavy quark sector Gianluca Cavoto INFN Roma ATHOS 12 Jun 20 th -22 nd, 2012 Camogli, Italy Gianluca Cavoto 1 Outline B and D multibody decays at B factories Why Dalitz analyses were/are

More information

arxiv: v1 [hep-ph] 22 Apr 2008

arxiv: v1 [hep-ph] 22 Apr 2008 New formula for a resonant scattering near an inelastic threshold L. Leśniak arxiv:84.3479v [hep-ph] 22 Apr 28 The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 3-342

More information

Determination of the scalar glueball mass in QCD sum rules

Determination of the scalar glueball mass in QCD sum rules Determination of the scalar glueball mass in QCD sum rules Tao Huang 1,2, HongYing Jin 2 and Ailin Zhang 2 1 CCAST (World Laboratory), P. O. Box 8730, Beijing, 100080 arxiv:hep-ph/9807391v1 16 Jul 1998

More information

arxiv:hep-ph/ v2 13 Feb 2004

arxiv:hep-ph/ v2 13 Feb 2004 lueball hunting in e + e f 0 Frank E. Close 1 and Qiang Zhao 2 1) Department of Theoretical Physics, University of Oxford, Keble Rd., Oxford, OX1 3NP, United Kingdom and 2) Department of Physics, University

More information

Line Shapes of the X(3872)

Line Shapes of the X(3872) 1 Line Shapes of the X(3872) Eric Braaten The Ohio State University collaborators Masaoki Kusunoki (postdoc at Arizona) Meng Lu (student at Ohio State) support: DOE, Division of High Energy Physics DOE,

More information

η ηππ in unitarized Resonance Chiral Theory

η ηππ in unitarized Resonance Chiral Theory η η in unitarized Resonance Chiral Theory Sergi Gonzàlez-Solís 1 Emilie Passemar 2 1 Institute of Theoretical Physics (Beijing) Chinese Academy of Sciences 2 Indiana University JLab (USA), 7 may 2018 Outline

More information

On the precision of the theoretical predictions for ππ scattering

On the precision of the theoretical predictions for ππ scattering On the precision of the theoretical predictions for ππ scattering August, 003 arxiv:hep-ph/03061v 6 Aug 003 I. Caprini a, G. Colangelo b, J. Gasser b and H. Leutwyler b a National Institute of Physics

More information

arxiv:hep-ph/ v2 22 Feb 1996

arxiv:hep-ph/ v2 22 Feb 1996 ZU-TH /95 TTP95-31 February 1, 008 arxiv:hep-ph/9508393v Feb 1996 On the Corrections to Dashen s Theorem Robert Baur Institut für Theoretische Physik, Universität Zürich CH-8057 Zürich, Switzerland Res

More information

Low lying axial-vector mesons as dynamically generated resonances

Low lying axial-vector mesons as dynamically generated resonances Low lying axial-vector mesons as dynamically generated resonances arxiv:hep-ph/5373v 9 Jun 5 L. Roca, E. Oset and J. Singh Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC,

More information

Sébastien Descotes-Genon

Sébastien Descotes-Genon α s (CIPT) Sébastien Descotes-Genon Laboratoire de Physique Théorique CNRS & Université Paris-Sud 11, 9145 Orsay, France α s workshop - February 9 211 Sébastien Descotes-Genon (LPT-Orsay) α s(cipt) 9/2/11

More information

arxiv:hep-ph/ v1 13 Oct 2000

arxiv:hep-ph/ v1 13 Oct 2000 DIRECT CP VIOLATION IN NONLEPTONIC KAON DECAYS BY AN EFFECTIVE CHIRAL LAGRANGIAN APPROACH AT O(p 6 ) 1 A.A. Bel kov 1, G. Bohm 2, A.V. Lanyov 1 and A.A. Moshkin 1 (1) Particle Physics Laboratory, Joint

More information

PoS(STORI11)050. The η π + π π 0 decay with WASA-at-COSY

PoS(STORI11)050. The η π + π π 0 decay with WASA-at-COSY The η π + π π 0 decay with WASA-at-COSY Institute for Physics and Astronomy, Uppsala University E-mail: patrik.adlarson@physics.uu.se Recently, a large statistics sample of approximately 3 10 7 decays

More information

8 September Dear Paul...

8 September Dear Paul... EXA 2011 Vienna PK Symposium 8 September 2011 Dear Paul... DEEPLY BOUND STATES of PIONIC ATOMS Experiment (GSI): K. Suzuki et al. Phys. Rev. Lett. 92 (2004) 072302 Theory: Energy Dependent Pion-Nucleus

More information

Spectra of Light and Heavy Mesons, Glueball and QCD Effective Coupling Gurjav GANBOLD Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna

Spectra of Light and Heavy Mesons, Glueball and QCD Effective Coupling Gurjav GANBOLD Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna Spectra of Light and Heavy Mesons, Glueball and QCD Effective Coupling Gurjav GANBOLD Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna XIV International Conference on Hadron Spectroscopy 13-17

More information

arxiv:nucl-th/ v1 24 Jan 1999

arxiv:nucl-th/ v1 24 Jan 1999 BIHEP-TH-97-50 H-DIHYPERON IN QUARK CLUSTER MODEL 1 P.N.Shen a,b,c, Z.Y.Zhang a, Y.W.Yu a, X.Q.Yuan a, S.Yang a arxiv:nucl-th/9901068v1 24 Jan 1999 a. Institute of High Energy Physics, Chinese Academy

More information

QCD and Rescattering in Nuclear Targets Lecture 2

QCD and Rescattering in Nuclear Targets Lecture 2 QCD and Rescattering in Nuclear Targets Lecture Jianwei Qiu Iowa State University The 1 st Annual Hampton University Graduate Studies Program (HUGS 006) June 5-3, 006 Jefferson Lab, Newport News, Virginia

More information

Hadronic physics from the lattice

Hadronic physics from the lattice Hadronic physics from the lattice Chris Michael c.michael@liv.ac.uk University of Liverpool Hadronic physics from the lattice p.1/24 Hadronic Structure - Introduction What are hadrons made of? Is a meson

More information

arxiv: v1 [hep-lat] 26 Dec 2009

arxiv: v1 [hep-lat] 26 Dec 2009 arxiv:091.5037v1 [hep-lat] 6 Dec 009 On Equation of State at physical quark masses Physics Department, Brookhaven National Laboratory, Upton NY 11973 E-mail: petreczk@bnl.gov QCD equation of state is calculated

More information

Recent Progress on Charmonium Decays at BESIII

Recent Progress on Charmonium Decays at BESIII Recent Progress on Charmonium Decays at BESIII Xiao-Rui Lu (on behalf of the BESIII Collaboration) Physics Department Graduate University of Chinese Academy of Sciences Beijing, 0049, China xiaorui@gucas.ac.cn

More information

Multi-Channel Systems in a Finite Volume

Multi-Channel Systems in a Finite Volume INT-12-2b Multi-Channel Systems in a Finite olume RaúL Briceño In collaboration with: Zohreh Davoudi (arxiv:1204.1110 Motivation: Scalar Sector The light scalar spectrum Its nature remains puzzling Pertinent

More information

Structure of near-threshold s-wave resonances

Structure of near-threshold s-wave resonances Structure of near-threshold s-wave resonances Tetsuo Hyodo Yukawa Institute for Theoretical Physics, Kyoto 203, Sep. 0th Introduction Structure of hadron excited states Various excitations of baryons M

More information

Wave functions and compositeness for hadron resonances from the scattering amplitude

Wave functions and compositeness for hadron resonances from the scattering amplitude Wave functions and compositeness for hadron resonances from the scattering amplitude Takayasu SEKIHARA (RCNP, Osaka Univ.) 1. Introduction 2. Two-body wave functions and compositeness 3. Applications:

More information

Physics with Hadron Beams at COMPASS

Physics with Hadron Beams at COMPASS Physics with Hadron Beams at COMPASS Bernhard Ketzer Technische Universität München MAMI and Beyond 2009 International Workshop on Hadron Structure and Spectroscopy 2009 30 March 2009 The Goal Understand

More information

Isoscalar!! scattering and the σ/f0(500) resonance

Isoscalar!! scattering and the σ/f0(500) resonance Isoscalar!! scattering and the σ/f(5) resonance Raúl Briceño rbriceno@jlab.org [ with Jozef Dudek, Robert Edwards & David Wilson] HadSpec Collaboration Lattice 216 Southampton, UK July, 216 Motivation

More information

Baroion CHIRAL DYNAMICS

Baroion CHIRAL DYNAMICS Baroion CHIRAL DYNAMICS Baryons 2002 @ JLab Thomas Becher, SLAC Feb. 2002 Overview Chiral dynamics with nucleons Higher, faster, stronger, Formulation of the effective Theory Full one loop results: O(q

More information

Recent Results on J/ψ, ψ and ψ Decays from BESII

Recent Results on J/ψ, ψ and ψ Decays from BESII Recent Results on J/ψ, ψ and ψ Decays from BESII Xiaoyan SHEN (Representing BES Collaboration) Institute of High Energy Physics, Beijing shenxy@ihep.ac.cn Oct. 17 20, 2007, QWG5, DESY, Germany Outline

More information

η 3π and light quark masses

η 3π and light quark masses η 3π and light quark masses Theoretical Division Los Alamos National Laboratory Jefferson Laboratory, Newport News November 5, 013 In collaboration with G. Colangelo, H. Leutwyler and S. Lanz (ITP-Bern)

More information

arxiv: v1 [hep-ph] 31 Jul 2009

arxiv: v1 [hep-ph] 31 Jul 2009 arxiv:0907.5540v1 [hep-ph] 31 Jul 2009 Frascati Physics Series Vol. XLVIII (2009), pp. 19-24 Young Researchers Workshop: Physics Challenges in the LHC Era Frascati, May 11 and 14, 2009 HADRONIC τ DECAYS

More information

arxiv: v1 [hep-ph] 20 Oct 2011

arxiv: v1 [hep-ph] 20 Oct 2011 Scattering phase shift and resonance properties on the lattice: an introduction S. Prelovsek (a,b) *, C. B. ang (c) and D. Mohler (d) 1 arxiv:1110.450v1 [hep-ph] 0 Oct 011 (a) Jozef Stefan Institute, Jamova

More information

Unitarization procedures applied to a Strongly Interacting EWSBS

Unitarization procedures applied to a Strongly Interacting EWSBS Unitarization procedures applied to a Strongly Interacting EWSBS Rafael L. Delgado A.Dobado, M.J.Herrero, Felipe J.Llanes-Estrada and J.J.Sanz-Cillero, 2015 Intern. Summer Workshop on Reaction Theory,

More information

Dalitz Plot Analysis of Heavy Quark Mesons Decays (3).

Dalitz Plot Analysis of Heavy Quark Mesons Decays (3). Dalitz Plot Analysis of Heavy Quark Mesons Decays (3). Antimo Palano INFN and University of Bari Jefferson Lab Advanced Study Institute Extracting Physics From Precision Experiments: Techniques of Amplitude

More information

Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results

Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results E-mail: bijnens@thep.lu.se Niclas Danielsson and Division of Mathematical Physics, LTH, Lund University, Box 118, S 221

More information

RESONANCE FORMATION IN TWO-PHOTON COLLISIONS

RESONANCE FORMATION IN TWO-PHOTON COLLISIONS RESONANCE FORMATION IN TWO-PHOTON COLLISIONS Saverio BRACCINI University of Geneva, 24, Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland E-mail: Saverio.Braccini@cern.ch Two-photon collisions at the

More information

Cornelius Bennhold George Washington University

Cornelius Bennhold George Washington University Cornelius Bennhold George Washington University The past 7 years Low-lying baryon resonances Missing and exotic (hybrid) resonances How many N* do we need? How many do we have? Resonance form factors The

More information

The ππ and Kπ amplitudes from heavy flavor decays

The ππ and Kπ amplitudes from heavy flavor decays The ππ and Kπ amplitudes from heavy flavor decays Alberto Reis Centro Brasileiro de Pesquisas Físicas CBPF 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon Williamsburg,

More information

arxiv:nucl-th/ v1 3 Jan 2006

arxiv:nucl-th/ v1 3 Jan 2006 BARYON-MESON INTERACTIONS IN CHIRAL QUARK MODEL arxiv:nucl-th/613v1 3 Jan 26 F. HUANG, Z. Y. ZHANG AND Y. W. YU Institute of High Energy Physics, P.O. Box 918-4, Beijing 149, China Using the resonating

More information

The Hadronic Decay Ratios of η 5π at NLO in χpt

The Hadronic Decay Ratios of η 5π at NLO in χpt EJTP 11, No. 1 (2014) 11 140 Electronic Journal of Theoretical Physics The Hadronic Decay Ratios of η 5π at NLO in χpt M. Goodarzi and H. Sadeghi Department of Physics, Faculty of Science, Arak University,

More information

arxiv: v5 [hep-ph] 21 Dec 2018

arxiv: v5 [hep-ph] 21 Dec 2018 Up- and down-quark masses from QCD sum rules C. A. Dominguez a, A. Mes a, and K. Schilcher a,b arxiv:1809.07042v5 [hep-ph] 21 Dec 2018 (a) Centre for Theoretical and Mathematical Physics and Department

More information

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Peter Stoffer in collaboration with G. Colangelo, M. Hoferichter and M. Procura JHEP 09 (2015) 074 [arxiv:1506.01386 [hep-ph]] JHEP

More information

PoS(EPS-HEP 2009)048. QCD tests at NA48/2 experiment. Gianluca Lamanna Scuola Normale Superiore & INFN Pisa - Italy

PoS(EPS-HEP 2009)048. QCD tests at NA48/2 experiment. Gianluca Lamanna Scuola Normale Superiore & INFN Pisa - Italy experiment Scuola Normale Superiore & INFN Pisa - Italy E-mail: gianluca.lamanna@cern.ch The main goal of the NA48/2 experiment was to measure the CP violating asymmetry in the charged kaon decay in three

More information

PCAC in Nuclear Medium and the Lovelace - Shapiro - Veneziano formula

PCAC in Nuclear Medium and the Lovelace - Shapiro - Veneziano formula arxiv:nucl-th/9703015 v1 6 Mar 1997 PCAC in Nuclear Medium and the Lovelace - Shapiro - Veneziano formula J.Pasupathy Centre for Theoretical Studies Indian Institute of Science Bangalore 56001 Abstract

More information

Viability of strongly coupled scenarios with a light Higgs like boson

Viability of strongly coupled scenarios with a light Higgs like boson Beijing IHEP, January 8 th 2013 Viability of strongly coupled scenarios with a light Higgs like boson J.J. Sanz Cillero (PKU visitor) A. Pich, I. Rosell and JJ SC [arxiv:1212.6769 [hep ph]] OUTLINE 1)

More information

2 topics on light scalars: their role in thermal models and the pole of k

2 topics on light scalars: their role in thermal models and the pole of k 2 topics on light scalars: their role in thermal models and the pole of k in collaboration with: Wojciech Broniowski (UJK-Kielce + IFJ-PAN-Krakow) Viktor Begun (UJK-Kielce) Thomas Wolkanowski (Goethe Uni

More information