Roy-Steiner equations for πn

Size: px
Start display at page:

Download "Roy-Steiner equations for πn"

Transcription

1 Roy-Steiner equations for πn J. Ruiz de Elvira Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn The Seventh International Symposium on Chiral Symmetry Beijing, October 2013 In collaboration with: C. Ditsche, M. Hoferichter, B. Kubis, U.-G. Meißner. [JHEP 1206 (2012) 043] and [JHEP 1206 (2012) 063]

2 Outline 1 Motivation: Why Roy-Steiner equations for πn? 2 Introduction: Roy(Steiner)-equations for ππ vs πn 3 Roy-Steiner equations for πn 4 Solving Roy-Steiner equations for πn Solving the t-channel subproblem Solving the s-channel subproblem 5 Summary & Outlook

3 Contents 1 Motivation: Why Roy-Steiner equations for πn? 2 Introduction: Roy(Steiner)-equations for ππ vs πn 3 Roy-Steiner equations for πn 4 Solving Roy-Steiner equations for πn Solving the t-channel subproblem Solving the s-channel subproblem 5 Summary & Outlook

4 Motivation: Why πn scattering? Low energies: test chiral dynamics in the baryon sector low-energy theorems e.g. for the scattering lengths Higher energies: resonances, baryon spectrum Input for NN scattering: LECs c i, πnn coupling Crossed channel ππ NN: nucleon form factors probe the structure of the nucleon σ πn term ππnn

5 Motivation: Why Roy-Steiner equations? Roy(-Steiner) eqs. = Partial-Wave (Hyberbolic) Dispersion Relations coupled by unitarity and crossing symmetry Respect all symmetries: analyticity, unitarity, crossing Model independent the actual parametrization of the data is irrelevant once it is used in the integral. Framework allows for systematic improvements (subtractions, higher partial waves,...) PW(H)DRs help to study processes with high precision: ππ-scattering: [Ananthanarayan et al. (2001), García-Martín et al. (2011)] πk-scattering: [Büttiker et al. (2004)] γγ ππ scattering: [Hoferichter et al. (2011)]

6 Contents 1 Motivation: Why Roy-Steiner equations for πn? 2 Introduction: Roy(Steiner)-equations for ππ vs πn 3 Roy-Steiner equations for πn 4 Solving Roy-Steiner equations for πn Solving the t-channel subproblem Solving the s-channel subproblem 5 Summary & Outlook

7 Warm up: Roy-equations for ππ ππ ππ fully crossing symmetric in Mandelstam variables s, t, and u = 4M π s t Start from twice-subtracted fixed-t DRs of the generic form T I (s, t) = c(t) + 1 π 4m 2 π [ ds s 2 s 2 (s s) + u2 (s u) ] ImT I (s, t) Subtraction functions c(t) are determined via crossing symmetry functions of the I=0,2 scattering lengths: a 0 0 and a 2 0 PW-expansion of these DRs yields the Roy-equations [Roy (1971)] tj(s) I = STJ(s) I + (2J + 1) J =0 I =0,1,2 4m 2 π K II JJ (s, s) kernels analytically known ds K II JJ (s, s)t I J (s )

8 Solving Roy-equations: flow information Roy-equations rigorously valid for a finite energy range introduce a matching point s m only partial waves with J J max are solved assume isospin limit Input Output High-energy region: Imt IJ (s) for s s m and for all J Higher partial waves: Imt IJ (s) for J > J max and for all s Self-consistent solution for δ IJ (s) for J J max and s th s s m Constraints on subtraction constants

9 Roy-Steiner equations for πn: difficulties Key difficulties compared to ππ Roy-equations Crossing: coupling between πn πn (s-channel) and ππ NN (t -channel) hyperbolic dispersion relations [Hite, Steiner 1973], [Büttiker et al. 2004] Unitarity in t-channel, e.g. in single-channel approximation Imf J ±(t) = σ π t f J ±(t)t l J(t) t I J f I J Watson s theorem: phase of f J ±(t) equals δ IJ [Watson 1954] solve with Muskhelishvili-Omnès techniques [Muskhelishvili 1953, Omnès 1958] { } Omnès function: Ω I J (t) = exp t tm π t dt δj I (t) th t (t t) Large pseudo-physical region in t -channel KK intermediate states for s-wave in the region of the f 0(980)

10 Contents 1 Motivation: Why Roy-Steiner equations for πn? 2 Introduction: Roy(Steiner)-equations for ππ vs πn 3 Roy-Steiner equations for πn 4 Solving Roy-Steiner equations for πn Solving the t-channel subproblem Solving the s-channel subproblem 5 Summary & Outlook

11 πn-scattering basics π a (q) + N(p) π b (q ) + N(p ) 200 Isospin Structure: T ba = δ ba T + + ɛ ab T Lorentz Structure: I {+, } ) T I = ū(p ) (A I q+ q + B 2 I u(p) D I = A I + νb I, ν = s u 4m Isospin basis: I s {1/2, 3/2} {T +, T } {T 1/2, T 3/2 } PW projection: s-channel pw: fl± I t-channel pw: f± J Bose symmetry even/odd J I = +/ u M Π zs 1 zu 1 t u t Ν s M Π 2 s

12 πn-scattering basics: Unitarity relations s-channel unitarity relations (I s {1/2, 3/2}): Im f Is l± (W) = q f Is l± (W) 2 θ ( ( ) 1 η I s l± W W (W)) θ ( ) W W inel 4q f I l± f I l± t-channel unitarity relations: 2-body intermediate states: ππ + KK + Im f± J (t) = ( σπ t t I t J (t)) f J ± (t) θ ( ) t t π + 2cJ 2 k 2J t σt K ( g I t J (t)) h J ± (t) θ ( t t K ) N π π N K π N f J ± π t I J π + N h J ± K g I J π Only linear in f J ±(t) less restrictive

13 Roy-Steiner equations for πn: HDR s Hyperbolic DRs:(s a)(u a) = b = (s a)(u a) with a, b R A + (s, t; a) = 1 π s + ds B + (s, t; a) = N + (s, t) + 1 π [ 1 s s + 1 s u 1 ] s Im A + (s, t ) + 1 a π s + ds N + (s, t) = g 2 ( 1 m 2 s 1 m 2 u Why HDR? t π dt Im A+(s, t ) t t [ 1 s s 1 ] s Im B + (s, t ) + 1 dt ν Im B + (s, t ) u π ν t t t π ) similar for A, B and N [Hite/Steiner (1973)] Combine all physical regions crucial for t-channel projection Evade double-spectral regions the PW decompositions converge Range of convergence can be maximized by tuning the free hyperbola parameter a No kinematical cuts, manageable kernel functions

14 Roy-Steiner equations for πn: derivation Recipe to derive Roy-Steiner equations: Expand imaginary parts in terms of s- and t-channel partial waves Project onto s- and t-channel partial waves Combine the resulting equations using s- and t-channel PW unitarity relations Similar structure to ππ Roy equations Validity: assuming Mandelstam analyticity s-channel optimal for a = 23.2Mπ 2 s [ s + = (m + M π) 2, Mπ 2 ] W [W + = 1.08 GeV, 1.38 GeV] t-channel optimal for a = 2.71M 2 π t [t π = 4M 2 π, M 2 π] t [ t π = 0.28 GeV, 2.00 GeV].

15 Roy-Steiner equations for πn: subtractions Subtractions are necessary to ensure the convergence of DR integrals asymptotic behavior Can be introduced to lessen the dependence of the low-energy solution on the high-energy behavior Parametrize high-energy information in (a priori unknown) subtraction constants matching to ChPT Subthreshold expansion around ν = t = 0 where Ā + (ν, t) = a + mn ν2m t n Ā (ν, t) = m,n=0 a mn ν2m+1 t n m,n=0 Ā + (s, t) = A + (s, t) g2 m Ā (s, t) = A (s, t), similar expansion for B + (s, t) and B (s, t)

16 Solving t-channel Solving s-channel Contents 1 Motivation: Why Roy-Steiner equations for πn? 2 Introduction: Roy(Steiner)-equations for ππ vs πn 3 Roy-Steiner equations for πn 4 Solving Roy-Steiner equations for πn Solving the t-channel subproblem Solving the s-channel subproblem 5 Summary & Outlook

17 Solving t-channel Solving s-channel Solving Roy-Steiner equations for πn: Recoupling schemes s-channel subproblem: Kernels are diagonal for I {+, }, but unitarity relations are diagonal for I s {1/2, 3/2} all partial-waves are interrelated Once the t-channel PWs are known Structure similar to ππ Roy-equations t-channel subproblem: Only higher PWs couple to lower ones Only PWs with even or odd J are coupled No contribution from f J + to f J+1 Leads to Muskhelishvili-Omnès problem

18 Solving t-channel Solving s-channel Solving t-channel equations Elastic-channel approximation: generic form of the integral equation f (t) = (t) + (a + bt)(t 4m 2 ) + t2 (t 4m 2 ) π dt Im f (t ) t t (t 2 4m 2 )(t t) (t): Born terms, s-channel integrals, higher t -channel partial waves left-hand cut Introduce subtractions at ν = t = 0 subthreshold parameters a, b Solution in terms of Omnès function: f (t) = (t) + (t 4m 2 )Ω(t)(1 t Ω(0))a + t(t 4m 2 )Ω(t)b { Ω(t) t2 (t 4m 2 tm ) dt (t )Im Ω(t ) 1 π t 2 (t 4m 2 )(t t) + { t Ω(t) = exp π t π t m 4M 2 π } dt δ(t ) t t t 4M 2 π } dt Ω(t ) 1 Im f (t ) t ( t 4m 2 )(t t)

19 Solving t-channel Solving s-channel Solving t-channel: P-wave results Important for electromagnetic nucleon form factors elastic channel approximation t m = 0.98 GeV and Im f J ±(t) = 0 above First step: check consistency with KH80 [Höhler 1983] Input needed: ππ phase shifts: [Caprini, Colangelo, Leutwyler, (in preparation)] πn phase shifts: SAID [Arndt et al. 2008], KH80 πn at high energies: Regge model [Huang et al. 2010] πn parameters: KH80 f 1 + n-sub / GeV 1 2Mπ Mπ tm 0-sub( a ) 0-sub 1-sub( a ) 1-sub 2-sub( a ) 2-sub KH80 f 1 n-sub / GeV 2 2Mπ Mπ tm 0-sub( a ) 0-sub 1-sub( a ) 1-sub 2-sub( a ) 2-sub KH t / GeV t / GeV MO solutions in general consistent with KH80 results

20 Solving t-channel Solving s-channel Solving t-channel: S-wave results Important for the σ πn term KK channel important two-channel Muskhelishvili-Omnès problem also needed: K K s-wave partial waves: [Büttiker. (2004)] KN s-wave pw: SAID [Arndt et al. 2008], KH80 Hyperon couplings from [Jülich model 1989] KN subthreshold parameters neglected MO solutions in general consistent with KH80 results

21 Solving t-channel Solving s-channel Solving s-channel: General form General form of the s-channel integral equation fl+ I (W) = I l+ (W) + 1 { } dw Kll I π (W, W ) Im fl I + (W ) + Kll I (W, W ) Im f(l I +1) (W ) W l =0 + form of ππ Roy-Equations I l+(w) t-channel contribution and pole term valid up to W m = 1.38 GeV Input: Output: RS t-channel solutions for S and P waves s-channel partial waves for J > 1 [SAID analysis] s-channel partial waves for W m < W < 2.5 GeV [SAID analysis] high energy contribution for W > 2.5 GeV: Regge model [Huang et al. 2010] Self-consistent solution for S and P waves for s th s s m Constraints on subtraction constants subthreshold parameters

22 Solving t-channel Solving s-channel Solving s-channel: consistency with KH80 Consistency with KH80 parametrize SAID S and P waves up to W<Wm Imposing a continuous and differentiable matching point Compare between the input (LHS) and the output (RHS) important discrepancies

23 Solving t-channel Solving s-channel Solving s-channel: fitting subthreshold parameters Next step fit only subthreshold parameters, but keep phase shifts fixed Minimize the χ-like function: χ 2 = ( N l,i s,± j=1 Re f Is l± (W j) F[f Is l± ](W j) F[f Is l± ](Wj) right hand side of RS-equations subthreshold parameters change in less than 10% ) 2 Still important differences, especially for the S-waves the pw parametrizations have to be included in the fit In progress

24 Contents 1 Motivation: Why Roy-Steiner equations for πn? 2 Introduction: Roy(Steiner)-equations for ππ vs πn 3 Roy-Steiner equations for πn 4 Solving Roy-Steiner equations for πn Solving the t-channel subproblem Solving the s-channel subproblem 5 Summary & Outlook

25 Summary & Outlook What has been done: Derived a closed system of Roy-Steiner equations (PWHDRs) for πn scattering Constructed unitarity relations including KK intermediate states for the t-channel PWs Optimized the range of convergence by tuning a for s- and t-channel each Implemented subtractions at several orders Solved the t-channel MO problem for a single- and two-channel approximation t-channel RS/MO machinery works Numerical solution of the s-channel subproblem fitting the subthreshold parameters What needs to be done: Self-consistent, iterative solution of the full RS system lowest PWs & low-energy parameters Possible improvements: higher PWs, more inelastic input,...

26 Spare slides

27 Roy-Steiner equations for πn: flow of information Higher partial waves Im fl± I, l 2, s sm s-channel partial waves solve Roy Steiner equations for s sm Inelasticities ηl± I, l 1, s sm f + 0+ f + 1+ f + 1 High-energy region Im f I l±, s sm f 0+ f 1+ f 1 Subtraction constants πn coupling constant ππ scattering phases δ It J t-channel partial waves solve Roy Steiner equations for t tm f 0 + f 1 ± f 2 ± f 3 ± f 4 ± High-energy region Im f J ±, t tm

28 πn-scattering basics: partial waves s-channel projection: fl± I (W) = 1 {(E + m) [ A I l 16πW (s) + (W m)bi l (s)] + (E m) [ A I l±1 (s) + (W + m)bi l±1 (s)]} 1 Xl I (s) = dz s P l (z s)x I (s, t) for X {A, B} and W = s 1 t=t(s,zs)= 2q 2 (1 z s) McDowell symmetry: f I l+ (W) = f I (l+1) ( W) l 0 t-channel projection: f+ J (t) = 1 1 { p 2 dz t P J (z t t) 4π (p tq t) J AI (s, t) m } s=s(t,zt) (p tq t) J 1 ztbi (s, t) s=s(t,zt) 0 f J (t) = 1 J(J + 1) 1 1 ] 4π 2J + 1 (p tq t) J 1 dz t [P J 1 (z t) P J+1 (z t) B I (s, t) s=s(t,zt) 0 J 0 J 1 Bose symmetry even/odd J I = +/

29 Roy-Steiner equations for πn: s-channel s-channel RS equations f I l+ (W) = NI l+ (W) + 1 { dw K I π W + l ll (W, W ) Im f I l + (W ) + K I ll (W, W ) Im f I } (l +1) (W ) =0 + 1 dt π tπ J { G lj (W, t ) Im f J + (t ) + H lj (W, t ) Im f J } (t ) = f I (l+1) ( W) l 0, [Hite/Steiner (1973)] K I ll (W, W ), G lj (W, t ) and H lj (W, t )-Kernels: analytically known, e.g. K I ll (W, W ) = δ ll W W +... l, l 0, Validity: assuming Mandelstam analyticity optimal for a = 23.2M 2 π s [ s + = (m + M π) 2, Mπ 2 ] W [W + = 1.08 GeV, 1.38 GeV]

30 Roy-Steiner equations for πn: t-channel t-channel RS equations f J + (t) = ÑJ + (t) + 1 dw { G Jl (t, W ) Im f I l+ π (W ) + G Jl (t, W ) Im f I } (l+1) (W ) W l= π tπ f J (t) = ÑJ (t) + 1 dw π W l= π tπ dt { K 1 J JJ (t, t ) Im f J + (t ) + K 2 JJ (t, t ) Im f J } (t ) J 0, { H Jl (t, W ) Im f I l+ (W ) + H Jl (t, W ) Im f I } (l+1) (W ) dt J K 3 JJ (t, t ) Im f J (t ) J 1, Validity: assuming Mandelstam analyticity optimal for a = 2.71M 2 π t [t π = 4M 2 π, M 2 π] t [ t π = 0.28 GeV, 2.00 GeV].

31 RS-eqs for πn: Range of convergence Subthreshold expansion around ν = t = 0 A + (ν, t) = g2 m + d d+ 01 t + a+ 10 ν2 + O ( ν 2 t, t 2) A (ν, t) = νa 00 + a 01 νt + a 10 ν3 + O ( ν 5, νt 2, ν 3 t ) B + (ν, t) = g 2 4mν (m 2 s 0 ) 2 + νb O( ν 3, νt ), [ ] B (ν, t) = g 2 2 t m 2 s 0 (m 2 s 0 ) 2 g2 2m 2 + b 00 + b 01 t + +b 10 ν2 + O ( ν 2, ν 2 t, t 2) pseudovector Born terms: D I = A I + νb I Sum rules for subthreshold parameters: D + = d d+ 01 t + d+ 10 ν2 d + mn = a + mn + b + m 1,n, d mn = a mn + b mn. d + 00 = g2 m + 1 ds h 0 (s [ ) Im A + (s, z π s) ] (0,0) + 1 dt [ Im A + π t (t, z t ) ] (0,0) s + t π h 0 (s ) = 2 s s 0 1 s a

32 RS-eqs for πn: Range of convergence Assumption: Mandelstam analyticity [Mandelstam (1958,1959)] T(s,t) can be written in terms double spectral densities: ρ st, ρ su, ρ ut T(s, t) = 1 π 2 ds du ρ su(s,u ) (s s)(u u) + 1 π 2 dt du ρ tu(t,u ) (t t)(u u) + 1 π 2 ds dt ρ st(s,t ) (s s)(t t) integration ranges defined by the support of the double spectral densities ρ Boundaries of ρ are given lowest lying intermediate states 200 (I) (II) (III) (IV) Ρut Ρsu u M Π 2 50 They limit the range of validity of the HDRS: 0 t Ν Pw expansion converge 50 Ρst z = cos θ Lehman ellipses [Lehmann (1958)] the hyperbolae (s a)(u a) = b does not enter any double spectral region for a value of a, constraints on b yield ranges in s & t s M Π 2

33 Solving t-channel: P-wave results f 1 + n-sub / GeV 1 2Mπ Mπ tm 0-sub( a ) 0-sub 1-sub( a ) 1-sub 2-sub( a ) 2-sub KH80 f 1 n-sub / GeV 2 2Mπ Mπ tm 0-sub( a ) 0-sub 1-sub( a ) 1-sub 2-sub( a ) 2-sub KH t / GeV t / GeV f 1 + n-sub / GeV 1 2Mπ Mπ sub( tm = 1.1 GeV) 0-sub 1-sub( tm = 1.1 GeV) 1-sub 2-sub( tm = 1.1 GeV) 2-sub KH80 f 1 n-sub / GeV 2 2Mπ Mπ sub( tm = 1.1 GeV) 0-sub 1-sub( tm = 1.1 GeV) 1-sub 2-sub( tm = 1.1 GeV) 2-sub KH t / GeV t / GeV MO solutions in general consistent with KH80 results

34 Solving t-channel equations: S-waves Generic coupled-channel integral equation t m f(t) = (t) + 1 π t π dt T (t )Σ(t )f(t ) t t + 1 π t m dt Im f(t ) t t Formal solution as in the single-channel case (now with Omnès matrix Ω(t)) Two-channel ( Muskhelishvili-Omnès ) problem f 0 f(t) = + (t) h 0 Im Ω(t) = (T(t)) Σ(t)Ω(t) +(t) Two linearly independent solutions Ω 1, Ω 2 [Muskhelishvili 1953] In general no analytical solution for the Omnès matrix but for its determinant [Moussallam 2000] { t det Ω(t) = exp π t m dt ψ(t ) t t (t t) }.

35 Solving t-channel S-wave equations: input Input needed: ππ s-wave partial waves: [Caprini, Colangelo, Leutwyler, (in preparation)] K K s-wave partial waves: [Büttiker. (2004)] πn and KN s-wave pw: SAID [Arndt et al. 2008], KH80 πn at high energies: Regge model [Huang et al. 2010] πn parameters: KH80 Hyperon couplings from [Jülich model 1989] KN subthreshold parameters neglected Two-channel approximation beaks down at t 0 = 1.3 GeV 4π channel From t 0 to t = 2 GeV, different approximations considered

36 Solving t-channel: S-wave results MO solutions in general consistent with KH80 results

37 Solving s-channel: threshold parameters Precise data for pionic atoms [Gotta et al. 2005, 2010] Impose as a constraint scattering lengths from a combined analysis of pionic hydrogen and deuterium [Baru et al. 2011] a 1/2 0+ = (170.5 ± 2.0)10 3 Mπ 1 a 3/2 0+ = ( 86.5 ± 1.8)10 3 Mπ 1 ( ) Re fl± I (s) = q2l a I l± + bi l± q2 + s-channel scattering lengths from RS sum rules 1-sub 2-sub 3-sub KH80 S11 a 1/2 0+ [10 3 Mπ 1 ] ±3 S31 a 3/2 0+ [10 3 M 1 π ] ±4 three subtractions needed

38 Solving s-channel: consistency with KH80 Consistency with KH80 parametrize SAID S and P waves up to W<Wm Imposing a continuous and differentiable matching point Compare between the input (LHS) and the output (RHS) S-WAVES important discrepancies

39 Solving s-channel: consistency with KH80. P-waves

40 Solving s-channel: fitting subthreshold parameters Next step fit only subthreshold parameters, but keep phase shifts fixed Minimize the χ-like function: χ 2 = N l,i s,± j=1 ( Re f I s Is l± (Wj) F[fl± ](Wj)) 2 F[f Is l± ](W j) right hand side of RS-equations small change in the subthreshold parameters

41 Solving s-channel: fitting subthreshold parameters. P-waves

42 Solving s-channel: fitting subthreshold parameters. S-waves Still important differences, especially for the S-waves the pw parametrizations have to be included in the fit In progress

Roy Steiner equations for πn scattering

Roy Steiner equations for πn scattering Roy Steiner equations for N scattering C. Ditsche 1 M. Hoferichter 1 B. Kubis 1 U.-G. Meißner 1, 1 Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität

More information

arxiv: v1 [hep-ph] 24 Aug 2011

arxiv: v1 [hep-ph] 24 Aug 2011 Roy Steiner equations for γγ ππ arxiv:1108.4776v1 [hep-ph] 24 Aug 2011 Martin Hoferichter 1,a,b, Daniel R. Phillips b, and Carlos Schat b,c a Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and

More information

Improved dispersive analysis of the scalar form factor of the nucleon

Improved dispersive analysis of the scalar form factor of the nucleon Improved dispersive analysis of the scalar form factor of the nucleon, ab Christoph Ditsche, a Bastian Kubis, a and Ulf-G. Meißner ac a Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Bethe

More information

Roy Steiner-equation analysis of pion nucleon scattering

Roy Steiner-equation analysis of pion nucleon scattering Roy Steiner-equation analysis of pion nucleon scattering Jacobo Ruiz de Elvira 1 Martin Hoferichter 2 1 HISKP and Bethe Center for Theoretical Physics, Universität Bonn 2 Institute for Nuclear Theory,

More information

Baroion CHIRAL DYNAMICS

Baroion CHIRAL DYNAMICS Baroion CHIRAL DYNAMICS Baryons 2002 @ JLab Thomas Becher, SLAC Feb. 2002 Overview Chiral dynamics with nucleons Higher, faster, stronger, Formulation of the effective Theory Full one loop results: O(q

More information

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Peter Stoffer in collaboration with G. Colangelo, M. Hoferichter and M. Procura JHEP 09 (2015) 074 [arxiv:1506.01386 [hep-ph]] JHEP

More information

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Peter Stoffer in collaboration with G. Colangelo, M. Hoferichter and M. Procura JHEP 09 (2015) 074 [arxiv:1506.01386 [hep-ph]] JHEP

More information

The light Scalar Mesons: σ and κ

The light Scalar Mesons: σ and κ 7th HEP Annual Conference Guilin, Oct 29, 2006 The light Scalar Mesons: σ and κ Zhou Zhi-Yong Southeast University 1 Background Linear σ model Nonlinear σ model σ particle: appear disappear reappear in

More information

Resonance properties from finite volume energy spectrum

Resonance properties from finite volume energy spectrum Resonance properties from finite volume energy spectrum Akaki Rusetsky Helmholtz-Institut für Strahlen- und Kernphysik Abteilung Theorie, Universität Bonn, Germany NPB 788 (2008) 1 JHEP 0808 (2008) 024

More information

Isospin-breaking corrections to the pion nucleon scattering lengths

Isospin-breaking corrections to the pion nucleon scattering lengths Isospin-breaking corrections to the pion nucleon scattering lengths Helmholtz Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany

More information

Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations

Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations Bastian Kubis Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) Bethe Center for Theoretical Physics

More information

Coupled-channel Bethe-Salpeter

Coupled-channel Bethe-Salpeter Coupled-channel Bethe-Salpeter approach to pion-nucleon scattering Maxim Mai 01/11/2012 ChPT vs. uchpt + chiral symmetry + crossing symmetry + counterterm renormalization low-energy (ρ, ) perturbative

More information

Nucleon EM Form Factors in Dispersion Theory

Nucleon EM Form Factors in Dispersion Theory Nucleon EM Form Factors in Dispersion Theory H.-W. Hammer, University of Bonn supported by DFG, EU and the Virtual Institute on Spin and strong QCD Collaborators: M. Belushkin, U.-G. Meißner Agenda Introduction

More information

Non-perturbative methods for low-energy hadron physics

Non-perturbative methods for low-energy hadron physics Non-perturbative methods for low-energy hadron physics J. Ruiz de Elvira Helmholtz-Institut für Strahlen- und Kernphysik, Bonn University JLab postdoc position interview, January 11th 2016 Biographical

More information

Pion-Kaon interactions Workshop, JLAB Feb , From πk amplitudes to πk form factors (and back) Bachir Moussallam

Pion-Kaon interactions Workshop, JLAB Feb , From πk amplitudes to πk form factors (and back) Bachir Moussallam Pion-Kaon interactions Workshop, JLAB Feb. 14-15, 2018 From πk amplitudes to πk form factors (and back) Bachir Moussallam Outline: Introduction ππ scalar form factor πk: J = 0 amplitude and scalar form

More information

Pion-nucleon sigma-term - a review

Pion-nucleon sigma-term - a review Pion-nucleon sigma-term - a review M.E. Sainio Helsinki Institute of Physics, and Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland (Received: December 5, 2001) A brief

More information

THE PION-NUCLEON SIGMA TERM: an introduction

THE PION-NUCLEON SIGMA TERM: an introduction THE PION-NUCLEON SIGMA TERM: an introduction Marc Knecht Centre de Physique Théorique CNRS Luminy Case 907 13288 Marseille cedex 09 - France knecht@cpt.univ-mrs.fr (Member of the EEC Network FLAVIAnet)

More information

Cusp effects in meson decays

Cusp effects in meson decays Cusp effects in meson decays Bastian Kubis Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) Bethe Center for Theoretical Physics Universität Bonn, Germany Few-Body 2009 Bonn, 3/9/2009 B. Kubis,

More information

Dispersion theory in hadron form factors

Dispersion theory in hadron form factors Dispersion theory in hadron form factors C. Weiss (JLab), Reaction Theory Workshop, Indiana U., 1-Jun-17 E-mail: weiss@jlab.org Objectives Review hadron interactions with electroweak fields: currents,

More information

The chiral representation of the πn scattering amplitude and the pion-nucleon σ-term

The chiral representation of the πn scattering amplitude and the pion-nucleon σ-term The chiral representation of the πn scattering amplitude and the pion-nucleon σ-term J. Martin Camalich University of Sussex, UK in collaboration with J.M. Alarcon and J.A. Oller September 20, 2011 The

More information

A high-accuracy extraction of the isoscalar πn scattering length from pionic deuterium data

A high-accuracy extraction of the isoscalar πn scattering length from pionic deuterium data A high-accuracy extraction of the isoscalar πn scattering length from pionic deuterium data Daniel Phillips Ohio University and Universität Bonn with V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga

More information

pipi scattering from partial wave dispersion relation Lingyun Dai (Indiana University & JPAC)

pipi scattering from partial wave dispersion relation Lingyun Dai (Indiana University & JPAC) pipi scattering from partial wave dispersion relation Lingyun Dai (Indiana University & JPAC) Outlines 1 Introduction 2 K-Matrix fit 3 poles from dispersion 4 future projects 5 Summary 1. Introduction

More information

Isospin breaking in pion deuteron scattering and the pion nucleon scattering lengths

Isospin breaking in pion deuteron scattering and the pion nucleon scattering lengths Isospin breaking in pion deuteron scattering and the pion nucleon scattering lengths source: https://doi.org/10.789/boris.4584 downloaded: 13.3.017, ab Vadim Baru, cd Christoph Hanhart, e Bastian Kubis,

More information

Light by Light. Summer School on Reaction Theory. Michael Pennington Jefferson Lab

Light by Light. Summer School on Reaction Theory. Michael Pennington Jefferson Lab Light by Light Summer School on Reaction Theory Michael Pennington Jefferson Lab Amplitude Analysis g g R p p resonances have definite quantum numbers I, J, P (C) g p g p = S F Jl (s) Y Jl (J,j) J,l Amplitude

More information

Meson-baryon interaction in the meson exchange picture

Meson-baryon interaction in the meson exchange picture Meson-baryon interaction in the meson exchange picture M. Döring C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, K. Nakayama, D. Rönchen, Forschungszentrum Jülich, University of Georgia, Universität Bonn

More information

When Is It Possible to Use Perturbation Technique in Field Theory? arxiv:hep-ph/ v1 27 Jun 2000

When Is It Possible to Use Perturbation Technique in Field Theory? arxiv:hep-ph/ v1 27 Jun 2000 CPHT S758.0100 When Is It Possible to Use Perturbation Technique in Field Theory? arxiv:hep-ph/000630v1 7 Jun 000 Tran N. Truong Centre de Physique Théorique, Ecole Polytechnique F9118 Palaiseau, France

More information

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn Evgeny Epelbaum KHuK Jahrestagung, GSI, 25.10.2007 Evgeny Epelbaum Forschungszentrum Jülich & Universität Bonn Outline Motivation & Introduction Few nucleons in chiral EFT: where do we stand Work in progress:

More information

Finite-Energy Sum Rules. Jannes Nys JPAC Collaboration

Finite-Energy Sum Rules. Jannes Nys JPAC Collaboration Finite-Energy Sum Rules in γn 0 N Jannes Nys JPAC Collaboration Finite-Energy Sum Rules η /η beam asymmetry predictions πδ beam asymmetry Lots of other reactions Overview J. Nys, V. Mathieu et al (JPAC)

More information

8 September Dear Paul...

8 September Dear Paul... EXA 2011 Vienna PK Symposium 8 September 2011 Dear Paul... DEEPLY BOUND STATES of PIONIC ATOMS Experiment (GSI): K. Suzuki et al. Phys. Rev. Lett. 92 (2004) 072302 Theory: Energy Dependent Pion-Nucleus

More information

A scrutiny of hard pion chiral perturbation theory

A scrutiny of hard pion chiral perturbation theory A scrutiny of hard pion chiral perturbation theory Massimiliano Procura Albert Einstein Center for Fundamental Physics 7th Workshop on Chiral Dynamics, JLab, Newport News, August 2012 Outline Hard pion

More information

Baryon Spectroscopy: what do we learn, what do we need?

Baryon Spectroscopy: what do we learn, what do we need? Baryon Spectroscopy: what do we learn, what do we need? E. Klempt Helmholtz-Institut für Strahlen und Kernphysik Universität Bonn Nußallee 14-16, D-53115 Bonn, GERMANY e-mail: klempt@hiskp.uni-bonn.de

More information

Probing lepton flavour violation in the Higgs sector with hadronic! decays

Probing lepton flavour violation in the Higgs sector with hadronic! decays Probing lepton flavour violation in the Higgs sector with hadronic! decays Los Alamos National Laboratory passemar@lanl.gov LUPM & L2C, Montpellier February 13, 2014 In collaboration with : Alejandro Celis,

More information

Introduction to chiral perturbation theory II Higher orders, loops, applications

Introduction to chiral perturbation theory II Higher orders, loops, applications Introduction to chiral perturbation theory II Higher orders, loops, applications Gilberto Colangelo Zuoz 18. July 06 Outline Introduction Why loops? Loops and unitarity Renormalization of loops Applications

More information

On the precision of the theoretical predictions for ππ scattering

On the precision of the theoretical predictions for ππ scattering On the precision of the theoretical predictions for ππ scattering August, 003 arxiv:hep-ph/03061v 6 Aug 003 I. Caprini a, G. Colangelo b, J. Gasser b and H. Leutwyler b a National Institute of Physics

More information

Multi-Channel Systems in a Finite Volume

Multi-Channel Systems in a Finite Volume INT-12-2b Multi-Channel Systems in a Finite olume RaúL Briceño In collaboration with: Zohreh Davoudi (arxiv:1204.1110 Motivation: Scalar Sector The light scalar spectrum Its nature remains puzzling Pertinent

More information

arxiv:nucl-th/ v1 28 Aug 2001

arxiv:nucl-th/ v1 28 Aug 2001 A meson exchange model for the Y N interaction J. Haidenbauer, W. Melnitchouk and J. Speth arxiv:nucl-th/1862 v1 28 Aug 1 Forschungszentrum Jülich, IKP, D-52425 Jülich, Germany Jefferson Lab, 1 Jefferson

More information

arxiv: v2 [hep-ph] 23 Jul 2010

arxiv: v2 [hep-ph] 23 Jul 2010 Photon- and pion-nucleon interactions in a unitary and causal effective field theory based on the chiral Lagrangian A. Gasparyan, a,b and M.F.M. Lutz a arxiv:13.346v [hep-ph] 3 Jul 1 Abstract a Gesellschaft

More information

PROGRESS IN NN NNπ. 1 Introduction. V. Baru,1, J. Haidenbauer %, C. Hanhart %, A. Kudryavtsev, V. Lensky,% and U.-G. Meißner %,#

PROGRESS IN NN NNπ. 1 Introduction. V. Baru,1, J. Haidenbauer %, C. Hanhart %, A. Kudryavtsev, V. Lensky,% and U.-G. Meißner %,# MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany PROGRESS IN NN NNπ V. Baru,1, J. Haidenbauer

More information

Radiative Corrections in Free Neutron Decays

Radiative Corrections in Free Neutron Decays Radiative Corrections in Free Neutron Decays Chien-Yeah Seng Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn Beta Decay as a Probe of New Physics

More information

Spectroscopy Results from COMPASS. Jan Friedrich. Physik-Department, TU München on behalf of the COMPASS collaboration

Spectroscopy Results from COMPASS. Jan Friedrich. Physik-Department, TU München on behalf of the COMPASS collaboration Spectroscopy Results from COMPASS Jan Friedrich Physik-Department, TU München on behalf of the COMPASS collaboration 11th European Research Conference on "Electromagnetic Interactions with Nucleons and

More information

Nature of the sigma meson as revealed by its softening process

Nature of the sigma meson as revealed by its softening process Nature of the sigma meson as revealed by its softening process Tetsuo Hyodo a, Daisuke Jido b, and Teiji Kunihiro c Tokyo Institute of Technology a YITP, Kyoto b Kyoto Univ. c supported by Global Center

More information

Few-nucleon contributions to π-nucleus scattering

Few-nucleon contributions to π-nucleus scattering Mitglied der Helmholtz-Gemeinschaft Few-nucleon contributions to π-nucleus scattering Andreas Nogga, Forschungszentrum Jülich INT Program on Simulations and Symmetries: Cold Atoms, QCD, and Few-hadron

More information

Role of Spin in NN NNπ

Role of Spin in NN NNπ Spin Physics (SPIN2014) International Journal of Modern Physics: Conference Series Vol. 40 (2016) 1660061 (6 pages) c The Author(s) DOI: 10.1142/S2010194516600612 Role of Spin in NN NNπ Vadim Baru Institut

More information

arxiv: v1 [nucl-th] 23 Feb 2016

arxiv: v1 [nucl-th] 23 Feb 2016 September 12, 2018 Threshold pion production in proton-proton collisions at NNLO in chiral EFT arxiv:1602.07333v1 [nucl-th] 23 Feb 2016 V. Baru, 1, 2 E. Epelbaum, 1 A. A. Filin, 1 C. Hanhart, 3 H. Krebs,

More information

The taming of the red dragon

The taming of the red dragon The taming o the red dragon H. Leutwyler University o Bern Spontaneous topics in theoretical physics Bern, May 5, 2006 The taming o the red dragon p.1/26 There is the broad object seen in ππ scattering,

More information

Properties of the S-matrix

Properties of the S-matrix Properties of the S-matrix In this chapter we specify the kinematics, define the normalisation of amplitudes and cross sections and establish the basic formalism used throughout. All mathematical functions

More information

arxiv:nucl-th/ v1 3 Jul 1996

arxiv:nucl-th/ v1 3 Jul 1996 MKPH-T-96-15 arxiv:nucl-th/9607004v1 3 Jul 1996 POLARIZATION PHENOMENA IN SMALL-ANGLE PHOTOPRODUCTION OF e + e PAIRS AND THE GDH SUM RULE A.I. L VOV a Lebedev Physical Institute, Russian Academy of Sciences,

More information

Coulomb effects in pionless effective field theory

Coulomb effects in pionless effective field theory Coulomb effects in pionless effective field theory Sebastian König in collaboration with Hans-Werner Hammer Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics,

More information

Chiral effective field theory for hadron and nuclear physics

Chiral effective field theory for hadron and nuclear physics Chiral effective field theory for hadron and nuclear physics Jose Manuel Alarcón Helmholtz-Institut für Strahlen- und Kernphysik University of Bonn Biographical presentation Biographical presentation Born

More information

Inelastic scattering on the lattice

Inelastic scattering on the lattice Inelastic scattering on the lattice Akaki Rusetsky, University of Bonn In coll with D. Agadjanov, M. Döring, M. Mai and U.-G. Meißner arxiv:1603.07205 Nuclear Physics from Lattice QCD, INT Seattle, March

More information

Meson-baryon interactions and baryon resonances

Meson-baryon interactions and baryon resonances Meson-baryon interactions and baryon resonances Tetsuo Hyodo Tokyo Institute of Technology supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2011, June 16th 1 Contents Contents

More information

PION DEUTERON SCATTERING LENGTH IN CHIRAL PERTURBATION THEORY UP TO ORDER χ 3/2

PION DEUTERON SCATTERING LENGTH IN CHIRAL PERTURBATION THEORY UP TO ORDER χ 3/2 MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany PION DEUTERON SCATTERING LENGTH IN CHIRAL PERTURBATION

More information

arxiv:nucl-th/ v1 23 Feb 2007 Pion-nucleon scattering within a gauged linear sigma model with parity-doubled nucleons

arxiv:nucl-th/ v1 23 Feb 2007 Pion-nucleon scattering within a gauged linear sigma model with parity-doubled nucleons February 5, 28 13:17 WSPC/INSTRUCTION FILE International Journal of Modern Physics E c World Scientific Publishing Company arxiv:nucl-th/7276v1 23 Feb 27 Pion-nucleon scattering within a gauged linear

More information

Recent Results on Spectroscopy from COMPASS

Recent Results on Spectroscopy from COMPASS Recent Results on Spectroscopy from COMPASS Boris Grube Physik-Department E18 Technische Universität München, Garching, Germany Hadron 15 16. September 15, Newport News, VA E COMPASS 1 8 The COMPASS Experiment

More information

Dispersion Relation Analyses of Pion Form Factor, Chiral Perturbation Theory and Unitarized Calculations

Dispersion Relation Analyses of Pion Form Factor, Chiral Perturbation Theory and Unitarized Calculations CPHT S758.0100 Dispersion Relation Analyses of Pion Form Factor, Chiral Perturbation Theory and Unitarized Calculations Tran N. Truong Centre de Physique Théorique, Ecole Polytechnique F91128 Palaiseau,

More information

arxiv:hep-ph/ v1 1 Jun 1995

arxiv:hep-ph/ v1 1 Jun 1995 CHIRAL PREDICTION FOR THE πn S WAVE SCATTERING LENGTH a TO ORDER O(M 4 π ) V. Bernard a#1#2, N. Kaiser b#3, Ulf-G. Meißner c#4 arxiv:hep-ph/9506204v1 1 Jun 1995 a Centre de Recherches Nucléaires, Physique

More information

NEUTRON-NEUTRON SCATTERING LENGTH FROM THE REACTION γd π + nn

NEUTRON-NEUTRON SCATTERING LENGTH FROM THE REACTION γd π + nn MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany NEUTRON-NEUTRON SCATTERING LENGTH FROM THE REACTION

More information

arxiv:hep-ph/ v1 15 May 1997

arxiv:hep-ph/ v1 15 May 1997 Chiral two-loop pion-pion scattering parameters from crossing-symmetric constraints G. Wanders Institut de physique théorique, Université de Lausanne, arxiv:hep-ph/9705323v1 15 May 1997 CH-1015 Lausanne,

More information

PoS(STORI11)050. The η π + π π 0 decay with WASA-at-COSY

PoS(STORI11)050. The η π + π π 0 decay with WASA-at-COSY The η π + π π 0 decay with WASA-at-COSY Institute for Physics and Astronomy, Uppsala University E-mail: patrik.adlarson@physics.uu.se Recently, a large statistics sample of approximately 3 10 7 decays

More information

πn scattering in relativistic BChPT revisited

πn scattering in relativistic BChPT revisited πn scattering in relativistic BChPT revisited Jose Manuel Alarcón jmas1@um.es Universidad de Murcia In colaboration with J. Martin Camalich, J. A. Oller and L. Alvarez-Ruso arxiv:1102.1537 [nucl-th] To

More information

arxiv:nucl-th/ v1 22 Nov 1994

arxiv:nucl-th/ v1 22 Nov 1994 A dynamical model for correlated two-pion-exchange in the pion-nucleon interaction C. Schütz, K. Holinde and J. Speth Institut für Kernphysik, Forschungszentrum Jülich GmbH, D 52425 Jülich, Germany arxiv:nucl-th/9411022v1

More information

arxiv:hep-ph/ v2 9 Jan 2007

arxiv:hep-ph/ v2 9 Jan 2007 The mass of the σ pole. D.V. Bugg 1, Queen Mary, University of London, London E14NS, UK arxiv:hep-ph/0608081v2 9 Jan 2007 Abstract BES data on the σ pole are refitted taking into account new information

More information

arxiv: v2 [nucl-th] 11 Feb 2009

arxiv: v2 [nucl-th] 11 Feb 2009 Resonance parameters from K matrix and T matrix poles R. L. Workman, R. A. Arndt and M. W. Paris Center for Nuclear Studies, Department of Physics The George Washington University, Washington, D.C. 20052

More information

Mass of Heavy Mesons from Lattice QCD

Mass of Heavy Mesons from Lattice QCD Mass of Heavy Mesons from Lattice QCD David Richards Jefferson Laboratory/Hadron Spectrum Collaboration Temple, March 2016 Outline Heavy Mesons Lattice QCD Spectroscopy Recipe Book Results and insight

More information

η 3π and light quark masses

η 3π and light quark masses η 3π and light quark masses Theoretical Division Los Alamos National Laboratory Jefferson Laboratory, Newport News November 5, 013 In collaboration with G. Colangelo, H. Leutwyler and S. Lanz (ITP-Bern)

More information

Towards a data-driven analysis of hadronic light-by-light scattering

Towards a data-driven analysis of hadronic light-by-light scattering Towards a data-driven analysis of hadronic light-by-light scattering Bastian Kubis Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) Bethe Center for Theoretical Physics Universität Bonn, Germany

More information

BUTP-96/10, hep-ph/ Energy Scattering. B. Ananthanarayan. P. Buttiker. Institut fur theoretische Physik. Abstract

BUTP-96/10, hep-ph/ Energy Scattering. B. Ananthanarayan. P. Buttiker. Institut fur theoretische Physik. Abstract BUTP-96/10, hep-ph/960217 Scattering Lengths and Medium and High Energy Scattering B. Ananthanarayan P. Buttiker Institut fur theoretische Physik Universitat Bern, CH{3012 Bern, Switzerland Abstract Medium

More information

Quark-Hadron Duality in Structure Functions

Quark-Hadron Duality in Structure Functions Approaches to QCD, Oberwoelz, Austria September 10, 2008 Quark-Hadron Duality in Structure Functions Wally Melnitchouk Outline Bloom-Gilman duality Duality in QCD OPE & higher twists Resonances & local

More information

The Nucleon-Nucleon Interaction

The Nucleon-Nucleon Interaction Brazilian Journal of Physics, vol. 34, no. 3A, September, 2004 845 The Nucleon-Nucleon Interaction J. Haidenbauer Forschungszentrum Jülich, Institut für Kernphysik, D-52425 Jülich, Germany Received on

More information

PoS(CD09)065. Hadronic atoms

PoS(CD09)065. Hadronic atoms Vadim Baru Forschungszentrum Jülich, Institut für Kernphysik (Theorie), and Jülich Center for Hadron Physics, 52425 Jülich, Germany, and Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya

More information

Chiral dynamics and baryon resonances

Chiral dynamics and baryon resonances Chiral dynamics and baryon resonances Tetsuo Hyodo a Tokyo Institute of Technology a supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, June 5th 1 Contents Contents

More information

Pion production in nucleon-nucleon collisions at low energies: status and perspectives

Pion production in nucleon-nucleon collisions at low energies: status and perspectives Pion production in nucleon-nucleon collisions at low energies: status and perspectives Vadim Baru Forschungszentrum Jülich, Institut für Kenphysik (Theorie), D-545 Jülich, Germany ITEP, B. Cheremushkinskaya

More information

Incoherent photoproduction of π 0 and η from complex nuclei up to 12 GeV

Incoherent photoproduction of π 0 and η from complex nuclei up to 12 GeV Incoherent photoproduction of π 0 and η from complex nuclei up to GeV Tulio E. Rodrigues University of São Paulo - Brazil Outline: Physics motivation (chiral anomaly in QCD) Meson photoproduction from

More information

OAM Peripheral Transverse Densities from Chiral Dynamics. Carlos Granados in collaboration with Christian Weiss. QCD Evolution 2017.

OAM Peripheral Transverse Densities from Chiral Dynamics. Carlos Granados in collaboration with Christian Weiss. QCD Evolution 2017. OAM Peripheral Transverse Densities from Chiral Dynamics Carlos Granados in collaboration with Christian Weiss Jefferson Lab QCD Evolution 2017 Jefferson Lab Newport News, VA Outline Motivation Transverse

More information

Viability of strongly coupled scenarios with a light Higgs like boson

Viability of strongly coupled scenarios with a light Higgs like boson Beijing IHEP, January 8 th 2013 Viability of strongly coupled scenarios with a light Higgs like boson J.J. Sanz Cillero (PKU visitor) A. Pich, I. Rosell and JJ SC [arxiv:1212.6769 [hep ph]] OUTLINE 1)

More information

PoS(EPS-HEP 2009)048. QCD tests at NA48/2 experiment. Gianluca Lamanna Scuola Normale Superiore & INFN Pisa - Italy

PoS(EPS-HEP 2009)048. QCD tests at NA48/2 experiment. Gianluca Lamanna Scuola Normale Superiore & INFN Pisa - Italy experiment Scuola Normale Superiore & INFN Pisa - Italy E-mail: gianluca.lamanna@cern.ch The main goal of the NA48/2 experiment was to measure the CP violating asymmetry in the charged kaon decay in three

More information

A meson-exchange model for π N scattering up to energies s. Shin Nan Yang National Taiwan University

A meson-exchange model for π N scattering up to energies s. Shin Nan Yang National Taiwan University A meson-exchange model for π N scattering up to energies s 2 GeV Shin Nan Yang National Taiwan University Collaborators: S. S. Kamalov (Dubna) Guan Yeu Chen (Taipei) 18th International Conference on Few-body

More information

Pion-nucleon scattering around the delta-isobar resonance

Pion-nucleon scattering around the delta-isobar resonance Pion-nucleon scattering around the delta-isobar resonance Bingwei Long (ECT*) In collaboration with U. van Kolck (U. Arizona) What do we really do Fettes & Meissner 2001... Standard ChPT Isospin 3/2 What

More information

Hadron Spectroscopy at COMPASS

Hadron Spectroscopy at COMPASS Hadron Spectroscopy at Overview and Analysis Methods Boris Grube for the Collaboration Physik-Department E18 Technische Universität München, Garching, Germany Future Directions in Spectroscopy Analysis

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum, FZ Jülich & University Bonn Lacanau, 29.09.2009 Modern Theory of Nuclear Forces Lecture 1: Lecture 2: Lecture 3: Introduction & first look into ChPT EFTs for two nucleons Nuclear forces

More information

Analyticity and crossing symmetry in the K-matrix formalism.

Analyticity and crossing symmetry in the K-matrix formalism. Analyticity and crossing symmetry in the K-matrix formalism. KVI, Groningen 7-11 September, 21 Overview Motivation Symmetries in scattering formalism K-matrix formalism (K S ) (K A ) Pions and photons

More information

Recent advances on chiral partners and patterns and the thermal f 0 (500) in chiral restoration

Recent advances on chiral partners and patterns and the thermal f 0 (500) in chiral restoration and the thermal f 0 (500) in chiral restoration Departamento de Física Teórica and UPARCOS. Univ. Complutense. 28040 Madrid. Spain E-mail: gomez@ucm.es Jacobo Ruiz de Elvira Albert Einstein Center for

More information

Electromagnetic effects in the K + π + π 0 π 0 decay

Electromagnetic effects in the K + π + π 0 π 0 decay Electromagnetic effects in the K + π + π 0 π 0 decay arxiv:hep-ph/0612129v3 10 Jan 2007 S.R.Gevorkyan, A.V.Tarasov, O.O.Voskresenskaya March 11, 2008 Joint Institute for Nuclear Research, 141980 Dubna,

More information

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013 Baryon Resonance Determination using LQCD Robert Edwards Jefferson Lab Baryons 2013 Where are the Missing Baryon Resonances? What are collective modes? Is there freezing of degrees of freedom? What is

More information

The nucleon as a test case to calculate vector-isovector form factors at low energies

The nucleon as a test case to calculate vector-isovector form factors at low energies Eur. Phys. J. A (218) 54: 1 DOI 1.114/epja/i218-12447- Regular Article Theoretical Physics THE EUROPEAN PHYSICAL JOURNAL A The nucleon as a test case to calculate vector-isovector form factors at low energies

More information

Pion polarizabilities: No conflict between dispersion theory and ChPT

Pion polarizabilities: No conflict between dispersion theory and ChPT : No conflict between dispersion theory and ChPT Barbara Pasquini a, b, and Stefan Scherer b a Dipartimento di Fisica Nucleare e Teorica, Università degli Studi di Pavia, and INFN, Sezione di Pavia, Italy

More information

A Model That Realizes Veneziano Duality

A Model That Realizes Veneziano Duality A Model That Realizes Veneziano Duality L. Jenkovszky, V. Magas, J.T. Londergan and A. Szczepaniak, Int l Journ of Mod Physics A27, 1250517 (2012) Review, Veneziano dual model resonance-regge Limitations

More information

arxiv: v1 [nucl-th] 9 Jan 2019

arxiv: v1 [nucl-th] 9 Jan 2019 JLAB-THY-18-86 Spectral functions of nucleon form factors: Three-pion continua at low energies 1 N. Kaiser 1 and E. Passemar,3,4 1) Physik-Department T39, Technische Universität München, D-85747 Garching,

More information

hybrids (mesons and baryons) JLab Advanced Study Institute

hybrids (mesons and baryons) JLab Advanced Study Institute hybrids (mesons and baryons) 2000 2000 1500 1500 1000 1000 500 500 0 0 71 the resonance spectrum of QCD or, where are you hiding the scattering amplitudes? real QCD real QCD has very few stable particles

More information

arxiv: v2 [hep-ph] 31 Dec 2018

arxiv: v2 [hep-ph] 31 Dec 2018 On the Existence of N (89) Resonance in S 11 Channel of πn Scatterings Yu-Fei Wang a, De-Liang Yao b, Han-Qing Zheng a,c a Department of Physics and State Key Laboratory of Nuclear Physics and Technology,

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum, FZ Jülich & University Bonn Lacanau, 28.09.2009 Modern Theory of Nuclear Forces Lecture 1: Lecture 2: Introduction & first look into ChPT EFTs for two nucleons Chiral Perturbation Theory

More information

arxiv: v2 [hep-ph] 5 Jan 2013

arxiv: v2 [hep-ph] 5 Jan 2013 Scalar susceptibilities and four-quark condensates in the meson gas within Chiral Perturbation Theory A. Gómez Nicola, J.R. Peláez, and J. Ruiz de Elvira Departamento de Física Teórica II. Universidad

More information

Electromagnetic currents from chiral EFT

Electromagnetic currents from chiral EFT ab a Forschungszentrum Jülich, Institut für Kernphysik (IKP-3) and Jülich Center for Hadron Physics, D-545 Jülich, Germany b Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for

More information

Bonn-Gatchina partial wave analysis. Comparison of the K-matrix and D-matrix (N/D based) methods

Bonn-Gatchina partial wave analysis. Comparison of the K-matrix and D-matrix (N/D based) methods Bonn-Gatchina partial wave analysis. Comparison of the K-matrix and D-matrix (N/D based) methods PWA 1 1 Bonn-Gatchina partial wave analysis. Comparison of the K-matrix and D-matrix (N/D based) methods

More information

Light hypernuclei based on chiral and phenomenological interactions

Light hypernuclei based on chiral and phenomenological interactions Mitglied der Helmholtz-Gemeinschaft Light hypernuclei based on chiral and phenomenological interactions Andreas Nogga, Forschungszentrum Jülich International Conference on Hypernuclear and Strange Particle

More information

How far can you go? Surprises & pitfalls in three-flavour chiral extrapolations

How far can you go? Surprises & pitfalls in three-flavour chiral extrapolations How far can you go? Surprises & pitfalls in three-flavour chiral extrapolations Sébastien Descotes-Genon Laboratoire de Physique Théorique CNRS & Université Paris-Sud 11, 91405 Orsay, France July 31 2007

More information

arxiv:nucl-th/ v2 15 May 2005

arxiv:nucl-th/ v2 15 May 2005 FZJ IKPTH) 005 08, HISKP-TH-05/06 arxiv:nucl-th/0505039v 15 May 005 Precision calculation of γd π + nn within chiral perturbation theory V. Lensky 1,, V. Baru, J. Haidenbauer 1, C. Hanhart 1, A.E. Kudryavtsev,

More information

AA242B: MECHANICAL VIBRATIONS

AA242B: MECHANICAL VIBRATIONS AA242B: MECHANICAL VIBRATIONS 1 / 50 AA242B: MECHANICAL VIBRATIONS Undamped Vibrations of n-dof Systems These slides are based on the recommended textbook: M. Géradin and D. Rixen, Mechanical Vibrations:

More information

Dilepton Production from Coarse-grained Transport Dynamics

Dilepton Production from Coarse-grained Transport Dynamics Dilepton Production from Coarse-grained Transport Dynamics Stephan Endres (in collab. with M. Bleicher, H. van Hees, J. Weil) Frankfurt Institute for Advanced Studies ITP Uni Frankfurt ECT* Trento Workshop

More information

Hadronic Interactions and Nuclear Physics

Hadronic Interactions and Nuclear Physics Williamsburg,VA LATT2008 7/2008 p. 1/35 Hadronic Interactions and Nuclear Physics Silas Beane University of New Hampshire Williamsburg,VA LATT2008 7/2008 p. 2/35 Outline Motivation Signal/Noise Estimates

More information