Roy Steiner equations for πn scattering

Size: px
Start display at page:

Download "Roy Steiner equations for πn scattering"

Transcription

1 Roy Steiner equations for N scattering C. Ditsche 1 M. Hoferichter 1 B. Kubis 1 U.-G. Meißner 1, 1 Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn Institut für Kernphysik, Institute for Advanced Simulation, and Jülich Center for Hadron Physics, Forschungszentrum Jülich 7 th International Workshop on Chiral Dynamics 01 Jefferson Lab, August 8 th [JHEP 106 (01) 043] ( see also following talk by M. Hoferichter on [JHEP 106 (01) 063]) C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 1

2 Outline 1 Motivation: Why Roy Steiner equations for N scattering? Warm-up: Roy equations for scattering 3 N scattering basics 4 Roy Steiner equations for N scattering 5 Solving the t-channel Muskhelishvili Omnès problem 6 Summary & Outlook C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8

3 Motivation: Why N scattering? Why Roy Steiner equations? Renewed interest in N scattering: N N amplitudes e.g. for σ-term physics NN crossed amplitudes e.g. for nucleon form factors Need esp. low-energy (pseudophysical) amplitudes which are not very well known C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 3

4 Motivation: Why N scattering? Why Roy Steiner equations? Renewed interest in N scattering: N N amplitudes e.g. for σ-term physics NN crossed amplitudes e.g. for nucleon form factors Need esp. low-energy (pseudophysical) amplitudes which are not very well known Roy( Steiner) equations = Partial-Wave (Hyberbolic) Dispersion Relations coupled by unitarity and crossing symmetry PW(H)DRs together with unitarity, crossing symmetry, and chiral symmetry Can study processes at low energies with high precision: scattering: [Ananthanarayan et al. (001), García-Martín et al. (011)] K scattering: [Büttiker et al. (004)] γγ scattering: [Hoferichter et al. (011)] C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 3

5 Motivation: Why N scattering? Why Roy Steiner equations? Renewed interest in N scattering: N N amplitudes e.g. for σ-term physics NN crossed amplitudes e.g. for nucleon form factors Need esp. low-energy (pseudophysical) amplitudes which are not very well known Roy( Steiner) equations = Partial-Wave (Hyberbolic) Dispersion Relations coupled by unitarity and crossing symmetry PW(H)DRs together with unitarity, crossing symmetry, and chiral symmetry Can study processes at low energies with high precision: scattering: [Ananthanarayan et al. (001), García-Martín et al. (011)] K scattering: [Büttiker et al. (004)] γγ scattering: [Hoferichter et al. (011)] Roy Steiner equations for N scattering: Obtain low-energy (pseudophysical) amplitudes with better precision (update input & give errors) Framework allows for systematic improvements (subtractions, higher partial waves,...) C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 3

6 Warm-up: Roy equations for scattering (1) is fully crossing symmetric in Mandelstam variables s, t, and u = 4M s t Roy equations respect all available symmetry constraints: Lorentz invariance, unitarity, isospin & crossing symmetry, and (maximal) analyticity C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 4

7 Warm-up: Roy equations for scattering (1) is fully crossing symmetric in Mandelstam variables s, t, and u = 4M s t Roy equations respect all available symmetry constraints: Lorentz invariance, unitarity, isospin & crossing symmetry, and (maximal) analyticity Start from twice-subtracted fixed-t DRs of the generic form s + t + u = 4M = s + t + u T(s, t) = c(t) + 1 4M ds { s s s s + u s u } Im T(s, t) Determine subtraction functions c(t) via crossing symmetry PW expansion (I {0, 1, }, J = l): T I (s, t) = 3 ( ) (J + 1)P J cos θ(s, t) t I J (s) J=0 PW decomposition of these DRs yields the Roy equations [Roy (1971)] t I J (s) = ki J (s) + 1 I =0 J =0 4M ds K II JJ (s, s ) Im t I J (s ) Kernels: analytically known, contain Cauchy kernel KJJ II (s, s ) = δii δjj s +... s C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 4

8 Warm-up: Roy equations for scattering () t I J (s) = ki J (s) + 1 I =0 J =0 4M ds K II JJ (s, s ) Im t I J (s ) Validity: 4 M s 60 M (1.08 GeV) Mandelstam analyticity s 68 M (1.15 GeV) Subtraction constants (free parameters) contained in k I J (s): scattering lengths Matching to Chiral Perturbation Theory [Colangelo et al. (001)] C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 5

9 Warm-up: Roy equations for scattering () t I J (s) = ki J (s) + 1 I =0 J =0 4M ds K II JJ (s, s ) Im t I J (s ) Validity: 4 M s 60 M (1.08 GeV) Mandelstam analyticity s 68 M (1.15 GeV) Subtraction constants (free parameters) contained in k I J (s): scattering lengths Matching to Chiral Perturbation Theory [Colangelo et al. (001)] Elastic unitarity leads to coupled integral equations for the phase shifts δ I J (s) Im tj I (s) = σ (s) tj I (s) ( ) θ t 4M σ (s) tj I (s) = eiδi J (s) 1 = sin δj I i (s) eiδi J (s) t I J t I J σ (s) = 1 4M s C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 5

10 N scattering basics Generically: a (q) + N(p) b (q ) + N(p ) 00 Kinematics: s = (p + q), t = (p p ), u = (p q ) u = (m + M ) s t, Isospin structure: T ba = δ ba T + + iɛ bac τ c T Lorentz structure (I {+, }): { } T I = ū(p ) A I + /q +/q B I u(p) ν = s u 4m Crossing symmetry relates amplitudes for s-/u-channel (N N) and t-channel ( NN ), u M Π t crossing even and odd amplitudes: A ± (ν, t) = ±A ± ( ν, t), B ± (ν, t) = B ± ( ν, t) t u Ν s M Π s C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 6

11 N scattering basics: Subthreshold expansion 00 Subtraction of pseudovector Born terms: X X D ± = A ± + νb ± u Expand crossing even amplitudes {Ā+ } X I (ν, t), Ā ν, B + ν, B, D +, D ν around subthreshold point ν = t = 0: X I (ν, t) = x I mn (ν ) m t n m,n=0 u M Π t t Ν s M Π s C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 7

12 N scattering basics: Partial Waves PWs allow for easy incorporation of unitarity constraints helicity formalism [Jacob/Wick (1959)] C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 8

13 N scattering basics: Partial Waves PWs allow for easy incorporation of unitarity constraints helicity formalism [Jacob/Wick (1959)] s-channel PW projection: z s = cos θ s, W = s A I 1 l (s) = dz s P l (z s)a I (s, t) t=t(s,zs) 1 fl± {(E I (W) = 1 + m) [ A 16W I l (s) + (W m)bi l (s)] + (E m) [ A I l±1 (s) + (W + m)bi l±1 (s)]} MacDowell symmetry: fl+ I (W) = f (l+1) I ( W) l 0 [MacDowell (1959)] C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 8

14 N scattering basics: Partial Waves PWs allow for easy incorporation of unitarity constraints helicity formalism [Jacob/Wick (1959)] s-channel PW projection: z s = cos θ s, W = s A I 1 l (s) = dz s P l (z s)a I (s, t) t=t(s,zs) 1 fl± {(E I (W) = 1 + m) [ A 16W I l (s) + (W m)bi l (s)] + (E m) [ A I l±1 (s) + (W + m)bi l±1 (s)]} MacDowell symmetry: fl+ I (W) = f (l+1) I ( W) l 0 [MacDowell (1959)] t-channel PW expansion: z t = cos θ t A I (s, t) = 4 { } s=s(t,zt) p (J + 1)(p tq t) J P J (z t) f J + (t) m z t J J(J+1) tp J (z t) f J (t) B I (s, t) = 4 J+1 s=s(t,zt) (p J>0 J(J+1) tq t) J 1 P J (z t) f J (t) G-parity even J for I =+ (I t =0), odd J for I = (I t =1) C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 8

15 N scattering basics: Partial Waves PWs allow for easy incorporation of unitarity constraints helicity formalism [Jacob/Wick (1959)] s-channel PW projection: z s = cos θ s, W = s A I 1 l (s) = dz s P l (z s)a I (s, t) t=t(s,zs) 1 fl± {(E I (W) = 1 + m) [ A 16W I l (s) + (W m)bi l (s)] + (E m) [ A I l±1 (s) + (W + m)bi l±1 (s)]} MacDowell symmetry: fl+ I (W) = f (l+1) I ( W) l 0 [MacDowell (1959)] t-channel PW expansion: z t = cos θ t A I (s, t) = 4 { } s=s(t,zt) p (J + 1)(p tq t) J P J (z t) f J + (t) m z t J J(J+1) tp J (z t) f J (t) B I (s, t) = 4 J+1 s=s(t,zt) (p J>0 J(J+1) tq t) J 1 P J (z t) f J (t) G-parity even J for I =+ (I t =0), odd J for I = (I t =1) s-channel PW expansion and t-channel PW projection in analogy C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 8

16 Roy Steiner equations for N scattering: Hyperbolic DRs (Unsubtracted) Hyperbolic DRs: (s a)(u a) = b = (s a)(u a) with a, b R b = b(s, t, a) A + (s, t) = 1 [ 1 ds s s + 1 s u 1 ] s Im A + (s, t ) + 1 a (m+m ) 4M dt Im A+ (s, t ) t t B + (s, t) = N + (s, t) + 1 [ 1 ds s s 1 ] s Im B + (s, t ) + 1 dt ν Im B + (s, t ) u ν t t (m+m ) 4M [ ] N + (s, t) = g 1 and similarly for A, B, N [Hite/Steiner (1973)] m s 1 m u C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 9

17 Roy Steiner equations for N scattering: Hyperbolic DRs (Unsubtracted) Hyperbolic DRs: (s a)(u a) = b = (s a)(u a) with a, b R b = b(s, t, a) A + (s, t) = 1 [ 1 ds s s + 1 s u 1 ] s Im A + (s, t ) + 1 a (m+m ) 4M dt Im A+ (s, t ) t t B + (s, t) = N + (s, t) + 1 [ 1 ds s s 1 ] s Im B + (s, t ) + 1 dt ν Im B + (s, t ) u ν t t (m+m ) 4M [ ] N + (s, t) = g 1 and similarly for A, B, N [Hite/Steiner (1973)] Why HDRs? m s 1 m u Combine all physical regions important for reliable continuation to the subthreshold region [Stahov (1999)] Imaginary parts are only needed in regions where the corresponding PW decompositions converge Range of convergence can be maximized by tuning the free hyperbola parameter a Especially powerful for the determination of the σ-term [Koch (198)] C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 9

18 Roy Steiner equations for N scattering: Hyperbolic DRs (Unsubtracted) Hyperbolic DRs: (s a)(u a) = b = (s a)(u a) with a, b R b = b(s, t, a) A + (s, t) = 1 [ 1 ds s s + 1 s u 1 ] s Im A + (s, t ) + 1 a (m+m ) 4M dt Im A+ (s, t ) t t B + (s, t) = N + (s, t) + 1 [ 1 ds s s 1 ] s Im B + (s, t ) + 1 dt ν Im B + (s, t ) u ν t t (m+m ) 4M [ ] N + (s, t) = g 1 and similarly for A, B, N [Hite/Steiner (1973)] Why HDRs? m s 1 m u Combine all physical regions important for reliable continuation to the subthreshold region [Stahov (1999)] Imaginary parts are only needed in regions where the corresponding PW decompositions converge Range of convergence can be maximized by tuning the free hyperbola parameter a Especially powerful for the determination of the σ-term [Koch (198)] How to derive closed Roy Steiner system of PWHDRs: 1 Expand s-/t-channel imaginary parts of HDRs in s-/t-channel PWs, respectively Project nucleon pole terms and all imaginary parts onto both s- and t-channel PWs 3 Combine resulting RS equations with the s- & t-channel (extended) PW unitarity relations C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 9

19 Roy Steiner equations for N scattering: s-channel RS equations s-channel PW projection of pole terms and s-/t-channel-pw-expanded imaginary parts (unsubtracted) s-channel RS equations: f I l+ (W) = NI l+ (W) + 1 dt J { } G lj (W, t ) Im f J + (t ) + H lj (W, t ) Im f J (t ) + 1 m+m dw 4M l =0 { } Kll I (W, W ) Im fl I + (W ) + Kll I (W, W ) Im f(l I +1) (W ) = f(l+1) I ( W) l 0 [Hite/Steiner (1973)] Kernels: analytically known, e.g. K I ll (W, W ) = δ ll W W +... Validity: above threshold, assuming Mandelstam analyticity a = 3.19 M s [ (m + M ) = M, ] M W [ m + M = 1.08 GeV, 1.38 GeV ] C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 10

20 Roy Steiner equations for N scattering: t-channel RS equations t-channel PW projection of pole terms and s-/t-channel-pw-expanded imaginary parts (unsubtracted) t-channel RS equations: f J 0 + (t) = ÑJ + (t) + 1 dt } { K JJ 1 (t, t ) Im f J + (t ) + K JJ (t, t ) Im f J (t ) 4M J + 1 m+m dw { G Jl (t, W ) Im fl+ I (W ) + G Jl (t, W ) Im f(l+1) )} I (W l=0 f J 1 (t) = ÑJ (t) + 1 dt K 3 JJ (t, t ) Im f J (t ) 4M J >0 + 1 m+m dw { H Jl (t, W ) Im fl+ I (W ) + H Jl (t, W ) Im f(l+1) )} I (W l=0 Kernels analytically known, e.g. K 1 JJ (t, t ) = δ JJ t t +..., K 3 JJ (t, t ) = δ JJ t t +... Validity: above pseudothreshold, assuming Mandelstam analyticity a =.71 M t [ 4M, ] M t [ M = 0.8 GeV,.00 GeV ] C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 11

21 Roy Steiner equations for N scattering: Unitarity relations s-channel unitarity relations (I s {1/, 3/}): Im f Is l± (W) = qs f I s l± (W) ( ) θ W (m+m) fl± I fl± I [ ] 1 η Is l± (W) + θ ( W (m+m ) ) N 4q s N N +... C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 1

22 Roy Steiner equations for N scattering: Unitarity relations s-channel unitarity relations (I s {1/, 3/}): Im f Is l± (W) = qs f I s l± (W) ( ) θ W (m+m) fl± I fl± I [ ] 1 η Is l± (W) + θ ( W (m+m ) ) N 4q s N t-channel (extended) unitarity relations: (-body intermediate states: & KK +... ) N +... Im f J ± (t) = σ t ( t I J (t) ) f J ± (t) θ( t 4M ) + cj kt J σt K ( g I J (t) ) h J ± (t) θ( t 4M K) +... N N K f J ± t I J + h J ± g I J +... K N N Only linear in f J (t) less restrictive ± Watson s theorem: arg f J ± (t) = δi J (t) [Watson (1954)] for t < 16 M 40 M (0.88 GeV) C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 1

23 Roy Steiner equations for N scattering: Recoupling schemes s-channel subproblem: Kernels are diagonal for I {+, }, but unitarity relations are diagonal for I s {1/, 3/} All PWs are interrelated Once the t-channel PWs are known Structure similar to Roy equations f + 0+ f + 1+ f + 1 f 0+ f 1+ f 1 C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 13

24 Roy Steiner equations for N scattering: Recoupling schemes s-channel subproblem: Kernels are diagonal for I {+, }, but unitarity relations are diagonal for I s {1/, 3/} All PWs are interrelated Once the t-channel PWs are known Structure similar to Roy equations f + 0+ f + 1+ f + 1 f 0+ f 1+ f 1 t-channel subproblem: Only higher PWs couple to lower ones Only PWs with even or odd J are coupled No contribution from f J + to f J Leads to Muskhelishvili Omnès problem f 0 + f 1 + f + f 3 + f 1 f f 3 C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 13

25 Roy Steiner equations for N scattering: t-channel subproblem (1) Linear combinations Γ J (t) = m J J+1 f J (t) f J + (t) J 1 (unsubtracted) t-channel subproblem can be written as f+ 0 (t) = t 0 4m + (t) + dt Im f+ 0 (t ) (t 4m )(t t) Γ J 1 (t) = J t 4m Γ (t) + f J 1 (t) = J (t) + 1 4M 4M 4M dt Im Γ J (t ) (t 4m )(t t) dt Im f J (t ) t t [ ] f+ 0 (4m ) = 0 [ ] Γ J (4m ) = 0 with Im f J ± (t) = σ t ( t I J (t) ) f J ± (t) θ( t 4M ) +... Inhomogeneities (t): Born terms, s-channel integrals, and higher t-channel PWs; e.g. J (t) = ÑJ (t) + 1 dw { H Jl (t, W ) Im fl+ I (W ) + H Jl (t, W ) Im f )} (l+1) I (W m+m l=0 + 1 dt K 3 JJ (t, t ) Im f J (t ) 4M J J+ C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 14

26 Roy Steiner equations for N scattering: t-channel subproblem () In the low-energy (pseudophysical) region: Only the lowest s-/t-channel PWs are relevant Can match amplitudes to ChPT [Büttiker/Meißner (000), Becher/Leutwyler (001),...] Neglect inelasticities in both the - and the t-channel PWs ηj I (t) = 1 & no KK +... Watsons s theorem, single-channel approximation of t-channel subproblem C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 15

27 Roy Steiner equations for N scattering: t-channel subproblem () In the low-energy (pseudophysical) region: Only the lowest s-/t-channel PWs are relevant Can match amplitudes to ChPT [Büttiker/Meißner (000), Becher/Leutwyler (001),...] Neglect inelasticities in both the - and the t-channel PWs ηj I (t) = 1 & no KK +... Watsons s theorem, single-channel approximation of t-channel subproblem (Single-channel) Muskhelishvili Omnès problem with finite matching point t m [Muskhelishvili (1953), Omnès (1958), Büttiker et al. (004)] f(t) = (t)+ 1 t m 4M dt sin δ(t )e iδ(t ) f(t ) t + 1 t dt Im f(t ) t t t m f(t) e iδ(t) for t t m < t inel Solving for f(t) in 4M t tm requires: δ(t) for 4M t tm & Im f(t) for t tm Solution via once-subtracted Omnès function with t m < Ω(0) = 1 { t Ω(t) = exp t m 4M } { dt δ(t ) t t m t t = exp t 4M } dt δ(t ) t t e iδ(t) θ(t 4M )θ(tm t) t C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 15

28 Roy Steiner equations for N scattering: Subtractions In general: Subtractions May be necessary to ensure the convergence of DR/MO integrals asymptotic behavior Can be introduced to lessen the dependence of the low-energy solution on the high-energy behavior Parametrize high-energy information in (a priori unknown) subtraction constants matching to ChPT C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 16

29 Roy Steiner equations for N scattering: Subtractions In general: Subtractions May be necessary to ensure the convergence of DR/MO integrals asymptotic behavior Can be introduced to lessen the dependence of the low-energy solution on the high-energy behavior Parametrize high-energy information in (a priori unknown) subtraction constants matching to ChPT Favorable choice for t-channel MO problem: subthreshold expansion around ν = t = 0 Subtract HDRs for A ± and B ± at s = u = m + M and t = 0 Done up to full second order; added (partial) third subtraction for A ± Obtain sum rules for subthreshold parameters x I mn General structure of RS/MO problem remains unchanged HDRs s-/t-channel RS equations (pole terms & kernels) t-channel MO problem, e.g. for P-waves (n 1): Γ 1 (t) = 1 Γ (t) n-sub + tn 1 (t 4m ) dt Im Γ 1 (t ) t n 1 (t 4m )(t t) f 1 (t) = 1 (t) n-sub + tn 4M 4M dt Im f 1 (t ) t n (t t) C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 16

30 Roy Steiner equations for N scattering: Solution strategy scattering phases δ It J (t) higher partial waves Imf J>Jd ± (t t m ) t-channel partial waves f J ± (t) high-energy region 1. solve RS (MO) equations for J J d and t t m Imf±(t J t m ) inelasticities for t t m and s s m Imf 3. N coupling and subthreshold parameters higher partial waves Imf I (l>ld)± (s s m) s-channel partial waves f I l± (s) high-energy region. solve RS equations for l l d and s s m Imfl± I (s s m) C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 17

31 t-channel Muskhelishvili Omnès problem: Input Here, show results for the P-waves, since S-wave: Strong effect from KK intermediate states (f 0(980) resonance) need two-channel MO analysis following talk P-waves: Single-channel MO approximation well justified in the low-energy region D-waves: Dominated by nucleon pole terms in general for all PWs for t 4M First step: Check consistency with KH80 t-channel PWs iteration with s-channel results t.b.d. C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 18

32 t-channel Muskhelishvili Omnès problem: Input Here, show results for the P-waves, since S-wave: Strong effect from KK intermediate states (f 0(980) resonance) need two-channel MO analysis following talk P-waves: Single-channel MO approximation well justified in the low-energy region D-waves: Dominated by nucleon pole terms in general for all PWs for t 4M First step: Check consistency with KH80 t-channel PWs iteration with s-channel results t.b.d. Input used: phase shifts δ I J [Caprini/Colangelo/Leutwyler (in preparation)] s-channel: SAID PWs [Arndt et al. (008)] for W.5 GeV, above: Regge model [Huang et al. (010)] KH80 [Höhler (1983)] subthreshold parameters & coupling g /(4) = 14.8 modern value: g /(4) = 13.7 ± 0. [Baru et al. (011)] t-channel: All contributions above t m = 0.98 GeV set to zero solutions fixed f I J (tm) = 0 C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 18

33 t-channel Muskhelishvili Omnès problem: P-waves f J + less well determined in MO framework than f J, since Effectively one subtraction less introduced partial third subtraction Enhanced sensitivity to subtraction constants Ñ 0 + (4M ) = ÑJ Γ (4M ) = 0 Estimate systematic uncertainties (1): fixed-t limit a modulo t-channel integrals Estimate systematic uncertainties (): Variation of the matching point t m similar... MO solutions in general consistent with KH80 results C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 19

34 t-channel Muskhelishvili Omnès problem: Isovector spectral functions P-waves feature in dispersive analyses of the Sachs form factors of the nucleon: Im G v E (t) = q3 t m ( F V (t) ) f 1 t + (t) θ ( t 4M) Im G v M (t) = q3 t ( F V (t) ) f 1 (t) θ ( t 4M ) t C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 0

35 Summary & Outlook What has been done: Derived a closed system of Roy Steiner equations (PWHDRS) for N scattering Constructed unitarity relations including KK intermediate states for the t-channel PWs Optimized the range of convergence by tuning a for s- and t-channel each Implemented subtractions at several orders Solved the t-channel (single-channel) MO problem t-channel RS/MO machinery works modulo the S-wave C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 1

36 Summary & Outlook What has been done: Derived a closed system of Roy Steiner equations (PWHDRS) for N scattering Constructed unitarity relations including KK intermediate states for the t-channel PWs Optimized the range of convergence by tuning a for s- and t-channel each Implemented subtractions at several orders Solved the t-channel (single-channel) MO problem t-channel RS/MO machinery works modulo the S-wave What needs to be done: Two-channel MO analysis for the S-wave, effect on scalar form factor following talk Numerical solution of the s-channel subproblem using the t-channel results as input Self-consistent, iterative solution of the full RS system lowest PWs & low-energy parameters Possible improvements: Higher subtractions, higher PWs, more inelastic input,... C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 1

37 N scattering basics Generically: a (q) + N(p) b (q ) + N(p ) 00 Kinematics: s = (p + q), t = (p p ), u = (p q ) u = (m + M ) s t, Isospin structure: T ba = δ ba T + + iɛ bac τ c T Lorentz structure (I {+, }): { } T I = ū(p ) A I + /q +/q B I u(p) ν = s u 4m Crossing symmetry relates amplitudes for s-/u-channel (N N) and t-channel ( NN ), u M Π t u t crossing even and odd amplitudes: A ± (ν, t) = ±A ± ( ν, t), B ± (ν, t) = B ± ( ν, t) Isospin & crossing Ν s M Π AI=+ A I= = 1 1 AIs=1/ A Is=3/ = 6 AIt=0 0 1 A It=1, A {A, B} s C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8

38 N scattering basics: Subthreshold expansion Subtraction of pseudovector Born terms: X X 00 D ± = A ± + νb ± Expand crossing even amplitudes {Ā+ X I (ν, t), Ā ν, B + ν, B, D +, D ν around subthreshold point ν = t = 0: X I (ν, t) = xmn I (ν ) m t n m,n=0 Relations between subthreshold parameters x I mn : d + mn = a + mn + b + m 1,n d + 0n = a+ 0n d mn = a mn + b mn Subthreshold expansion of A ± and B ± : } u M Π t u t A + (ν, t) = g m + d d+ 01 t + a+ 10 ν + O ( ν 4, ν t, t ) A (ν, t) = a 00 ν + a 01 νt + O( ν 3, νt ) B + (ν, t) = g 4mν M M + b + 00 ν + O( ν 3, νt ) [ B (ν, t) = g m g M + t ] M + b 00 + b 01 t + O( ν, ν t, t ) Ν s M Π s C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 3

39 Roy Steiner equations for N scattering: Range of convergence Assumption: Mandelstam analyticity [Mandelstam (1958,1959)] T(s, t) = 1 ds du ρ su(s, u ) (s s)(u u) + 1 dt du ρ tu(t, u ) (t t)(u u) + 1 ds dt ρ st(s, t ) (s s)(t t) with integration ranges defined by the support of the double spectral regions ρ Boundaries of ρ are given by the lowest graphs (I) (II) (III) (IV) 100 Ρut Ρsu Convergence of PW exps. of imaginary parts Lehman ellipses for z = cos θ [Lehmann (1958)] Convergence of PW projs. of full equations u M Π 50 0 t Ν Ρst for given a, hyperbolas must not enter any ρ 50 for all needed values of b Constraints on b yield ranges in s & t s M Π C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 4

40 t-channel Muskhelishvili Omnès problem: P-waves () Estimate systematic uncertainties: Variation of the matching point t m effect of f I J (t m) = 0 Convergence pattern & internal consistency Consistency with KH80 MO solutions in general consistent with KH80 results C. Ditsche (HISKP & BCTP, Uni Bonn) Roy Steiner equations for N scattering Chiral Dynamics 01, JLab, August 8 5

Roy-Steiner equations for πn

Roy-Steiner equations for πn Roy-Steiner equations for πn J. Ruiz de Elvira Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn The Seventh International Symposium on

More information

arxiv: v1 [hep-ph] 24 Aug 2011

arxiv: v1 [hep-ph] 24 Aug 2011 Roy Steiner equations for γγ ππ arxiv:1108.4776v1 [hep-ph] 24 Aug 2011 Martin Hoferichter 1,a,b, Daniel R. Phillips b, and Carlos Schat b,c a Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and

More information

Improved dispersive analysis of the scalar form factor of the nucleon

Improved dispersive analysis of the scalar form factor of the nucleon Improved dispersive analysis of the scalar form factor of the nucleon, ab Christoph Ditsche, a Bastian Kubis, a and Ulf-G. Meißner ac a Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Bethe

More information

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Peter Stoffer in collaboration with G. Colangelo, M. Hoferichter and M. Procura JHEP 09 (2015) 074 [arxiv:1506.01386 [hep-ph]] JHEP

More information

Roy Steiner-equation analysis of pion nucleon scattering

Roy Steiner-equation analysis of pion nucleon scattering Roy Steiner-equation analysis of pion nucleon scattering Jacobo Ruiz de Elvira 1 Martin Hoferichter 2 1 HISKP and Bethe Center for Theoretical Physics, Universität Bonn 2 Institute for Nuclear Theory,

More information

Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations

Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations Bastian Kubis Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) Bethe Center for Theoretical Physics

More information

Baroion CHIRAL DYNAMICS

Baroion CHIRAL DYNAMICS Baroion CHIRAL DYNAMICS Baryons 2002 @ JLab Thomas Becher, SLAC Feb. 2002 Overview Chiral dynamics with nucleons Higher, faster, stronger, Formulation of the effective Theory Full one loop results: O(q

More information

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Peter Stoffer in collaboration with G. Colangelo, M. Hoferichter and M. Procura JHEP 09 (2015) 074 [arxiv:1506.01386 [hep-ph]] JHEP

More information

Light by Light. Summer School on Reaction Theory. Michael Pennington Jefferson Lab

Light by Light. Summer School on Reaction Theory. Michael Pennington Jefferson Lab Light by Light Summer School on Reaction Theory Michael Pennington Jefferson Lab Amplitude Analysis g g R p p resonances have definite quantum numbers I, J, P (C) g p g p = S F Jl (s) Y Jl (J,j) J,l Amplitude

More information

Isospin-breaking corrections to the pion nucleon scattering lengths

Isospin-breaking corrections to the pion nucleon scattering lengths Isospin-breaking corrections to the pion nucleon scattering lengths Helmholtz Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany

More information

Meson-baryon interaction in the meson exchange picture

Meson-baryon interaction in the meson exchange picture Meson-baryon interaction in the meson exchange picture M. Döring C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, K. Nakayama, D. Rönchen, Forschungszentrum Jülich, University of Georgia, Universität Bonn

More information

Dispersion theory in hadron form factors

Dispersion theory in hadron form factors Dispersion theory in hadron form factors C. Weiss (JLab), Reaction Theory Workshop, Indiana U., 1-Jun-17 E-mail: weiss@jlab.org Objectives Review hadron interactions with electroweak fields: currents,

More information

Coupled-channel Bethe-Salpeter

Coupled-channel Bethe-Salpeter Coupled-channel Bethe-Salpeter approach to pion-nucleon scattering Maxim Mai 01/11/2012 ChPT vs. uchpt + chiral symmetry + crossing symmetry + counterterm renormalization low-energy (ρ, ) perturbative

More information

Pion-Kaon interactions Workshop, JLAB Feb , From πk amplitudes to πk form factors (and back) Bachir Moussallam

Pion-Kaon interactions Workshop, JLAB Feb , From πk amplitudes to πk form factors (and back) Bachir Moussallam Pion-Kaon interactions Workshop, JLAB Feb. 14-15, 2018 From πk amplitudes to πk form factors (and back) Bachir Moussallam Outline: Introduction ππ scalar form factor πk: J = 0 amplitude and scalar form

More information

Nucleon EM Form Factors in Dispersion Theory

Nucleon EM Form Factors in Dispersion Theory Nucleon EM Form Factors in Dispersion Theory H.-W. Hammer, University of Bonn supported by DFG, EU and the Virtual Institute on Spin and strong QCD Collaborators: M. Belushkin, U.-G. Meißner Agenda Introduction

More information

THE PION-NUCLEON SIGMA TERM: an introduction

THE PION-NUCLEON SIGMA TERM: an introduction THE PION-NUCLEON SIGMA TERM: an introduction Marc Knecht Centre de Physique Théorique CNRS Luminy Case 907 13288 Marseille cedex 09 - France knecht@cpt.univ-mrs.fr (Member of the EEC Network FLAVIAnet)

More information

arxiv:nucl-th/ v1 28 Aug 2001

arxiv:nucl-th/ v1 28 Aug 2001 A meson exchange model for the Y N interaction J. Haidenbauer, W. Melnitchouk and J. Speth arxiv:nucl-th/1862 v1 28 Aug 1 Forschungszentrum Jülich, IKP, D-52425 Jülich, Germany Jefferson Lab, 1 Jefferson

More information

Isospin breaking in pion deuteron scattering and the pion nucleon scattering lengths

Isospin breaking in pion deuteron scattering and the pion nucleon scattering lengths Isospin breaking in pion deuteron scattering and the pion nucleon scattering lengths source: https://doi.org/10.789/boris.4584 downloaded: 13.3.017, ab Vadim Baru, cd Christoph Hanhart, e Bastian Kubis,

More information

Few-nucleon contributions to π-nucleus scattering

Few-nucleon contributions to π-nucleus scattering Mitglied der Helmholtz-Gemeinschaft Few-nucleon contributions to π-nucleus scattering Andreas Nogga, Forschungszentrum Jülich INT Program on Simulations and Symmetries: Cold Atoms, QCD, and Few-hadron

More information

Pion-nucleon sigma-term - a review

Pion-nucleon sigma-term - a review Pion-nucleon sigma-term - a review M.E. Sainio Helsinki Institute of Physics, and Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland (Received: December 5, 2001) A brief

More information

arxiv:nucl-th/ v1 3 Jul 1996

arxiv:nucl-th/ v1 3 Jul 1996 MKPH-T-96-15 arxiv:nucl-th/9607004v1 3 Jul 1996 POLARIZATION PHENOMENA IN SMALL-ANGLE PHOTOPRODUCTION OF e + e PAIRS AND THE GDH SUM RULE A.I. L VOV a Lebedev Physical Institute, Russian Academy of Sciences,

More information

Radiative Corrections in Free Neutron Decays

Radiative Corrections in Free Neutron Decays Radiative Corrections in Free Neutron Decays Chien-Yeah Seng Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn Beta Decay as a Probe of New Physics

More information

The chiral representation of the πn scattering amplitude and the pion-nucleon σ-term

The chiral representation of the πn scattering amplitude and the pion-nucleon σ-term The chiral representation of the πn scattering amplitude and the pion-nucleon σ-term J. Martin Camalich University of Sussex, UK in collaboration with J.M. Alarcon and J.A. Oller September 20, 2011 The

More information

NEUTRON-NEUTRON SCATTERING LENGTH FROM THE REACTION γd π + nn

NEUTRON-NEUTRON SCATTERING LENGTH FROM THE REACTION γd π + nn MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany NEUTRON-NEUTRON SCATTERING LENGTH FROM THE REACTION

More information

The light Scalar Mesons: σ and κ

The light Scalar Mesons: σ and κ 7th HEP Annual Conference Guilin, Oct 29, 2006 The light Scalar Mesons: σ and κ Zhou Zhi-Yong Southeast University 1 Background Linear σ model Nonlinear σ model σ particle: appear disappear reappear in

More information

pipi scattering from partial wave dispersion relation Lingyun Dai (Indiana University & JPAC)

pipi scattering from partial wave dispersion relation Lingyun Dai (Indiana University & JPAC) pipi scattering from partial wave dispersion relation Lingyun Dai (Indiana University & JPAC) Outlines 1 Introduction 2 K-Matrix fit 3 poles from dispersion 4 future projects 5 Summary 1. Introduction

More information

Properties of the S-matrix

Properties of the S-matrix Properties of the S-matrix In this chapter we specify the kinematics, define the normalisation of amplitudes and cross sections and establish the basic formalism used throughout. All mathematical functions

More information

Quark-Hadron Duality in Structure Functions

Quark-Hadron Duality in Structure Functions Approaches to QCD, Oberwoelz, Austria September 10, 2008 Quark-Hadron Duality in Structure Functions Wally Melnitchouk Outline Bloom-Gilman duality Duality in QCD OPE & higher twists Resonances & local

More information

A scrutiny of hard pion chiral perturbation theory

A scrutiny of hard pion chiral perturbation theory A scrutiny of hard pion chiral perturbation theory Massimiliano Procura Albert Einstein Center for Fundamental Physics 7th Workshop on Chiral Dynamics, JLab, Newport News, August 2012 Outline Hard pion

More information

Baryon Spectroscopy: what do we learn, what do we need?

Baryon Spectroscopy: what do we learn, what do we need? Baryon Spectroscopy: what do we learn, what do we need? E. Klempt Helmholtz-Institut für Strahlen und Kernphysik Universität Bonn Nußallee 14-16, D-53115 Bonn, GERMANY e-mail: klempt@hiskp.uni-bonn.de

More information

Overview and Status of Measurements of F 3π at COMPASS

Overview and Status of Measurements of F 3π at COMPASS g-2 workshop Mainz: Overview and Status of Measurements of F 3π at COMPASS D. Steffen on behalf of the COMPASS collaboration 19.06.2018 sponsored by: 2 Dominik Steffen g-2 workshop Mainz 19.06.2018 Contents

More information

Hadron Spectroscopy at COMPASS

Hadron Spectroscopy at COMPASS Hadron Spectroscopy at Overview and Analysis Methods Boris Grube for the Collaboration Physik-Department E18 Technische Universität München, Garching, Germany Future Directions in Spectroscopy Analysis

More information

A final state interaction model of resonance photoproduction

A final state interaction model of resonance photoproduction A final state interaction model of resonance photoproduction HASPECT week Kraków May 30 - June 1, 2016 Łukasz Bibrzycki Pedagogical University of Cracow 1 / 24 1. Resonances dynamically created in the

More information

Resonance properties from finite volume energy spectrum

Resonance properties from finite volume energy spectrum Resonance properties from finite volume energy spectrum Akaki Rusetsky Helmholtz-Institut für Strahlen- und Kernphysik Abteilung Theorie, Universität Bonn, Germany NPB 788 (2008) 1 JHEP 0808 (2008) 024

More information

K form factors and determination of V us from decays

K form factors and determination of V us from decays form factors and determination of V us from decays Emilie Passemar Los Alamos National Laboratory The 11th International Workshop on Chiral Dynamics Jefferson Laboratory, Virginia, USA August 7, 01 Outline

More information

PROGRESS IN NN NNπ. 1 Introduction. V. Baru,1, J. Haidenbauer %, C. Hanhart %, A. Kudryavtsev, V. Lensky,% and U.-G. Meißner %,#

PROGRESS IN NN NNπ. 1 Introduction. V. Baru,1, J. Haidenbauer %, C. Hanhart %, A. Kudryavtsev, V. Lensky,% and U.-G. Meißner %,# MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany PROGRESS IN NN NNπ V. Baru,1, J. Haidenbauer

More information

Probing lepton flavour violation in the Higgs sector with hadronic! decays

Probing lepton flavour violation in the Higgs sector with hadronic! decays Probing lepton flavour violation in the Higgs sector with hadronic! decays Los Alamos National Laboratory passemar@lanl.gov LUPM & L2C, Montpellier February 13, 2014 In collaboration with : Alejandro Celis,

More information

arxiv:nucl-th/ v1 22 Nov 1994

arxiv:nucl-th/ v1 22 Nov 1994 A dynamical model for correlated two-pion-exchange in the pion-nucleon interaction C. Schütz, K. Holinde and J. Speth Institut für Kernphysik, Forschungszentrum Jülich GmbH, D 52425 Jülich, Germany arxiv:nucl-th/9411022v1

More information

Electroweak Probes of Three-Nucleon Systems

Electroweak Probes of Three-Nucleon Systems Stetson University July 3, 08 Brief Outline Form factors of three-nucleon systems Hadronic parity-violation in three-nucleon systems Pionless Effective Field Theory Ideally suited for momenta p < m π since

More information

arxiv: v2 [hep-ph] 23 Jul 2010

arxiv: v2 [hep-ph] 23 Jul 2010 Photon- and pion-nucleon interactions in a unitary and causal effective field theory based on the chiral Lagrangian A. Gasparyan, a,b and M.F.M. Lutz a arxiv:13.346v [hep-ph] 3 Jul 1 Abstract a Gesellschaft

More information

Triangle singularity in light meson spectroscopy

Triangle singularity in light meson spectroscopy Triangle singularity in light meson spectroscopy M. Mikhasenko, B. Ketzer, A. Sarantsev HISKP, University of Bonn April 16, 2015 M. Mikhasenko (HISKP) Triangle singularity April 16, 2015 1 / 21 New a 1-1

More information

Coulomb effects in pionless effective field theory

Coulomb effects in pionless effective field theory Coulomb effects in pionless effective field theory Sebastian König in collaboration with Hans-Werner Hammer Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics,

More information

Incoherent photoproduction of π 0 and η from complex nuclei up to 12 GeV

Incoherent photoproduction of π 0 and η from complex nuclei up to 12 GeV Incoherent photoproduction of π 0 and η from complex nuclei up to GeV Tulio E. Rodrigues University of São Paulo - Brazil Outline: Physics motivation (chiral anomaly in QCD) Meson photoproduction from

More information

Cusp effects in meson decays

Cusp effects in meson decays Cusp effects in meson decays Bastian Kubis Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) Bethe Center for Theoretical Physics Universität Bonn, Germany Few-Body 2009 Bonn, 3/9/2009 B. Kubis,

More information

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons?

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons? Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons? Volker Credé Florida State University, Tallahassee, FL Spring Meeting of the American Physical Society Atlanta, Georgia,

More information

Analyticity and crossing symmetry in the K-matrix formalism.

Analyticity and crossing symmetry in the K-matrix formalism. Analyticity and crossing symmetry in the K-matrix formalism. KVI, Groningen 7-11 September, 21 Overview Motivation Symmetries in scattering formalism K-matrix formalism (K S ) (K A ) Pions and photons

More information

Non-perturbative methods for low-energy hadron physics

Non-perturbative methods for low-energy hadron physics Non-perturbative methods for low-energy hadron physics J. Ruiz de Elvira Helmholtz-Institut für Strahlen- und Kernphysik, Bonn University JLab postdoc position interview, January 11th 2016 Biographical

More information

Recent Results on Spectroscopy from COMPASS

Recent Results on Spectroscopy from COMPASS Recent Results on Spectroscopy from COMPASS Boris Grube Physik-Department E18 Technische Universität München, Garching, Germany Hadron 15 16. September 15, Newport News, VA E COMPASS 1 8 The COMPASS Experiment

More information

When Is It Possible to Use Perturbation Technique in Field Theory? arxiv:hep-ph/ v1 27 Jun 2000

When Is It Possible to Use Perturbation Technique in Field Theory? arxiv:hep-ph/ v1 27 Jun 2000 CPHT S758.0100 When Is It Possible to Use Perturbation Technique in Field Theory? arxiv:hep-ph/000630v1 7 Jun 000 Tran N. Truong Centre de Physique Théorique, Ecole Polytechnique F9118 Palaiseau, France

More information

arxiv:hep-ph/ v1 15 May 1997

arxiv:hep-ph/ v1 15 May 1997 Chiral two-loop pion-pion scattering parameters from crossing-symmetric constraints G. Wanders Institut de physique théorique, Université de Lausanne, arxiv:hep-ph/9705323v1 15 May 1997 CH-1015 Lausanne,

More information

Spectroscopy Results from COMPASS. Jan Friedrich. Physik-Department, TU München on behalf of the COMPASS collaboration

Spectroscopy Results from COMPASS. Jan Friedrich. Physik-Department, TU München on behalf of the COMPASS collaboration Spectroscopy Results from COMPASS Jan Friedrich Physik-Department, TU München on behalf of the COMPASS collaboration 11th European Research Conference on "Electromagnetic Interactions with Nucleons and

More information

Pion polarizabilities: No conflict between dispersion theory and ChPT

Pion polarizabilities: No conflict between dispersion theory and ChPT : No conflict between dispersion theory and ChPT Barbara Pasquini a, b, and Stefan Scherer b a Dipartimento di Fisica Nucleare e Teorica, Università degli Studi di Pavia, and INFN, Sezione di Pavia, Italy

More information

arxiv:hep-ph/ v1 1 Jun 1995

arxiv:hep-ph/ v1 1 Jun 1995 CHIRAL PREDICTION FOR THE πn S WAVE SCATTERING LENGTH a TO ORDER O(M 4 π ) V. Bernard a#1#2, N. Kaiser b#3, Ulf-G. Meißner c#4 arxiv:hep-ph/9506204v1 1 Jun 1995 a Centre de Recherches Nucléaires, Physique

More information

Two photon exchange: theoretical issues

Two photon exchange: theoretical issues Two photon exchange: theoretical issues Peter Blunden University of Manitoba International Workshop on Positrons at JLAB March 25-27, 2009 Proton G E /G M Ratio Rosenbluth (Longitudinal-Transverse) Separation

More information

Compton Scattering from Low to High Energies

Compton Scattering from Low to High Energies Compton Scattering from Low to High Energies Marc Vanderhaeghen College of William & Mary / JLab HUGS 2004 @ JLab, June 1-18 2004 Outline Lecture 1 : Real Compton scattering on the nucleon and sum rules

More information

Coupled channel dynamics in Λ and Σ production

Coupled channel dynamics in Λ and Σ production Coupled channel dynamics in Λ and Σ production S. Krewald M. Döring, H. Haberzettl, J. Haidenbauer, C. Hanhart, F. Huang, U.-G. Meißner, K. Nakayama, D. Rönchen, Forschungszentrum Jülich, George Washington

More information

Light hypernuclei based on chiral and phenomenological interactions

Light hypernuclei based on chiral and phenomenological interactions Mitglied der Helmholtz-Gemeinschaft Light hypernuclei based on chiral and phenomenological interactions Andreas Nogga, Forschungszentrum Jülich International Conference on Hypernuclear and Strange Particle

More information

arxiv: v2 [hep-ph] 10 Nov 2017

arxiv: v2 [hep-ph] 10 Nov 2017 Two-photon exchange contribution to elastic e -proton scattering: Full dispersive treatment of πn states and comparison with data Oleksandr Tomalak, 1 Barbara Pasquini, 2, 3 and Marc Vanderhaeghen 1 1

More information

Towards a data-driven analysis of hadronic light-by-light scattering

Towards a data-driven analysis of hadronic light-by-light scattering Towards a data-driven analysis of hadronic light-by-light scattering Bastian Kubis Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) Bethe Center for Theoretical Physics Universität Bonn, Germany

More information

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS Volker Credé Florida State University, Tallahassee, FL JLab Users Group Workshop Jefferson Lab 6/4/24 Outline Introduction

More information

arxiv: v1 [nucl-th] 23 Feb 2016

arxiv: v1 [nucl-th] 23 Feb 2016 September 12, 2018 Threshold pion production in proton-proton collisions at NNLO in chiral EFT arxiv:1602.07333v1 [nucl-th] 23 Feb 2016 V. Baru, 1, 2 E. Epelbaum, 1 A. A. Filin, 1 C. Hanhart, 3 H. Krebs,

More information

Chiral effective field theory for hadron and nuclear physics

Chiral effective field theory for hadron and nuclear physics Chiral effective field theory for hadron and nuclear physics Jose Manuel Alarcón Helmholtz-Institut für Strahlen- und Kernphysik University of Bonn Biographical presentation Biographical presentation Born

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering University HUGS - JLab - June 2010 June 2010 HUGS 1 k q k P P A generic scatter of a lepton off of some target. k µ and k µ are the 4-momenta of the lepton and P

More information

Finite-Energy Sum Rules. Jannes Nys JPAC Collaboration

Finite-Energy Sum Rules. Jannes Nys JPAC Collaboration Finite-Energy Sum Rules in γn 0 N Jannes Nys JPAC Collaboration Finite-Energy Sum Rules η /η beam asymmetry predictions πδ beam asymmetry Lots of other reactions Overview J. Nys, V. Mathieu et al (JPAC)

More information

Dispersion Relation Analyses of Pion Form Factor, Chiral Perturbation Theory and Unitarized Calculations

Dispersion Relation Analyses of Pion Form Factor, Chiral Perturbation Theory and Unitarized Calculations CPHT S758.0100 Dispersion Relation Analyses of Pion Form Factor, Chiral Perturbation Theory and Unitarized Calculations Tran N. Truong Centre de Physique Théorique, Ecole Polytechnique F91128 Palaiseau,

More information

Photon-fusion reactions in a dispersive effective field theory from the chiral Lagrangian with vector-meson fields

Photon-fusion reactions in a dispersive effective field theory from the chiral Lagrangian with vector-meson fields Photon-fusion reactions in a dispersive effective field theory from the chiral Lagrangian with vector-meson fields Igor Danilkin (collaborators: Matthias F. M. Lutz, Stefan Leupold, Carla Terschlüsen,

More information

BUTP-96/10, hep-ph/ Energy Scattering. B. Ananthanarayan. P. Buttiker. Institut fur theoretische Physik. Abstract

BUTP-96/10, hep-ph/ Energy Scattering. B. Ananthanarayan. P. Buttiker. Institut fur theoretische Physik. Abstract BUTP-96/10, hep-ph/960217 Scattering Lengths and Medium and High Energy Scattering B. Ananthanarayan P. Buttiker Institut fur theoretische Physik Universitat Bern, CH{3012 Bern, Switzerland Abstract Medium

More information

High energy scattering in QCD and in quantum gravity

High energy scattering in QCD and in quantum gravity High energy scattering in QCD and in quantum gravity. Gribov Pomeron calculus. BFKL equation L. N. Lipatov Petersburg Nuclear Physics Institute, Gatchina, St.Petersburg, Russia Content 3. Integrability

More information

A Model That Realizes Veneziano Duality

A Model That Realizes Veneziano Duality A Model That Realizes Veneziano Duality L. Jenkovszky, V. Magas, J.T. Londergan and A. Szczepaniak, Int l Journ of Mod Physics A27, 1250517 (2012) Review, Veneziano dual model resonance-regge Limitations

More information

A high-accuracy extraction of the isoscalar πn scattering length from pionic deuterium data

A high-accuracy extraction of the isoscalar πn scattering length from pionic deuterium data A high-accuracy extraction of the isoscalar πn scattering length from pionic deuterium data Daniel Phillips Ohio University and Universität Bonn with V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga

More information

!-mesons produced in, p reactions. de Physique Nucleaire et de l'instrumentation Associee. Service de Physique Nucleaire

!-mesons produced in, p reactions. de Physique Nucleaire et de l'instrumentation Associee. Service de Physique Nucleaire Quantum interference in the e + e, decays of - and!-mesons produced in, p reactions Madeleine Soyeur 1, Matthias Lutz 2 and Bengt Friman 2;3 1. Departement d'astrophysique, de Physique des Particules,

More information

Pion photoproduction in a gauge invariant approach

Pion photoproduction in a gauge invariant approach Pion photoproduction in a gauge invariant approach F. Huang, K. Nakayama (UGA) M. Döring, C. Hanhart, J. Haidenbauer, S. Krewald (FZ-Jülich) Ulf-G. Meißner (FZ-Jülich & Bonn) H. Haberzettl (GWU) Jun.,

More information

X Y Z. Are they cusp effects? Feng-Kun Guo. Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn

X Y Z. Are they cusp effects? Feng-Kun Guo. Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn X Y Z Are they cusp effects? Feng-Kun Guo Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn Hadrons and Hadron Interactions in QCD 2015 Feb. 15 Mar. 21, 2015, YITP Based on: FKG, C. Hanhart,

More information

Dr Victoria Martin, Spring Semester 2013

Dr Victoria Martin, Spring Semester 2013 Particle Physics Dr Victoria Martin, Spring Semester 2013 Lecture 3: Feynman Diagrams, Decays and Scattering Feynman Diagrams continued Decays, Scattering and Fermi s Golden Rule Anti-matter? 1 Notation

More information

A new look at the nonlinear sigma model 1

A new look at the nonlinear sigma model 1 1 Project in collaboration with Jiří Novotný (Prague) and Jaroslav Trnka (Caltech). Main results in [1212.5224] and [1304.3048] K. Kampf Non-linear sigma model 1/20 A new look at the nonlinear sigma model

More information

arxiv:nucl-th/ v1 23 Feb 2007 Pion-nucleon scattering within a gauged linear sigma model with parity-doubled nucleons

arxiv:nucl-th/ v1 23 Feb 2007 Pion-nucleon scattering within a gauged linear sigma model with parity-doubled nucleons February 5, 28 13:17 WSPC/INSTRUCTION FILE International Journal of Modern Physics E c World Scientific Publishing Company arxiv:nucl-th/7276v1 23 Feb 27 Pion-nucleon scattering within a gauged linear

More information

Inelastic scattering on the lattice

Inelastic scattering on the lattice Inelastic scattering on the lattice Akaki Rusetsky, University of Bonn In coll with D. Agadjanov, M. Döring, M. Mai and U.-G. Meißner arxiv:1603.07205 Nuclear Physics from Lattice QCD, INT Seattle, March

More information

UNPHYSICAL RIEMANN SHEETS

UNPHYSICAL RIEMANN SHEETS UNPHYSICAL RIEMANN SHEETS R. Blankenbecler Princeton University, Princeton, New Jersey There has been considerable interest of late in the analyticity properties of the scattering amplitude on unphysical

More information

PION DEUTERON SCATTERING LENGTH IN CHIRAL PERTURBATION THEORY UP TO ORDER χ 3/2

PION DEUTERON SCATTERING LENGTH IN CHIRAL PERTURBATION THEORY UP TO ORDER χ 3/2 MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany PION DEUTERON SCATTERING LENGTH IN CHIRAL PERTURBATION

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li (Institute) Slide_04 1 / 43 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination L = ψ (x ) γ µ ( i µ ea µ

More information

PoS(STORI11)050. The η π + π π 0 decay with WASA-at-COSY

PoS(STORI11)050. The η π + π π 0 decay with WASA-at-COSY The η π + π π 0 decay with WASA-at-COSY Institute for Physics and Astronomy, Uppsala University E-mail: patrik.adlarson@physics.uu.se Recently, a large statistics sample of approximately 3 10 7 decays

More information

η 3π and light quark masses

η 3π and light quark masses η 3π and light quark masses Theoretical Division Los Alamos National Laboratory Jefferson Laboratory, Newport News November 5, 013 In collaboration with G. Colangelo, H. Leutwyler and S. Lanz (ITP-Bern)

More information

Pion polarizabilities in Chiral Dynamics

Pion polarizabilities in Chiral Dynamics JLab, 9-27-13 Pion polarizabilities in Chiral Dynamics Jose L. Goity Hampton University/Jefferson Lab Introduction Composite particle in external EM field H = H 0 (A)+2πα E 2 +2πβ B 2 + α, β electric and

More information

Coupled-channel effects in radiative. Radiative charmonium transitions

Coupled-channel effects in radiative. Radiative charmonium transitions Coupled-channel effects in radiative charmonium transitions Feng-Kun Guo Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn IHEP, Beijing, April 16, 2013 Based on: Guo, Meißner, PRL108(2012)112002;

More information

arxiv:nucl-th/ v2 15 May 2005

arxiv:nucl-th/ v2 15 May 2005 FZJ IKPTH) 005 08, HISKP-TH-05/06 arxiv:nucl-th/0505039v 15 May 005 Precision calculation of γd π + nn within chiral perturbation theory V. Lensky 1,, V. Baru, J. Haidenbauer 1, C. Hanhart 1, A.E. Kudryavtsev,

More information

The MAID Legacy and Future

The MAID Legacy and Future The MAID Legacy and Future Verdun, France, 11 August 1999 Side, Turkey, 29 March 2006 Lothar Tiator, Johannes Gutenberg Universität, Mainz NSTAR Workshop, Columbia, SC, USA, August 20-23, 23, 2017 https://maid.kph.uni-mainz.de

More information

The GPD program at Jefferson Lab: recent results and outlook

The GPD program at Jefferson Lab: recent results and outlook The GPD program at Jefferson Lab: recent results and outlook Carlos Muñoz Camacho IPN-Orsay, CNRS/INP3 (France) KITPC, Beijing July 17, 1 Carlos Muñoz Camacho (IPN-Orsay) GPDs at JLab KITPC, 1 1 / 3 Outline

More information

Mass of Heavy Mesons from Lattice QCD

Mass of Heavy Mesons from Lattice QCD Mass of Heavy Mesons from Lattice QCD David Richards Jefferson Laboratory/Hadron Spectrum Collaboration Temple, March 2016 Outline Heavy Mesons Lattice QCD Spectroscopy Recipe Book Results and insight

More information

Physik Department, Technische Universität München D Garching, Germany. Abstract

Physik Department, Technische Universität München D Garching, Germany. Abstract TUM/T39-96-19 Diffractive ρ 0 photo- and leptoproduction at high energies ) G. Niesler, G. Piller and W. Weise arxiv:hep-ph/9610302v1 9 Oct 1996 Physik Department, Technische Universität München D-85747

More information

Dispersion approach to real and virtual Compton scattering

Dispersion approach to real and virtual Compton scattering Dispersion approach to real and virtual Compton scattering Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften am Fachbereich Physik der Johannes Gutenberg-Universität in Mainz Mikhail

More information

Higher dimensional Kerr-Schild spacetimes 1

Higher dimensional Kerr-Schild spacetimes 1 Higher dimensional Kerr-Schild spacetimes 1 Marcello Ortaggio Institute of Mathematics Academy of Sciences of the Czech Republic Bremen August 2008 1 Joint work with V. Pravda and A. Pravdová, arxiv:0808.2165

More information

Scalar and pseudo-scalar scalar form factors in electro- and weak- pionproduction

Scalar and pseudo-scalar scalar form factors in electro- and weak- pionproduction Scalar and pseudo-scalar scalar form factors in electro- and weak- pionproduction Myung-Ki CHEOUN, Kyungsik KIM, Kiseok CHOI (Soongsil Univ., Seoul) Fukuoka, Japan 1 Contents 1. Motivation - PS and Scalar

More information

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013 Baryon Resonance Determination using LQCD Robert Edwards Jefferson Lab Baryons 2013 Where are the Missing Baryon Resonances? What are collective modes? Is there freezing of degrees of freedom? What is

More information

Recent Developments and Applications of Integral Transforms in Few- and Many-Body Physics

Recent Developments and Applications of Integral Transforms in Few- and Many-Body Physics Recent Developments and Applications of Integral Transforms in Few- and Many-Body Physics Outline Introduction Compton scattering (A=2) Δ degrees of freedom in 3He(e,e') (A=3) Role of 0+ resonance in 4He(e,e')

More information

On the precision of the theoretical predictions for ππ scattering

On the precision of the theoretical predictions for ππ scattering On the precision of the theoretical predictions for ππ scattering August, 003 arxiv:hep-ph/03061v 6 Aug 003 I. Caprini a, G. Colangelo b, J. Gasser b and H. Leutwyler b a National Institute of Physics

More information

Pion-Nucleon P 11 Partial Wave

Pion-Nucleon P 11 Partial Wave Pion-Nucleon P 11 Partial Wave Introduction 31 August 21 L. David Roper, http://arts.bev.net/roperldavid/ The author s PhD thesis at MIT in 1963 was a -7 MeV pion-nucleon partial-wave analysis 1. A major

More information

Three-particle dynamics in a finite volume

Three-particle dynamics in a finite volume Three-particle dynamics in a finite volume Akaki Rusetsky, University of Bonn In collaboration with M. Döring, H.-W. Hammer, M. Mai, J.-Y. Pang, F. Romero-López, C. Urbach and J. Wu arxiv:1706.07700, arxiv:1707.02176

More information

Dispersion Theory in Electromagnetic Interactions

Dispersion Theory in Electromagnetic Interactions arxiv:185.1482v1 [hep-ph] 26 May 218 Keywords Dispersion Theory in Electromagnetic Interactions Barbara Pasquini, 1,2 and Marc Vanderhaeghen 3,4 1 Dipartimento di Fisica, Università degli Studi di Pavia,

More information

Babar anomaly and the pion form factors

Babar anomaly and the pion form factors Babar anomaly and the pion form factors Adam Szczepaniak Indiana University Form-factors :: quark/gluon structure of hadrons Babar anomaly and the pion form factors Adam Szczepaniak Indiana University

More information

AN ANALYTICAL DESCRIPTION OF SPIN EFFECTS IN HADRON-HADRON SCATTERING VIA PMD-SQS OPTIMUM PRINCIPLE

AN ANALYTICAL DESCRIPTION OF SPIN EFFECTS IN HADRON-HADRON SCATTERING VIA PMD-SQS OPTIMUM PRINCIPLE AN ANALYTICAL DESCRIPTION OF SPIN EFFECTS IN HADRON-HADRON SCATTERING VIA PMD-SQS OPTIMUM PRINCIPLE D. B. ION,), M. L. D. ION 3) and ADRIANA I. SANDRU ) ) IFIN-HH, Bucharest, P.O. Box MG-6, Mãgurele, Romania

More information